6d0f6bcf33
Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
1608 lines
41 KiB
C
1608 lines
41 KiB
C
/*
|
|
* (C) 2006 Denx
|
|
* Driver for NAND support, Rick Bronson
|
|
* borrowed heavily from:
|
|
* (c) 1999 Machine Vision Holdings, Inc.
|
|
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* Added 16-bit nand support
|
|
* (C) 2004 Texas Instruments
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <malloc.h>
|
|
#include <asm/io.h>
|
|
#include <watchdog.h>
|
|
#include <linux/mtd/nand_legacy.h>
|
|
#include <linux/mtd/nand_ids.h>
|
|
#include <jffs2/jffs2.h>
|
|
|
|
#ifdef CONFIG_OMAP1510
|
|
void archflashwp(void *archdata, int wp);
|
|
#endif
|
|
|
|
#define ROUND_DOWN(value,boundary) ((value) & (~((boundary)-1)))
|
|
|
|
#undef PSYCHO_DEBUG
|
|
#undef NAND_DEBUG
|
|
|
|
/* ****************** WARNING *********************
|
|
* When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
|
|
* erase (or at least attempt to erase) blocks that are marked
|
|
* bad. This can be very handy if you are _sure_ that the block
|
|
* is OK, say because you marked a good block bad to test bad
|
|
* block handling and you are done testing, or if you have
|
|
* accidentally marked blocks bad.
|
|
*
|
|
* Erasing factory marked bad blocks is a _bad_ idea. If the
|
|
* erase succeeds there is no reliable way to find them again,
|
|
* and attempting to program or erase bad blocks can affect
|
|
* the data in _other_ (good) blocks.
|
|
*/
|
|
#define ALLOW_ERASE_BAD_DEBUG 0
|
|
|
|
#define CONFIG_MTD_NAND_ECC /* enable ECC */
|
|
#define CONFIG_MTD_NAND_ECC_JFFS2
|
|
|
|
/* bits for nand_legacy_rw() `cmd'; or together as needed */
|
|
#define NANDRW_READ 0x01
|
|
#define NANDRW_WRITE 0x00
|
|
#define NANDRW_JFFS2 0x02
|
|
#define NANDRW_JFFS2_SKIP 0x04
|
|
|
|
|
|
/*
|
|
* Exported variables etc.
|
|
*/
|
|
|
|
/* Definition of the out of band configuration structure */
|
|
struct nand_oob_config {
|
|
/* position of ECC bytes inside oob */
|
|
int ecc_pos[6];
|
|
/* position of bad blk flag inside oob -1 = inactive */
|
|
int badblock_pos;
|
|
/* position of ECC valid flag inside oob -1 = inactive */
|
|
int eccvalid_pos;
|
|
} oob_config = { {0}, 0, 0};
|
|
|
|
struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE] = {{0}};
|
|
|
|
int curr_device = -1; /* Current NAND Device */
|
|
|
|
|
|
/*
|
|
* Exported functionss
|
|
*/
|
|
int nand_legacy_erase(struct nand_chip* nand, size_t ofs,
|
|
size_t len, int clean);
|
|
int nand_legacy_rw(struct nand_chip* nand, int cmd,
|
|
size_t start, size_t len,
|
|
size_t * retlen, u_char * buf);
|
|
void nand_print(struct nand_chip *nand);
|
|
void nand_print_bad(struct nand_chip *nand);
|
|
int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
size_t * retlen, u_char * buf);
|
|
int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
size_t * retlen, const u_char * buf);
|
|
|
|
/*
|
|
* Internals
|
|
*/
|
|
static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
|
|
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
|
|
size_t * retlen, u_char *buf, u_char *ecc_code);
|
|
static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
|
|
size_t * retlen, const u_char * buf,
|
|
u_char * ecc_code);
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
|
|
static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
|
|
#endif
|
|
|
|
|
|
/*
|
|
*
|
|
* Function definitions
|
|
*
|
|
*/
|
|
|
|
/* returns 0 if block containing pos is OK:
|
|
* valid erase block and
|
|
* not marked bad, or no bad mark position is specified
|
|
* returns 1 if marked bad or otherwise invalid
|
|
*/
|
|
static int check_block (struct nand_chip *nand, unsigned long pos)
|
|
{
|
|
size_t retlen;
|
|
uint8_t oob_data;
|
|
uint16_t oob_data16[6];
|
|
int page0 = pos & (-nand->erasesize);
|
|
int page1 = page0 + nand->oobblock;
|
|
int badpos = oob_config.badblock_pos;
|
|
|
|
if (pos >= nand->totlen)
|
|
return 1;
|
|
|
|
if (badpos < 0)
|
|
return 0; /* no way to check, assume OK */
|
|
|
|
if (nand->bus16) {
|
|
if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
|
|
|| (oob_data16[2] & 0xff00) != 0xff00)
|
|
return 1;
|
|
if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
|
|
|| (oob_data16[2] & 0xff00) != 0xff00)
|
|
return 1;
|
|
} else {
|
|
/* Note - bad block marker can be on first or second page */
|
|
if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
|
|
|| oob_data != 0xff
|
|
|| nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
|
|
|| oob_data != 0xff)
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* print bad blocks in NAND flash */
|
|
void nand_print_bad(struct nand_chip* nand)
|
|
{
|
|
unsigned long pos;
|
|
|
|
for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
|
|
if (check_block(nand, pos))
|
|
printf(" 0x%8.8lx\n", pos);
|
|
}
|
|
puts("\n");
|
|
}
|
|
|
|
/* cmd: 0: NANDRW_WRITE write, fail on bad block
|
|
* 1: NANDRW_READ read, fail on bad block
|
|
* 2: NANDRW_WRITE | NANDRW_JFFS2 write, skip bad blocks
|
|
* 3: NANDRW_READ | NANDRW_JFFS2 read, data all 0xff for bad blocks
|
|
* 7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
|
|
*/
|
|
int nand_legacy_rw (struct nand_chip* nand, int cmd,
|
|
size_t start, size_t len,
|
|
size_t * retlen, u_char * buf)
|
|
{
|
|
int ret = 0, n, total = 0;
|
|
char eccbuf[6];
|
|
/* eblk (once set) is the start of the erase block containing the
|
|
* data being processed.
|
|
*/
|
|
unsigned long eblk = ~0; /* force mismatch on first pass */
|
|
unsigned long erasesize = nand->erasesize;
|
|
|
|
while (len) {
|
|
if ((start & (-erasesize)) != eblk) {
|
|
/* have crossed into new erase block, deal with
|
|
* it if it is sure marked bad.
|
|
*/
|
|
eblk = start & (-erasesize); /* start of block */
|
|
if (check_block(nand, eblk)) {
|
|
if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
|
|
while (len > 0 &&
|
|
start - eblk < erasesize) {
|
|
*(buf++) = 0xff;
|
|
++start;
|
|
++total;
|
|
--len;
|
|
}
|
|
continue;
|
|
} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
|
|
start += erasesize;
|
|
continue;
|
|
} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
|
|
/* skip bad block */
|
|
start += erasesize;
|
|
continue;
|
|
} else {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* The ECC will not be calculated correctly if
|
|
less than 512 is written or read */
|
|
/* Is request at least 512 bytes AND it starts on a proper boundry */
|
|
if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
|
|
printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");
|
|
|
|
if (cmd & NANDRW_READ) {
|
|
ret = nand_read_ecc(nand, start,
|
|
min(len, eblk + erasesize - start),
|
|
(size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
|
|
} else {
|
|
ret = nand_write_ecc(nand, start,
|
|
min(len, eblk + erasesize - start),
|
|
(size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
|
|
}
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
start += n;
|
|
buf += n;
|
|
total += n;
|
|
len -= n;
|
|
}
|
|
if (retlen)
|
|
*retlen = total;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void nand_print(struct nand_chip *nand)
|
|
{
|
|
if (nand->numchips > 1) {
|
|
printf("%s at 0x%lx,\n"
|
|
"\t %d chips %s, size %d MB, \n"
|
|
"\t total size %ld MB, sector size %ld kB\n",
|
|
nand->name, nand->IO_ADDR, nand->numchips,
|
|
nand->chips_name, 1 << (nand->chipshift - 20),
|
|
nand->totlen >> 20, nand->erasesize >> 10);
|
|
}
|
|
else {
|
|
printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
|
|
print_size(nand->totlen, ", ");
|
|
print_size(nand->erasesize, " sector)\n");
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
|
|
{
|
|
/* This is inline, to optimise the common case, where it's ready instantly */
|
|
int ret = 0;
|
|
|
|
#ifdef NAND_NO_RB /* in config file, shorter delays currently wrap accesses */
|
|
if(ale_wait)
|
|
NAND_WAIT_READY(nand); /* do the worst case 25us wait */
|
|
else
|
|
udelay(10);
|
|
#else /* has functional r/b signal */
|
|
NAND_WAIT_READY(nand);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/* NanD_Command: Send a flash command to the flash chip */
|
|
|
|
static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
|
|
{
|
|
unsigned long nandptr = nand->IO_ADDR;
|
|
|
|
/* Assert the CLE (Command Latch Enable) line to the flash chip */
|
|
NAND_CTL_SETCLE(nandptr);
|
|
|
|
/* Send the command */
|
|
WRITE_NAND_COMMAND(command, nandptr);
|
|
|
|
/* Lower the CLE line */
|
|
NAND_CTL_CLRCLE(nandptr);
|
|
|
|
#ifdef NAND_NO_RB
|
|
if(command == NAND_CMD_RESET){
|
|
u_char ret_val;
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
do {
|
|
ret_val = READ_NAND(nandptr);/* wait till ready */
|
|
} while((ret_val & 0x40) != 0x40);
|
|
}
|
|
#endif
|
|
return NanD_WaitReady(nand, 0);
|
|
}
|
|
|
|
/* NanD_Address: Set the current address for the flash chip */
|
|
|
|
static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
|
|
{
|
|
unsigned long nandptr;
|
|
int i;
|
|
|
|
nandptr = nand->IO_ADDR;
|
|
|
|
/* Assert the ALE (Address Latch Enable) line to the flash chip */
|
|
NAND_CTL_SETALE(nandptr);
|
|
|
|
/* Send the address */
|
|
/* Devices with 256-byte page are addressed as:
|
|
* Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
|
|
* there is no device on the market with page256
|
|
* and more than 24 bits.
|
|
* Devices with 512-byte page are addressed as:
|
|
* Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
|
|
* 25-31 is sent only if the chip support it.
|
|
* bit 8 changes the read command to be sent
|
|
* (NAND_CMD_READ0 or NAND_CMD_READ1).
|
|
*/
|
|
|
|
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
|
|
WRITE_NAND_ADDRESS(ofs, nandptr);
|
|
|
|
ofs = ofs >> nand->page_shift;
|
|
|
|
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
|
|
for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
|
|
WRITE_NAND_ADDRESS(ofs, nandptr);
|
|
}
|
|
}
|
|
|
|
/* Lower the ALE line */
|
|
NAND_CTL_CLRALE(nandptr);
|
|
|
|
/* Wait for the chip to respond */
|
|
return NanD_WaitReady(nand, 1);
|
|
}
|
|
|
|
/* NanD_SelectChip: Select a given flash chip within the current floor */
|
|
|
|
static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
|
|
{
|
|
/* Wait for it to be ready */
|
|
return NanD_WaitReady(nand, 0);
|
|
}
|
|
|
|
/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */
|
|
|
|
static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
|
|
{
|
|
int mfr, id, i;
|
|
|
|
NAND_ENABLE_CE(nand); /* set pin low */
|
|
/* Reset the chip */
|
|
if (NanD_Command(nand, NAND_CMD_RESET)) {
|
|
#ifdef NAND_DEBUG
|
|
printf("NanD_Command (reset) for %d,%d returned true\n",
|
|
floor, chip);
|
|
#endif
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
return 0;
|
|
}
|
|
|
|
/* Read the NAND chip ID: 1. Send ReadID command */
|
|
if (NanD_Command(nand, NAND_CMD_READID)) {
|
|
#ifdef NAND_DEBUG
|
|
printf("NanD_Command (ReadID) for %d,%d returned true\n",
|
|
floor, chip);
|
|
#endif
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
return 0;
|
|
}
|
|
|
|
/* Read the NAND chip ID: 2. Send address byte zero */
|
|
NanD_Address(nand, ADDR_COLUMN, 0);
|
|
|
|
/* Read the manufacturer and device id codes from the device */
|
|
|
|
mfr = READ_NAND(nand->IO_ADDR);
|
|
|
|
id = READ_NAND(nand->IO_ADDR);
|
|
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
|
#ifdef NAND_DEBUG
|
|
printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
|
|
#endif
|
|
if (mfr == 0xff || mfr == 0) {
|
|
/* No response - return failure */
|
|
return 0;
|
|
}
|
|
|
|
/* Check it's the same as the first chip we identified.
|
|
* M-Systems say that any given nand_chip device should only
|
|
* contain _one_ type of flash part, although that's not a
|
|
* hardware restriction. */
|
|
if (nand->mfr) {
|
|
if (nand->mfr == mfr && nand->id == id) {
|
|
return 1; /* This is another the same the first */
|
|
} else {
|
|
printf("Flash chip at floor %d, chip %d is different:\n",
|
|
floor, chip);
|
|
}
|
|
}
|
|
|
|
/* Print and store the manufacturer and ID codes. */
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
if (mfr == nand_flash_ids[i].manufacture_id &&
|
|
id == nand_flash_ids[i].model_id) {
|
|
#ifdef NAND_DEBUG
|
|
printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
|
|
"Chip ID: 0x%2.2X (%s)\n", mfr, id,
|
|
nand_flash_ids[i].name);
|
|
#endif
|
|
if (!nand->mfr) {
|
|
nand->mfr = mfr;
|
|
nand->id = id;
|
|
nand->chipshift =
|
|
nand_flash_ids[i].chipshift;
|
|
nand->page256 = nand_flash_ids[i].page256;
|
|
nand->eccsize = 256;
|
|
if (nand->page256) {
|
|
nand->oobblock = 256;
|
|
nand->oobsize = 8;
|
|
nand->page_shift = 8;
|
|
} else {
|
|
nand->oobblock = 512;
|
|
nand->oobsize = 16;
|
|
nand->page_shift = 9;
|
|
}
|
|
nand->pageadrlen = nand_flash_ids[i].pageadrlen;
|
|
nand->erasesize = nand_flash_ids[i].erasesize;
|
|
nand->chips_name = nand_flash_ids[i].name;
|
|
nand->bus16 = nand_flash_ids[i].bus16;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef NAND_DEBUG
|
|
/* We haven't fully identified the chip. Print as much as we know. */
|
|
printf("Unknown flash chip found: %2.2X %2.2X\n",
|
|
id, mfr);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */
|
|
|
|
static void NanD_ScanChips(struct nand_chip *nand)
|
|
{
|
|
int floor, chip;
|
|
int numchips[NAND_MAX_FLOORS];
|
|
int maxchips = NAND_MAX_CHIPS;
|
|
int ret = 1;
|
|
|
|
nand->numchips = 0;
|
|
nand->mfr = 0;
|
|
nand->id = 0;
|
|
|
|
|
|
/* For each floor, find the number of valid chips it contains */
|
|
for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
|
|
ret = 1;
|
|
numchips[floor] = 0;
|
|
for (chip = 0; chip < maxchips && ret != 0; chip++) {
|
|
|
|
ret = NanD_IdentChip(nand, floor, chip);
|
|
if (ret) {
|
|
numchips[floor]++;
|
|
nand->numchips++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there are none at all that we recognise, bail */
|
|
if (!nand->numchips) {
|
|
#ifdef NAND_DEBUG
|
|
puts ("No NAND flash chips recognised.\n");
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
/* Allocate an array to hold the information for each chip */
|
|
nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
|
|
if (!nand->chips) {
|
|
puts ("No memory for allocating chip info structures\n");
|
|
return;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
/* Fill out the chip array with {floor, chipno} for each
|
|
* detected chip in the device. */
|
|
for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
|
|
for (chip = 0; chip < numchips[floor]; chip++) {
|
|
nand->chips[ret].floor = floor;
|
|
nand->chips[ret].chip = chip;
|
|
nand->chips[ret].curadr = 0;
|
|
nand->chips[ret].curmode = 0x50;
|
|
ret++;
|
|
}
|
|
}
|
|
|
|
/* Calculate and print the total size of the device */
|
|
nand->totlen = nand->numchips * (1 << nand->chipshift);
|
|
|
|
#ifdef NAND_DEBUG
|
|
printf("%d flash chips found. Total nand_chip size: %ld MB\n",
|
|
nand->numchips, nand->totlen >> 20);
|
|
#endif
|
|
}
|
|
|
|
/* we need to be fast here, 1 us per read translates to 1 second per meg */
|
|
static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
|
|
{
|
|
unsigned long nandptr = nand->IO_ADDR;
|
|
|
|
NanD_Command (nand, NAND_CMD_READ0);
|
|
|
|
if (nand->bus16) {
|
|
u16 val;
|
|
|
|
while (cntr >= 16) {
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
cntr -= 16;
|
|
}
|
|
|
|
while (cntr > 0) {
|
|
val = READ_NAND (nandptr);
|
|
*data_buf++ = val & 0xff;
|
|
*data_buf++ = val >> 8;
|
|
cntr -= 2;
|
|
}
|
|
} else {
|
|
while (cntr >= 16) {
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
cntr -= 16;
|
|
}
|
|
|
|
while (cntr > 0) {
|
|
*data_buf++ = READ_NAND (nandptr);
|
|
cntr--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* NAND read with ECC
|
|
*/
|
|
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
|
|
size_t * retlen, u_char *buf, u_char *ecc_code)
|
|
{
|
|
int col, page;
|
|
int ecc_status = 0;
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
int j;
|
|
int ecc_failed = 0;
|
|
u_char *data_poi;
|
|
u_char ecc_calc[6];
|
|
#endif
|
|
|
|
/* Do not allow reads past end of device */
|
|
if ((start + len) > nand->totlen) {
|
|
printf ("%s: Attempt read beyond end of device %x %x %x\n",
|
|
__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
|
|
*retlen = 0;
|
|
return -1;
|
|
}
|
|
|
|
/* First we calculate the starting page */
|
|
/*page = shr(start, nand->page_shift);*/
|
|
page = start >> nand->page_shift;
|
|
|
|
/* Get raw starting column */
|
|
col = start & (nand->oobblock - 1);
|
|
|
|
/* Initialize return value */
|
|
*retlen = 0;
|
|
|
|
/* Select the NAND device */
|
|
NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
|
/* Loop until all data read */
|
|
while (*retlen < len) {
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
/* Do we have this page in cache ? */
|
|
if (nand->cache_page == page)
|
|
goto readdata;
|
|
/* Send the read command */
|
|
NanD_Command(nand, NAND_CMD_READ0);
|
|
if (nand->bus16) {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + (col >> 1));
|
|
} else {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + col);
|
|
}
|
|
|
|
/* Read in a page + oob data */
|
|
NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);
|
|
|
|
/* copy data into cache, for read out of cache and if ecc fails */
|
|
if (nand->data_cache) {
|
|
memcpy (nand->data_cache, nand->data_buf,
|
|
nand->oobblock + nand->oobsize);
|
|
}
|
|
|
|
/* Pick the ECC bytes out of the oob data */
|
|
for (j = 0; j < 6; j++) {
|
|
ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
|
|
}
|
|
|
|
/* Calculate the ECC and verify it */
|
|
/* If block was not written with ECC, skip ECC */
|
|
if (oob_config.eccvalid_pos != -1 &&
|
|
(nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {
|
|
|
|
nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
|
|
switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
|
|
case -1:
|
|
printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
|
|
ecc_failed++;
|
|
break;
|
|
case 1:
|
|
case 2: /* transfer ECC corrected data to cache */
|
|
if (nand->data_cache)
|
|
memcpy (nand->data_cache, nand->data_buf, 256);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (oob_config.eccvalid_pos != -1 &&
|
|
nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {
|
|
|
|
nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
|
|
switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
|
|
case -1:
|
|
printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
|
|
ecc_failed++;
|
|
break;
|
|
case 1:
|
|
case 2: /* transfer ECC corrected data to cache */
|
|
if (nand->data_cache)
|
|
memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
|
|
break;
|
|
}
|
|
}
|
|
readdata:
|
|
/* Read the data from ECC data buffer into return buffer */
|
|
data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
|
|
data_poi += col;
|
|
if ((*retlen + (nand->oobblock - col)) >= len) {
|
|
memcpy (buf + *retlen, data_poi, len - *retlen);
|
|
*retlen = len;
|
|
} else {
|
|
memcpy (buf + *retlen, data_poi, nand->oobblock - col);
|
|
*retlen += nand->oobblock - col;
|
|
}
|
|
/* Set cache page address, invalidate, if ecc_failed */
|
|
nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;
|
|
|
|
ecc_status += ecc_failed;
|
|
ecc_failed = 0;
|
|
|
|
#else
|
|
/* Send the read command */
|
|
NanD_Command(nand, NAND_CMD_READ0);
|
|
if (nand->bus16) {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + (col >> 1));
|
|
} else {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + col);
|
|
}
|
|
|
|
/* Read the data directly into the return buffer */
|
|
if ((*retlen + (nand->oobblock - col)) >= len) {
|
|
NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
|
|
*retlen = len;
|
|
/* We're done */
|
|
continue;
|
|
} else {
|
|
NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
|
|
*retlen += nand->oobblock - col;
|
|
}
|
|
#endif
|
|
/* For subsequent reads align to page boundary. */
|
|
col = 0;
|
|
/* Increment page address */
|
|
page++;
|
|
}
|
|
|
|
/* De-select the NAND device */
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
|
/*
|
|
* Return success, if no ECC failures, else -EIO
|
|
* fs driver will take care of that, because
|
|
* retlen == desired len and result == -EIO
|
|
*/
|
|
return ecc_status ? -1 : 0;
|
|
}
|
|
|
|
/*
|
|
* Nand_page_program function is used for write and writev !
|
|
*/
|
|
static int nand_write_page (struct nand_chip *nand,
|
|
int page, int col, int last, u_char * ecc_code)
|
|
{
|
|
|
|
int i;
|
|
unsigned long nandptr = nand->IO_ADDR;
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
|
|
#endif
|
|
#endif
|
|
/* pad oob area */
|
|
for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
|
|
nand->data_buf[i] = 0xff;
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
/* Zero out the ECC array */
|
|
for (i = 0; i < 6; i++)
|
|
ecc_code[i] = 0x00;
|
|
|
|
/* Read back previous written data, if col > 0 */
|
|
if (col) {
|
|
NanD_Command (nand, NAND_CMD_READ0);
|
|
if (nand->bus16) {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + (col >> 1));
|
|
} else {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + col);
|
|
}
|
|
|
|
if (nand->bus16) {
|
|
u16 val;
|
|
|
|
for (i = 0; i < col; i += 2) {
|
|
val = READ_NAND (nandptr);
|
|
nand->data_buf[i] = val & 0xff;
|
|
nand->data_buf[i + 1] = val >> 8;
|
|
}
|
|
} else {
|
|
for (i = 0; i < col; i++)
|
|
nand->data_buf[i] = READ_NAND (nandptr);
|
|
}
|
|
}
|
|
|
|
/* Calculate and write the ECC if we have enough data */
|
|
if ((col < nand->eccsize) && (last >= nand->eccsize)) {
|
|
nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
|
|
for (i = 0; i < 3; i++) {
|
|
nand->data_buf[(nand->oobblock +
|
|
oob_config.ecc_pos[i])] = ecc_code[i];
|
|
}
|
|
if (oob_config.eccvalid_pos != -1) {
|
|
nand->data_buf[nand->oobblock +
|
|
oob_config.eccvalid_pos] = 0xf0;
|
|
}
|
|
}
|
|
|
|
/* Calculate and write the second ECC if we have enough data */
|
|
if ((nand->oobblock == 512) && (last == nand->oobblock)) {
|
|
nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
|
|
for (i = 3; i < 6; i++) {
|
|
nand->data_buf[(nand->oobblock +
|
|
oob_config.ecc_pos[i])] = ecc_code[i];
|
|
}
|
|
if (oob_config.eccvalid_pos != -1) {
|
|
nand->data_buf[nand->oobblock +
|
|
oob_config.eccvalid_pos] &= 0x0f;
|
|
}
|
|
}
|
|
#endif
|
|
/* Prepad for partial page programming !!! */
|
|
for (i = 0; i < col; i++)
|
|
nand->data_buf[i] = 0xff;
|
|
|
|
/* Postpad for partial page programming !!! oob is already padded */
|
|
for (i = last; i < nand->oobblock; i++)
|
|
nand->data_buf[i] = 0xff;
|
|
|
|
/* Send command to begin auto page programming */
|
|
NanD_Command (nand, NAND_CMD_READ0);
|
|
NanD_Command (nand, NAND_CMD_SEQIN);
|
|
if (nand->bus16) {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + (col >> 1));
|
|
} else {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + col);
|
|
}
|
|
|
|
/* Write out complete page of data */
|
|
if (nand->bus16) {
|
|
for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
|
|
WRITE_NAND (nand->data_buf[i] +
|
|
(nand->data_buf[i + 1] << 8),
|
|
nand->IO_ADDR);
|
|
}
|
|
} else {
|
|
for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
|
|
WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
|
|
}
|
|
|
|
/* Send command to actually program the data */
|
|
NanD_Command (nand, NAND_CMD_PAGEPROG);
|
|
NanD_Command (nand, NAND_CMD_STATUS);
|
|
#ifdef NAND_NO_RB
|
|
{
|
|
u_char ret_val;
|
|
|
|
do {
|
|
ret_val = READ_NAND (nandptr); /* wait till ready */
|
|
} while ((ret_val & 0x40) != 0x40);
|
|
}
|
|
#endif
|
|
/* See if device thinks it succeeded */
|
|
if (READ_NAND (nand->IO_ADDR) & 0x01) {
|
|
printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
|
|
page);
|
|
return -1;
|
|
}
|
|
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
|
|
/*
|
|
* The NAND device assumes that it is always writing to
|
|
* a cleanly erased page. Hence, it performs its internal
|
|
* write verification only on bits that transitioned from
|
|
* 1 to 0. The device does NOT verify the whole page on a
|
|
* byte by byte basis. It is possible that the page was
|
|
* not completely erased or the page is becoming unusable
|
|
* due to wear. The read with ECC would catch the error
|
|
* later when the ECC page check fails, but we would rather
|
|
* catch it early in the page write stage. Better to write
|
|
* no data than invalid data.
|
|
*/
|
|
|
|
/* Send command to read back the page */
|
|
if (col < nand->eccsize)
|
|
NanD_Command (nand, NAND_CMD_READ0);
|
|
else
|
|
NanD_Command (nand, NAND_CMD_READ1);
|
|
if (nand->bus16) {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + (col >> 1));
|
|
} else {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + col);
|
|
}
|
|
|
|
/* Loop through and verify the data */
|
|
if (nand->bus16) {
|
|
for (i = col; i < last; i = +2) {
|
|
if ((nand->data_buf[i] +
|
|
(nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
|
|
printf ("%s: Failed write verify, page 0x%08x ",
|
|
__FUNCTION__, page);
|
|
return -1;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = col; i < last; i++) {
|
|
if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
|
|
printf ("%s: Failed write verify, page 0x%08x ",
|
|
__FUNCTION__, page);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
/*
|
|
* We also want to check that the ECC bytes wrote
|
|
* correctly for the same reasons stated above.
|
|
*/
|
|
NanD_Command (nand, NAND_CMD_READOOB);
|
|
if (nand->bus16) {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + (col >> 1));
|
|
} else {
|
|
NanD_Address (nand, ADDR_COLUMN_PAGE,
|
|
(page << nand->page_shift) + col);
|
|
}
|
|
if (nand->bus16) {
|
|
for (i = 0; i < nand->oobsize; i += 2) {
|
|
u16 val;
|
|
|
|
val = READ_NAND (nand->IO_ADDR);
|
|
nand->data_buf[i] = val & 0xff;
|
|
nand->data_buf[i + 1] = val >> 8;
|
|
}
|
|
} else {
|
|
for (i = 0; i < nand->oobsize; i++) {
|
|
nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
|
|
}
|
|
}
|
|
for (i = 0; i < ecc_bytes; i++) {
|
|
if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
|
|
printf ("%s: Failed ECC write "
|
|
"verify, page 0x%08x, "
|
|
"%6i bytes were succesful\n",
|
|
__FUNCTION__, page, i);
|
|
return -1;
|
|
}
|
|
}
|
|
#endif /* CONFIG_MTD_NAND_ECC */
|
|
#endif /* CONFIG_MTD_NAND_VERIFY_WRITE */
|
|
return 0;
|
|
}
|
|
|
|
static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
|
|
size_t * retlen, const u_char * buf, u_char * ecc_code)
|
|
{
|
|
int i, page, col, cnt, ret = 0;
|
|
|
|
/* Do not allow write past end of device */
|
|
if ((to + len) > nand->totlen) {
|
|
printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
|
|
return -1;
|
|
}
|
|
|
|
/* Shift to get page */
|
|
page = ((int) to) >> nand->page_shift;
|
|
|
|
/* Get the starting column */
|
|
col = to & (nand->oobblock - 1);
|
|
|
|
/* Initialize return length value */
|
|
*retlen = 0;
|
|
|
|
/* Select the NAND device */
|
|
#ifdef CONFIG_OMAP1510
|
|
archflashwp(0,0);
|
|
#endif
|
|
#ifdef CONFIG_SYS_NAND_WP
|
|
NAND_WP_OFF();
|
|
#endif
|
|
|
|
NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
|
/* Check the WP bit */
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
|
|
printf ("%s: Device is write protected!!!\n", __FUNCTION__);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* Loop until all data is written */
|
|
while (*retlen < len) {
|
|
/* Invalidate cache, if we write to this page */
|
|
if (nand->cache_page == page)
|
|
nand->cache_page = -1;
|
|
|
|
/* Write data into buffer */
|
|
if ((col + len) >= nand->oobblock) {
|
|
for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
|
|
nand->data_buf[i] = buf[(*retlen + cnt)];
|
|
}
|
|
} else {
|
|
for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
|
|
nand->data_buf[i] = buf[(*retlen + cnt)];
|
|
}
|
|
}
|
|
/* We use the same function for write and writev !) */
|
|
ret = nand_write_page (nand, page, col, i, ecc_code);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Next data start at page boundary */
|
|
col = 0;
|
|
|
|
/* Update written bytes count */
|
|
*retlen += cnt;
|
|
|
|
/* Increment page address */
|
|
page++;
|
|
}
|
|
|
|
/* Return happy */
|
|
*retlen = len;
|
|
|
|
out:
|
|
/* De-select the NAND device */
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
#ifdef CONFIG_OMAP1510
|
|
archflashwp(0,1);
|
|
#endif
|
|
#ifdef CONFIG_SYS_NAND_WP
|
|
NAND_WP_ON();
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* read from the 16 bytes of oob data that correspond to a 512 byte
|
|
* page or 2 256-byte pages.
|
|
*/
|
|
int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
size_t * retlen, u_char * buf)
|
|
{
|
|
int len256 = 0;
|
|
struct Nand *mychip;
|
|
int ret = 0;
|
|
|
|
mychip = &nand->chips[ofs >> nand->chipshift];
|
|
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
|
/* page to maintain compatibility with nand_read_ecc. */
|
|
if (nand->page256) {
|
|
if (!(ofs & 0x8))
|
|
ofs += 0x100;
|
|
else
|
|
ofs -= 0x8;
|
|
}
|
|
|
|
NAND_ENABLE_CE(nand); /* set pin low */
|
|
NanD_Command(nand, NAND_CMD_READOOB);
|
|
if (nand->bus16) {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
((ofs >> nand->page_shift) << nand->page_shift) +
|
|
((ofs & (nand->oobblock - 1)) >> 1));
|
|
} else {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
|
|
}
|
|
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
|
/* next OOB block, but it didn't work here. mf. */
|
|
if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
|
NanD_ReadBuf(nand, buf, len256);
|
|
|
|
NanD_Command(nand, NAND_CMD_READOOB);
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
|
|
}
|
|
|
|
NanD_ReadBuf(nand, &buf[len256], len - len256);
|
|
|
|
*retlen = len;
|
|
/* Reading the full OOB data drops us off of the end of the page,
|
|
* causing the flash device to go into busy mode, so we need
|
|
* to wait until ready 11.4.1 and Toshiba TC58256FT nands */
|
|
|
|
ret = NanD_WaitReady(nand, 1);
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/* write to the 16 bytes of oob data that correspond to a 512 byte
|
|
* page or 2 256-byte pages.
|
|
*/
|
|
int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
|
|
size_t * retlen, const u_char * buf)
|
|
{
|
|
int len256 = 0;
|
|
int i;
|
|
unsigned long nandptr = nand->IO_ADDR;
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
|
|
(long)ofs, len, buf[0], buf[1], buf[2], buf[3],
|
|
buf[8], buf[9], buf[14],buf[15]);
|
|
#endif
|
|
|
|
NAND_ENABLE_CE(nand); /* set pin low to enable chip */
|
|
|
|
/* Reset the chip */
|
|
NanD_Command(nand, NAND_CMD_RESET);
|
|
|
|
/* issue the Read2 command to set the pointer to the Spare Data Area. */
|
|
NanD_Command(nand, NAND_CMD_READOOB);
|
|
if (nand->bus16) {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
((ofs >> nand->page_shift) << nand->page_shift) +
|
|
((ofs & (nand->oobblock - 1)) >> 1));
|
|
} else {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
|
|
}
|
|
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
|
/* page to maintain compatibility with nand_read_ecc. */
|
|
if (nand->page256) {
|
|
if (!(ofs & 0x8))
|
|
ofs += 0x100;
|
|
else
|
|
ofs -= 0x8;
|
|
}
|
|
|
|
/* issue the Serial Data In command to initial the Page Program process */
|
|
NanD_Command(nand, NAND_CMD_SEQIN);
|
|
if (nand->bus16) {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE,
|
|
((ofs >> nand->page_shift) << nand->page_shift) +
|
|
((ofs & (nand->oobblock - 1)) >> 1));
|
|
} else {
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
|
|
}
|
|
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
|
/* next OOB block, but it didn't work here. mf. */
|
|
if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
|
for (i = 0; i < len256; i++)
|
|
WRITE_NAND(buf[i], nandptr);
|
|
|
|
NanD_Command(nand, NAND_CMD_PAGEPROG);
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
#ifdef NAND_NO_RB
|
|
{ u_char ret_val;
|
|
do {
|
|
ret_val = READ_NAND(nandptr); /* wait till ready */
|
|
} while ((ret_val & 0x40) != 0x40);
|
|
}
|
|
#endif
|
|
if (READ_NAND(nandptr) & 1) {
|
|
puts ("Error programming oob data\n");
|
|
/* There was an error */
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
*retlen = 0;
|
|
return -1;
|
|
}
|
|
NanD_Command(nand, NAND_CMD_SEQIN);
|
|
NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
|
|
}
|
|
|
|
if (nand->bus16) {
|
|
for (i = len256; i < len; i += 2) {
|
|
WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
|
|
}
|
|
} else {
|
|
for (i = len256; i < len; i++)
|
|
WRITE_NAND(buf[i], nandptr);
|
|
}
|
|
|
|
NanD_Command(nand, NAND_CMD_PAGEPROG);
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
#ifdef NAND_NO_RB
|
|
{ u_char ret_val;
|
|
do {
|
|
ret_val = READ_NAND(nandptr); /* wait till ready */
|
|
} while ((ret_val & 0x40) != 0x40);
|
|
}
|
|
#endif
|
|
if (READ_NAND(nandptr) & 1) {
|
|
puts ("Error programming oob data\n");
|
|
/* There was an error */
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
*retlen = 0;
|
|
return -1;
|
|
}
|
|
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
*retlen = len;
|
|
return 0;
|
|
|
|
}
|
|
|
|
int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
|
|
{
|
|
/* This is defined as a structure so it will work on any system
|
|
* using native endian jffs2 (the default).
|
|
*/
|
|
static struct jffs2_unknown_node clean_marker = {
|
|
JFFS2_MAGIC_BITMASK,
|
|
JFFS2_NODETYPE_CLEANMARKER,
|
|
8 /* 8 bytes in this node */
|
|
};
|
|
unsigned long nandptr;
|
|
struct Nand *mychip;
|
|
int ret = 0;
|
|
|
|
if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
|
|
printf ("Offset and size must be sector aligned, erasesize = %d\n",
|
|
(int) nand->erasesize);
|
|
return -1;
|
|
}
|
|
|
|
nandptr = nand->IO_ADDR;
|
|
|
|
/* Select the NAND device */
|
|
#ifdef CONFIG_OMAP1510
|
|
archflashwp(0,0);
|
|
#endif
|
|
#ifdef CONFIG_SYS_NAND_WP
|
|
NAND_WP_OFF();
|
|
#endif
|
|
NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
|
/* Check the WP bit */
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
|
|
printf ("nand_write_ecc: Device is write protected!!!\n");
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* Check the WP bit */
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
|
|
printf ("%s: Device is write protected!!!\n", __FUNCTION__);
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
/* FIXME: Do nand in the background. Use timers or schedule_task() */
|
|
while(len) {
|
|
/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
|
|
mychip = &nand->chips[ofs >> nand->chipshift];
|
|
|
|
/* always check for bad block first, genuine bad blocks
|
|
* should _never_ be erased.
|
|
*/
|
|
if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
|
|
/* Select the NAND device */
|
|
NAND_ENABLE_CE(nand); /* set pin low */
|
|
|
|
NanD_Command(nand, NAND_CMD_ERASE1);
|
|
NanD_Address(nand, ADDR_PAGE, ofs);
|
|
NanD_Command(nand, NAND_CMD_ERASE2);
|
|
|
|
NanD_Command(nand, NAND_CMD_STATUS);
|
|
|
|
#ifdef NAND_NO_RB
|
|
{ u_char ret_val;
|
|
do {
|
|
ret_val = READ_NAND(nandptr); /* wait till ready */
|
|
} while ((ret_val & 0x40) != 0x40);
|
|
}
|
|
#endif
|
|
if (READ_NAND(nandptr) & 1) {
|
|
printf ("%s: Error erasing at 0x%lx\n",
|
|
__FUNCTION__, (long)ofs);
|
|
/* There was an error */
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
if (clean) {
|
|
int n; /* return value not used */
|
|
int p, l;
|
|
|
|
/* clean marker position and size depend
|
|
* on the page size, since 256 byte pages
|
|
* only have 8 bytes of oob data
|
|
*/
|
|
if (nand->page256) {
|
|
p = NAND_JFFS2_OOB8_FSDAPOS;
|
|
l = NAND_JFFS2_OOB8_FSDALEN;
|
|
} else {
|
|
p = NAND_JFFS2_OOB16_FSDAPOS;
|
|
l = NAND_JFFS2_OOB16_FSDALEN;
|
|
}
|
|
|
|
ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
|
|
(u_char *)&clean_marker);
|
|
/* quit here if write failed */
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
}
|
|
ofs += nand->erasesize;
|
|
len -= nand->erasesize;
|
|
}
|
|
|
|
out:
|
|
/* De-select the NAND device */
|
|
NAND_DISABLE_CE(nand); /* set pin high */
|
|
#ifdef CONFIG_OMAP1510
|
|
archflashwp(0,1);
|
|
#endif
|
|
#ifdef CONFIG_SYS_NAND_WP
|
|
NAND_WP_ON();
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static inline int nandcheck(unsigned long potential, unsigned long physadr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
unsigned long nand_probe(unsigned long physadr)
|
|
{
|
|
struct nand_chip *nand = NULL;
|
|
int i = 0, ChipID = 1;
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC_JFFS2
|
|
oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
|
|
oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
|
|
oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
|
|
oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
|
|
oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
|
|
oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
|
|
oob_config.eccvalid_pos = 4;
|
|
#else
|
|
oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
|
|
oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
|
|
oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
|
|
oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
|
|
oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
|
|
oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
|
|
oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
|
|
#endif
|
|
oob_config.badblock_pos = 5;
|
|
|
|
for (i=0; i<CONFIG_SYS_MAX_NAND_DEVICE; i++) {
|
|
if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
|
|
nand = &nand_dev_desc[i];
|
|
break;
|
|
}
|
|
}
|
|
if (!nand)
|
|
return (0);
|
|
|
|
memset((char *)nand, 0, sizeof(struct nand_chip));
|
|
|
|
nand->IO_ADDR = physadr;
|
|
nand->cache_page = -1; /* init the cache page */
|
|
NanD_ScanChips(nand);
|
|
|
|
if (nand->totlen == 0) {
|
|
/* no chips found, clean up and quit */
|
|
memset((char *)nand, 0, sizeof(struct nand_chip));
|
|
nand->ChipID = NAND_ChipID_UNKNOWN;
|
|
return (0);
|
|
}
|
|
|
|
nand->ChipID = ChipID;
|
|
if (curr_device == -1)
|
|
curr_device = i;
|
|
|
|
nand->data_buf = malloc (nand->oobblock + nand->oobsize);
|
|
if (!nand->data_buf) {
|
|
puts ("Cannot allocate memory for data structures.\n");
|
|
return (0);
|
|
}
|
|
|
|
return (nand->totlen);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_NAND_ECC
|
|
/*
|
|
* Pre-calculated 256-way 1 byte column parity
|
|
*/
|
|
static const u_char nand_ecc_precalc_table[] = {
|
|
0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
|
|
0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
|
|
0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
|
|
0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
|
|
0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
|
|
0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
|
|
0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
|
|
0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
|
|
0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
|
|
0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
|
|
0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
|
|
0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
|
|
0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
|
|
0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
|
|
0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
|
|
0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
|
|
0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
|
|
0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
|
|
0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
|
|
0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
|
|
0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
|
|
0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
|
|
0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
|
|
0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
|
|
0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
|
|
0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
|
|
0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
|
|
0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
|
|
0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
|
|
0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
|
|
0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
|
|
0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
|
|
};
|
|
|
|
|
|
/*
|
|
* Creates non-inverted ECC code from line parity
|
|
*/
|
|
static void nand_trans_result(u_char reg2, u_char reg3,
|
|
u_char *ecc_code)
|
|
{
|
|
u_char a, b, i, tmp1, tmp2;
|
|
|
|
/* Initialize variables */
|
|
a = b = 0x80;
|
|
tmp1 = tmp2 = 0;
|
|
|
|
/* Calculate first ECC byte */
|
|
for (i = 0; i < 4; i++) {
|
|
if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
|
|
tmp1 |= b;
|
|
b >>= 1;
|
|
if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
|
|
tmp1 |= b;
|
|
b >>= 1;
|
|
a >>= 1;
|
|
}
|
|
|
|
/* Calculate second ECC byte */
|
|
b = 0x80;
|
|
for (i = 0; i < 4; i++) {
|
|
if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
|
|
tmp2 |= b;
|
|
b >>= 1;
|
|
if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
|
|
tmp2 |= b;
|
|
b >>= 1;
|
|
a >>= 1;
|
|
}
|
|
|
|
/* Store two of the ECC bytes */
|
|
ecc_code[0] = tmp1;
|
|
ecc_code[1] = tmp2;
|
|
}
|
|
|
|
/*
|
|
* Calculate 3 byte ECC code for 256 byte block
|
|
*/
|
|
static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
|
|
{
|
|
u_char idx, reg1, reg3;
|
|
int j;
|
|
|
|
/* Initialize variables */
|
|
reg1 = reg3 = 0;
|
|
ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
|
|
|
|
/* Build up column parity */
|
|
for(j = 0; j < 256; j++) {
|
|
|
|
/* Get CP0 - CP5 from table */
|
|
idx = nand_ecc_precalc_table[dat[j]];
|
|
reg1 ^= idx;
|
|
|
|
/* All bit XOR = 1 ? */
|
|
if (idx & 0x40) {
|
|
reg3 ^= (u_char) j;
|
|
}
|
|
}
|
|
|
|
/* Create non-inverted ECC code from line parity */
|
|
nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);
|
|
|
|
/* Calculate final ECC code */
|
|
ecc_code[0] = ~ecc_code[0];
|
|
ecc_code[1] = ~ecc_code[1];
|
|
ecc_code[2] = ((~reg1) << 2) | 0x03;
|
|
}
|
|
|
|
/*
|
|
* Detect and correct a 1 bit error for 256 byte block
|
|
*/
|
|
static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
|
|
{
|
|
u_char a, b, c, d1, d2, d3, add, bit, i;
|
|
|
|
/* Do error detection */
|
|
d1 = calc_ecc[0] ^ read_ecc[0];
|
|
d2 = calc_ecc[1] ^ read_ecc[1];
|
|
d3 = calc_ecc[2] ^ read_ecc[2];
|
|
|
|
if ((d1 | d2 | d3) == 0) {
|
|
/* No errors */
|
|
return 0;
|
|
} else {
|
|
a = (d1 ^ (d1 >> 1)) & 0x55;
|
|
b = (d2 ^ (d2 >> 1)) & 0x55;
|
|
c = (d3 ^ (d3 >> 1)) & 0x54;
|
|
|
|
/* Found and will correct single bit error in the data */
|
|
if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
|
|
c = 0x80;
|
|
add = 0;
|
|
a = 0x80;
|
|
for (i=0; i<4; i++) {
|
|
if (d1 & c)
|
|
add |= a;
|
|
c >>= 2;
|
|
a >>= 1;
|
|
}
|
|
c = 0x80;
|
|
for (i=0; i<4; i++) {
|
|
if (d2 & c)
|
|
add |= a;
|
|
c >>= 2;
|
|
a >>= 1;
|
|
}
|
|
bit = 0;
|
|
b = 0x04;
|
|
c = 0x80;
|
|
for (i=0; i<3; i++) {
|
|
if (d3 & c)
|
|
bit |= b;
|
|
c >>= 2;
|
|
b >>= 1;
|
|
}
|
|
b = 0x01;
|
|
a = dat[add];
|
|
a ^= (b << bit);
|
|
dat[add] = a;
|
|
return 1;
|
|
}
|
|
else {
|
|
i = 0;
|
|
while (d1) {
|
|
if (d1 & 0x01)
|
|
++i;
|
|
d1 >>= 1;
|
|
}
|
|
while (d2) {
|
|
if (d2 & 0x01)
|
|
++i;
|
|
d2 >>= 1;
|
|
}
|
|
while (d3) {
|
|
if (d3 & 0x01)
|
|
++i;
|
|
d3 >>= 1;
|
|
}
|
|
if (i == 1) {
|
|
/* ECC Code Error Correction */
|
|
read_ecc[0] = calc_ecc[0];
|
|
read_ecc[1] = calc_ecc[1];
|
|
read_ecc[2] = calc_ecc[2];
|
|
return 2;
|
|
}
|
|
else {
|
|
/* Uncorrectable Error */
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Should never happen */
|
|
return -1;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_JFFS2_NAND
|
|
int read_jffs2_nand(size_t start, size_t len,
|
|
size_t * retlen, u_char * buf, int nanddev)
|
|
{
|
|
return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
|
|
start, len, retlen, buf);
|
|
}
|
|
#endif /* CONFIG_JFFS2_NAND */
|