u-boot/drivers/usb/gadget/dwc2_udc_otg_xfer_dma.c
Xu Ziyuan 9424f14183 usb: dwc2 : invalidate dcache before starting DMA
Invalidate dcache before starting the DMA to ensure coherency. In case
there are any dirty lines from the DMA buffer in the cache, subsequent
cache-line replacements may corrupt the buffer in memory while the DMA
is still going on. Cache-line replacement can happen if the CPU tries to
bring some other memory locations into the cache while the DMA is going
on.

Signed-off-by: Ziyuan Xu <xzy.xu@rock-chips.com>
Acked-by: Simon Glass <sjg@chromium.org>
2016-07-25 20:44:19 -06:00

1484 lines
36 KiB
C

/*
* drivers/usb/gadget/dwc2_udc_otg_xfer_dma.c
* Designware DWC2 on-chip full/high speed USB OTG 2.0 device controllers
*
* Copyright (C) 2009 for Samsung Electronics
*
* BSP Support for Samsung's UDC driver
* available at:
* git://git.kernel.org/pub/scm/linux/kernel/git/kki_ap/linux-2.6-samsung.git
*
* State machine bugfixes:
* Marek Szyprowski <m.szyprowski@samsung.com>
*
* Ported to u-boot:
* Marek Szyprowski <m.szyprowski@samsung.com>
* Lukasz Majewski <l.majewski@samsumg.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
static u8 clear_feature_num;
int clear_feature_flag;
/* Bulk-Only Mass Storage Reset (class-specific request) */
#define GET_MAX_LUN_REQUEST 0xFE
#define BOT_RESET_REQUEST 0xFF
static inline void dwc2_udc_ep0_zlp(struct dwc2_udc *dev)
{
u32 ep_ctrl;
writel(usb_ctrl_dma_addr, &reg->in_endp[EP0_CON].diepdma);
writel(DIEPT_SIZ_PKT_CNT(1), &reg->in_endp[EP0_CON].dieptsiz);
ep_ctrl = readl(&reg->in_endp[EP0_CON].diepctl);
writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK,
&reg->in_endp[EP0_CON].diepctl);
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n",
__func__, readl(&reg->in_endp[EP0_CON].diepctl));
dev->ep0state = WAIT_FOR_IN_COMPLETE;
}
static void dwc2_udc_pre_setup(void)
{
u32 ep_ctrl;
debug_cond(DEBUG_IN_EP,
"%s : Prepare Setup packets.\n", __func__);
writel(DOEPT_SIZ_PKT_CNT(1) | sizeof(struct usb_ctrlrequest),
&reg->out_endp[EP0_CON].doeptsiz);
writel(usb_ctrl_dma_addr, &reg->out_endp[EP0_CON].doepdma);
ep_ctrl = readl(&reg->out_endp[EP0_CON].doepctl);
writel(ep_ctrl|DEPCTL_EPENA, &reg->out_endp[EP0_CON].doepctl);
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n",
__func__, readl(&reg->in_endp[EP0_CON].diepctl));
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DOEPCTL0 = 0x%x\n",
__func__, readl(&reg->out_endp[EP0_CON].doepctl));
}
static inline void dwc2_ep0_complete_out(void)
{
u32 ep_ctrl;
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n",
__func__, readl(&reg->in_endp[EP0_CON].diepctl));
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DOEPCTL0 = 0x%x\n",
__func__, readl(&reg->out_endp[EP0_CON].doepctl));
debug_cond(DEBUG_IN_EP,
"%s : Prepare Complete Out packet.\n", __func__);
writel(DOEPT_SIZ_PKT_CNT(1) | sizeof(struct usb_ctrlrequest),
&reg->out_endp[EP0_CON].doeptsiz);
writel(usb_ctrl_dma_addr, &reg->out_endp[EP0_CON].doepdma);
ep_ctrl = readl(&reg->out_endp[EP0_CON].doepctl);
writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK,
&reg->out_endp[EP0_CON].doepctl);
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DIEPCTL0 = 0x%x\n",
__func__, readl(&reg->in_endp[EP0_CON].diepctl));
debug_cond(DEBUG_EP0 != 0, "%s:EP0 ZLP DOEPCTL0 = 0x%x\n",
__func__, readl(&reg->out_endp[EP0_CON].doepctl));
}
static int setdma_rx(struct dwc2_ep *ep, struct dwc2_request *req)
{
u32 *buf, ctrl;
u32 length, pktcnt;
u32 ep_num = ep_index(ep);
buf = req->req.buf + req->req.actual;
length = min_t(u32, req->req.length - req->req.actual,
ep_num ? DMA_BUFFER_SIZE : ep->ep.maxpacket);
ep->len = length;
ep->dma_buf = buf;
if (ep_num == EP0_CON || length == 0)
pktcnt = 1;
else
pktcnt = (length - 1)/(ep->ep.maxpacket) + 1;
ctrl = readl(&reg->out_endp[ep_num].doepctl);
invalidate_dcache_range((unsigned long) ep->dma_buf,
(unsigned long) ep->dma_buf + ep->len);
writel((unsigned int) ep->dma_buf, &reg->out_endp[ep_num].doepdma);
writel(DOEPT_SIZ_PKT_CNT(pktcnt) | DOEPT_SIZ_XFER_SIZE(length),
&reg->out_endp[ep_num].doeptsiz);
writel(DEPCTL_EPENA|DEPCTL_CNAK|ctrl, &reg->out_endp[ep_num].doepctl);
debug_cond(DEBUG_OUT_EP != 0,
"%s: EP%d RX DMA start : DOEPDMA = 0x%x,"
"DOEPTSIZ = 0x%x, DOEPCTL = 0x%x\n"
"\tbuf = 0x%p, pktcnt = %d, xfersize = %d\n",
__func__, ep_num,
readl(&reg->out_endp[ep_num].doepdma),
readl(&reg->out_endp[ep_num].doeptsiz),
readl(&reg->out_endp[ep_num].doepctl),
buf, pktcnt, length);
return 0;
}
static int setdma_tx(struct dwc2_ep *ep, struct dwc2_request *req)
{
u32 *buf, ctrl = 0;
u32 length, pktcnt;
u32 ep_num = ep_index(ep);
buf = req->req.buf + req->req.actual;
length = req->req.length - req->req.actual;
if (ep_num == EP0_CON)
length = min(length, (u32)ep_maxpacket(ep));
ep->len = length;
ep->dma_buf = buf;
flush_dcache_range((unsigned long) ep->dma_buf,
(unsigned long) ep->dma_buf +
ROUND(ep->len, CONFIG_SYS_CACHELINE_SIZE));
if (length == 0)
pktcnt = 1;
else
pktcnt = (length - 1)/(ep->ep.maxpacket) + 1;
/* Flush the endpoint's Tx FIFO */
writel(TX_FIFO_NUMBER(ep->fifo_num), &reg->grstctl);
writel(TX_FIFO_NUMBER(ep->fifo_num) | TX_FIFO_FLUSH, &reg->grstctl);
while (readl(&reg->grstctl) & TX_FIFO_FLUSH)
;
writel((unsigned long) ep->dma_buf, &reg->in_endp[ep_num].diepdma);
writel(DIEPT_SIZ_PKT_CNT(pktcnt) | DIEPT_SIZ_XFER_SIZE(length),
&reg->in_endp[ep_num].dieptsiz);
ctrl = readl(&reg->in_endp[ep_num].diepctl);
/* Write the FIFO number to be used for this endpoint */
ctrl &= DIEPCTL_TX_FIFO_NUM_MASK;
ctrl |= DIEPCTL_TX_FIFO_NUM(ep->fifo_num);
/* Clear reserved (Next EP) bits */
ctrl = (ctrl&~(EP_MASK<<DEPCTL_NEXT_EP_BIT));
writel(DEPCTL_EPENA|DEPCTL_CNAK|ctrl, &reg->in_endp[ep_num].diepctl);
debug_cond(DEBUG_IN_EP,
"%s:EP%d TX DMA start : DIEPDMA0 = 0x%x,"
"DIEPTSIZ0 = 0x%x, DIEPCTL0 = 0x%x\n"
"\tbuf = 0x%p, pktcnt = %d, xfersize = %d\n",
__func__, ep_num,
readl(&reg->in_endp[ep_num].diepdma),
readl(&reg->in_endp[ep_num].dieptsiz),
readl(&reg->in_endp[ep_num].diepctl),
buf, pktcnt, length);
return length;
}
static void complete_rx(struct dwc2_udc *dev, u8 ep_num)
{
struct dwc2_ep *ep = &dev->ep[ep_num];
struct dwc2_request *req = NULL;
u32 ep_tsr = 0, xfer_size = 0, is_short = 0;
if (list_empty(&ep->queue)) {
debug_cond(DEBUG_OUT_EP != 0,
"%s: RX DMA done : NULL REQ on OUT EP-%d\n",
__func__, ep_num);
return;
}
req = list_entry(ep->queue.next, struct dwc2_request, queue);
ep_tsr = readl(&reg->out_endp[ep_num].doeptsiz);
if (ep_num == EP0_CON)
xfer_size = (ep_tsr & DOEPT_SIZ_XFER_SIZE_MAX_EP0);
else
xfer_size = (ep_tsr & DOEPT_SIZ_XFER_SIZE_MAX_EP);
xfer_size = ep->len - xfer_size;
/*
* NOTE:
*
* Please be careful with proper buffer allocation for USB request,
* which needs to be aligned to CONFIG_SYS_CACHELINE_SIZE, not only
* with starting address, but also its size shall be a cache line
* multiplication.
*
* This will prevent from corruption of data allocated immediatelly
* before or after the buffer.
*
* For armv7, the cache_v7.c provides proper code to emit "ERROR"
* message to warn users.
*/
invalidate_dcache_range((unsigned long) ep->dma_buf,
(unsigned long) ep->dma_buf +
ROUND(xfer_size, CONFIG_SYS_CACHELINE_SIZE));
req->req.actual += min(xfer_size, req->req.length - req->req.actual);
is_short = !!(xfer_size % ep->ep.maxpacket);
debug_cond(DEBUG_OUT_EP != 0,
"%s: RX DMA done : ep = %d, rx bytes = %d/%d, "
"is_short = %d, DOEPTSIZ = 0x%x, remained bytes = %d\n",
__func__, ep_num, req->req.actual, req->req.length,
is_short, ep_tsr, req->req.length - req->req.actual);
if (is_short || req->req.actual == req->req.length) {
if (ep_num == EP0_CON && dev->ep0state == DATA_STATE_RECV) {
debug_cond(DEBUG_OUT_EP != 0, " => Send ZLP\n");
dwc2_udc_ep0_zlp(dev);
/* packet will be completed in complete_tx() */
dev->ep0state = WAIT_FOR_IN_COMPLETE;
} else {
done(ep, req, 0);
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next,
struct dwc2_request, queue);
debug_cond(DEBUG_OUT_EP != 0,
"%s: Next Rx request start...\n",
__func__);
setdma_rx(ep, req);
}
}
} else
setdma_rx(ep, req);
}
static void complete_tx(struct dwc2_udc *dev, u8 ep_num)
{
struct dwc2_ep *ep = &dev->ep[ep_num];
struct dwc2_request *req;
u32 ep_tsr = 0, xfer_size = 0, is_short = 0;
u32 last;
if (dev->ep0state == WAIT_FOR_NULL_COMPLETE) {
dev->ep0state = WAIT_FOR_OUT_COMPLETE;
dwc2_ep0_complete_out();
return;
}
if (list_empty(&ep->queue)) {
debug_cond(DEBUG_IN_EP,
"%s: TX DMA done : NULL REQ on IN EP-%d\n",
__func__, ep_num);
return;
}
req = list_entry(ep->queue.next, struct dwc2_request, queue);
ep_tsr = readl(&reg->in_endp[ep_num].dieptsiz);
xfer_size = ep->len;
is_short = (xfer_size < ep->ep.maxpacket);
req->req.actual += min(xfer_size, req->req.length - req->req.actual);
debug_cond(DEBUG_IN_EP,
"%s: TX DMA done : ep = %d, tx bytes = %d/%d, "
"is_short = %d, DIEPTSIZ = 0x%x, remained bytes = %d\n",
__func__, ep_num, req->req.actual, req->req.length,
is_short, ep_tsr, req->req.length - req->req.actual);
if (ep_num == 0) {
if (dev->ep0state == DATA_STATE_XMIT) {
debug_cond(DEBUG_IN_EP,
"%s: ep_num = %d, ep0stat =="
"DATA_STATE_XMIT\n",
__func__, ep_num);
last = write_fifo_ep0(ep, req);
if (last)
dev->ep0state = WAIT_FOR_COMPLETE;
} else if (dev->ep0state == WAIT_FOR_IN_COMPLETE) {
debug_cond(DEBUG_IN_EP,
"%s: ep_num = %d, completing request\n",
__func__, ep_num);
done(ep, req, 0);
dev->ep0state = WAIT_FOR_SETUP;
} else if (dev->ep0state == WAIT_FOR_COMPLETE) {
debug_cond(DEBUG_IN_EP,
"%s: ep_num = %d, completing request\n",
__func__, ep_num);
done(ep, req, 0);
dev->ep0state = WAIT_FOR_OUT_COMPLETE;
dwc2_ep0_complete_out();
} else {
debug_cond(DEBUG_IN_EP,
"%s: ep_num = %d, invalid ep state\n",
__func__, ep_num);
}
return;
}
if (req->req.actual == req->req.length)
done(ep, req, 0);
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct dwc2_request, queue);
debug_cond(DEBUG_IN_EP,
"%s: Next Tx request start...\n", __func__);
setdma_tx(ep, req);
}
}
static inline void dwc2_udc_check_tx_queue(struct dwc2_udc *dev, u8 ep_num)
{
struct dwc2_ep *ep = &dev->ep[ep_num];
struct dwc2_request *req;
debug_cond(DEBUG_IN_EP,
"%s: Check queue, ep_num = %d\n", __func__, ep_num);
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct dwc2_request, queue);
debug_cond(DEBUG_IN_EP,
"%s: Next Tx request(0x%p) start...\n",
__func__, req);
if (ep_is_in(ep))
setdma_tx(ep, req);
else
setdma_rx(ep, req);
} else {
debug_cond(DEBUG_IN_EP,
"%s: NULL REQ on IN EP-%d\n", __func__, ep_num);
return;
}
}
static void process_ep_in_intr(struct dwc2_udc *dev)
{
u32 ep_intr, ep_intr_status;
u8 ep_num = 0;
ep_intr = readl(&reg->daint);
debug_cond(DEBUG_IN_EP,
"*** %s: EP In interrupt : DAINT = 0x%x\n", __func__, ep_intr);
ep_intr &= DAINT_MASK;
while (ep_intr) {
if (ep_intr & DAINT_IN_EP_INT(1)) {
ep_intr_status = readl(&reg->in_endp[ep_num].diepint);
debug_cond(DEBUG_IN_EP,
"\tEP%d-IN : DIEPINT = 0x%x\n",
ep_num, ep_intr_status);
/* Interrupt Clear */
writel(ep_intr_status, &reg->in_endp[ep_num].diepint);
if (ep_intr_status & TRANSFER_DONE) {
complete_tx(dev, ep_num);
if (ep_num == 0) {
if (dev->ep0state ==
WAIT_FOR_IN_COMPLETE)
dev->ep0state = WAIT_FOR_SETUP;
if (dev->ep0state == WAIT_FOR_SETUP)
dwc2_udc_pre_setup();
/* continue transfer after
set_clear_halt for DMA mode */
if (clear_feature_flag == 1) {
dwc2_udc_check_tx_queue(dev,
clear_feature_num);
clear_feature_flag = 0;
}
}
}
}
ep_num++;
ep_intr >>= 1;
}
}
static void process_ep_out_intr(struct dwc2_udc *dev)
{
u32 ep_intr, ep_intr_status;
u8 ep_num = 0;
ep_intr = readl(&reg->daint);
debug_cond(DEBUG_OUT_EP != 0,
"*** %s: EP OUT interrupt : DAINT = 0x%x\n",
__func__, ep_intr);
ep_intr = (ep_intr >> DAINT_OUT_BIT) & DAINT_MASK;
while (ep_intr) {
if (ep_intr & 0x1) {
ep_intr_status = readl(&reg->out_endp[ep_num].doepint);
debug_cond(DEBUG_OUT_EP != 0,
"\tEP%d-OUT : DOEPINT = 0x%x\n",
ep_num, ep_intr_status);
/* Interrupt Clear */
writel(ep_intr_status, &reg->out_endp[ep_num].doepint);
if (ep_num == 0) {
if (ep_intr_status & TRANSFER_DONE) {
if (dev->ep0state !=
WAIT_FOR_OUT_COMPLETE)
complete_rx(dev, ep_num);
else {
dev->ep0state = WAIT_FOR_SETUP;
dwc2_udc_pre_setup();
}
}
if (ep_intr_status &
CTRL_OUT_EP_SETUP_PHASE_DONE) {
debug_cond(DEBUG_OUT_EP != 0,
"SETUP packet arrived\n");
dwc2_handle_ep0(dev);
}
} else {
if (ep_intr_status & TRANSFER_DONE)
complete_rx(dev, ep_num);
}
}
ep_num++;
ep_intr >>= 1;
}
}
/*
* usb client interrupt handler.
*/
static int dwc2_udc_irq(int irq, void *_dev)
{
struct dwc2_udc *dev = _dev;
u32 intr_status;
u32 usb_status, gintmsk;
unsigned long flags = 0;
spin_lock_irqsave(&dev->lock, flags);
intr_status = readl(&reg->gintsts);
gintmsk = readl(&reg->gintmsk);
debug_cond(DEBUG_ISR,
"\n*** %s : GINTSTS=0x%x(on state %s), GINTMSK : 0x%x,"
"DAINT : 0x%x, DAINTMSK : 0x%x\n",
__func__, intr_status, state_names[dev->ep0state], gintmsk,
readl(&reg->daint), readl(&reg->daintmsk));
if (!intr_status) {
spin_unlock_irqrestore(&dev->lock, flags);
return IRQ_HANDLED;
}
if (intr_status & INT_ENUMDONE) {
debug_cond(DEBUG_ISR, "\tSpeed Detection interrupt\n");
writel(INT_ENUMDONE, &reg->gintsts);
usb_status = (readl(&reg->dsts) & 0x6);
if (usb_status & (USB_FULL_30_60MHZ | USB_FULL_48MHZ)) {
debug_cond(DEBUG_ISR,
"\t\tFull Speed Detection\n");
set_max_pktsize(dev, USB_SPEED_FULL);
} else {
debug_cond(DEBUG_ISR,
"\t\tHigh Speed Detection : 0x%x\n",
usb_status);
set_max_pktsize(dev, USB_SPEED_HIGH);
}
}
if (intr_status & INT_EARLY_SUSPEND) {
debug_cond(DEBUG_ISR, "\tEarly suspend interrupt\n");
writel(INT_EARLY_SUSPEND, &reg->gintsts);
}
if (intr_status & INT_SUSPEND) {
usb_status = readl(&reg->dsts);
debug_cond(DEBUG_ISR,
"\tSuspend interrupt :(DSTS):0x%x\n", usb_status);
writel(INT_SUSPEND, &reg->gintsts);
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver) {
if (dev->driver->suspend)
dev->driver->suspend(&dev->gadget);
/* HACK to let gadget detect disconnected state */
if (dev->driver->disconnect) {
spin_unlock_irqrestore(&dev->lock, flags);
dev->driver->disconnect(&dev->gadget);
spin_lock_irqsave(&dev->lock, flags);
}
}
}
if (intr_status & INT_RESUME) {
debug_cond(DEBUG_ISR, "\tResume interrupt\n");
writel(INT_RESUME, &reg->gintsts);
if (dev->gadget.speed != USB_SPEED_UNKNOWN
&& dev->driver
&& dev->driver->resume) {
dev->driver->resume(&dev->gadget);
}
}
if (intr_status & INT_RESET) {
usb_status = readl(&reg->gotgctl);
debug_cond(DEBUG_ISR,
"\tReset interrupt - (GOTGCTL):0x%x\n", usb_status);
writel(INT_RESET, &reg->gintsts);
if ((usb_status & 0xc0000) == (0x3 << 18)) {
if (reset_available) {
debug_cond(DEBUG_ISR,
"\t\tOTG core got reset (%d)!!\n",
reset_available);
reconfig_usbd(dev);
dev->ep0state = WAIT_FOR_SETUP;
reset_available = 0;
dwc2_udc_pre_setup();
} else
reset_available = 1;
} else {
reset_available = 1;
debug_cond(DEBUG_ISR,
"\t\tRESET handling skipped\n");
}
}
if (intr_status & INT_IN_EP)
process_ep_in_intr(dev);
if (intr_status & INT_OUT_EP)
process_ep_out_intr(dev);
spin_unlock_irqrestore(&dev->lock, flags);
return IRQ_HANDLED;
}
/** Queue one request
* Kickstart transfer if needed
*/
static int dwc2_queue(struct usb_ep *_ep, struct usb_request *_req,
gfp_t gfp_flags)
{
struct dwc2_request *req;
struct dwc2_ep *ep;
struct dwc2_udc *dev;
unsigned long flags = 0;
u32 ep_num, gintsts;
req = container_of(_req, struct dwc2_request, req);
if (unlikely(!_req || !_req->complete || !_req->buf
|| !list_empty(&req->queue))) {
debug("%s: bad params\n", __func__);
return -EINVAL;
}
ep = container_of(_ep, struct dwc2_ep, ep);
if (unlikely(!_ep || (!ep->desc && ep->ep.name != ep0name))) {
debug("%s: bad ep: %s, %d, %p\n", __func__,
ep->ep.name, !ep->desc, _ep);
return -EINVAL;
}
ep_num = ep_index(ep);
dev = ep->dev;
if (unlikely(!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)) {
debug("%s: bogus device state %p\n", __func__, dev->driver);
return -ESHUTDOWN;
}
spin_lock_irqsave(&dev->lock, flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
/* kickstart this i/o queue? */
debug("\n*** %s: %s-%s req = %p, len = %d, buf = %p"
"Q empty = %d, stopped = %d\n",
__func__, _ep->name, ep_is_in(ep) ? "in" : "out",
_req, _req->length, _req->buf,
list_empty(&ep->queue), ep->stopped);
#ifdef DEBUG
{
int i, len = _req->length;
printf("pkt = ");
if (len > 64)
len = 64;
for (i = 0; i < len; i++) {
printf("%02x", ((u8 *)_req->buf)[i]);
if ((i & 7) == 7)
printf(" ");
}
printf("\n");
}
#endif
if (list_empty(&ep->queue) && !ep->stopped) {
if (ep_num == 0) {
/* EP0 */
list_add_tail(&req->queue, &ep->queue);
dwc2_ep0_kick(dev, ep);
req = 0;
} else if (ep_is_in(ep)) {
gintsts = readl(&reg->gintsts);
debug_cond(DEBUG_IN_EP,
"%s: ep_is_in, DWC2_UDC_OTG_GINTSTS=0x%x\n",
__func__, gintsts);
setdma_tx(ep, req);
} else {
gintsts = readl(&reg->gintsts);
debug_cond(DEBUG_OUT_EP != 0,
"%s:ep_is_out, DWC2_UDC_OTG_GINTSTS=0x%x\n",
__func__, gintsts);
setdma_rx(ep, req);
}
}
/* pio or dma irq handler advances the queue. */
if (likely(req != 0))
list_add_tail(&req->queue, &ep->queue);
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
/****************************************************************/
/* End Point 0 related functions */
/****************************************************************/
/* return: 0 = still running, 1 = completed, negative = errno */
static int write_fifo_ep0(struct dwc2_ep *ep, struct dwc2_request *req)
{
u32 max;
unsigned count;
int is_last;
max = ep_maxpacket(ep);
debug_cond(DEBUG_EP0 != 0, "%s: max = %d\n", __func__, max);
count = setdma_tx(ep, req);
/* last packet is usually short (or a zlp) */
if (likely(count != max))
is_last = 1;
else {
if (likely(req->req.length != req->req.actual + count)
|| req->req.zero)
is_last = 0;
else
is_last = 1;
}
debug_cond(DEBUG_EP0 != 0,
"%s: wrote %s %d bytes%s %d left %p\n", __func__,
ep->ep.name, count,
is_last ? "/L" : "",
req->req.length - req->req.actual - count, req);
/* requests complete when all IN data is in the FIFO */
if (is_last) {
ep->dev->ep0state = WAIT_FOR_SETUP;
return 1;
}
return 0;
}
static int dwc2_fifo_read(struct dwc2_ep *ep, u32 *cp, int max)
{
invalidate_dcache_range((unsigned long)cp, (unsigned long)cp +
ROUND(max, CONFIG_SYS_CACHELINE_SIZE));
debug_cond(DEBUG_EP0 != 0,
"%s: bytes=%d, ep_index=%d 0x%p\n", __func__,
max, ep_index(ep), cp);
return max;
}
/**
* udc_set_address - set the USB address for this device
* @address:
*
* Called from control endpoint function
* after it decodes a set address setup packet.
*/
static void udc_set_address(struct dwc2_udc *dev, unsigned char address)
{
u32 ctrl = readl(&reg->dcfg);
writel(DEVICE_ADDRESS(address) | ctrl, &reg->dcfg);
dwc2_udc_ep0_zlp(dev);
debug_cond(DEBUG_EP0 != 0,
"%s: USB OTG 2.0 Device address=%d, DCFG=0x%x\n",
__func__, address, readl(&reg->dcfg));
dev->usb_address = address;
}
static inline void dwc2_udc_ep0_set_stall(struct dwc2_ep *ep)
{
struct dwc2_udc *dev;
u32 ep_ctrl = 0;
dev = ep->dev;
ep_ctrl = readl(&reg->in_endp[EP0_CON].diepctl);
/* set the disable and stall bits */
if (ep_ctrl & DEPCTL_EPENA)
ep_ctrl |= DEPCTL_EPDIS;
ep_ctrl |= DEPCTL_STALL;
writel(ep_ctrl, &reg->in_endp[EP0_CON].diepctl);
debug_cond(DEBUG_EP0 != 0,
"%s: set ep%d stall, DIEPCTL0 = 0x%p\n",
__func__, ep_index(ep), &reg->in_endp[EP0_CON].diepctl);
/*
* The application can only set this bit, and the core clears it,
* when a SETUP token is received for this endpoint
*/
dev->ep0state = WAIT_FOR_SETUP;
dwc2_udc_pre_setup();
}
static void dwc2_ep0_read(struct dwc2_udc *dev)
{
struct dwc2_request *req;
struct dwc2_ep *ep = &dev->ep[0];
if (!list_empty(&ep->queue)) {
req = list_entry(ep->queue.next, struct dwc2_request, queue);
} else {
debug("%s: ---> BUG\n", __func__);
BUG();
return;
}
debug_cond(DEBUG_EP0 != 0,
"%s: req = %p, req.length = 0x%x, req.actual = 0x%x\n",
__func__, req, req->req.length, req->req.actual);
if (req->req.length == 0) {
/* zlp for Set_configuration, Set_interface,
* or Bulk-Only mass storge reset */
ep->len = 0;
dwc2_udc_ep0_zlp(dev);
debug_cond(DEBUG_EP0 != 0,
"%s: req.length = 0, bRequest = %d\n",
__func__, usb_ctrl->bRequest);
return;
}
setdma_rx(ep, req);
}
/*
* DATA_STATE_XMIT
*/
static int dwc2_ep0_write(struct dwc2_udc *dev)
{
struct dwc2_request *req;
struct dwc2_ep *ep = &dev->ep[0];
int ret, need_zlp = 0;
if (list_empty(&ep->queue))
req = 0;
else
req = list_entry(ep->queue.next, struct dwc2_request, queue);
if (!req) {
debug_cond(DEBUG_EP0 != 0, "%s: NULL REQ\n", __func__);
return 0;
}
debug_cond(DEBUG_EP0 != 0,
"%s: req = %p, req.length = 0x%x, req.actual = 0x%x\n",
__func__, req, req->req.length, req->req.actual);
if (req->req.length - req->req.actual == ep0_fifo_size) {
/* Next write will end with the packet size, */
/* so we need Zero-length-packet */
need_zlp = 1;
}
ret = write_fifo_ep0(ep, req);
if ((ret == 1) && !need_zlp) {
/* Last packet */
dev->ep0state = WAIT_FOR_COMPLETE;
debug_cond(DEBUG_EP0 != 0,
"%s: finished, waiting for status\n", __func__);
} else {
dev->ep0state = DATA_STATE_XMIT;
debug_cond(DEBUG_EP0 != 0,
"%s: not finished\n", __func__);
}
return 1;
}
static int dwc2_udc_get_status(struct dwc2_udc *dev,
struct usb_ctrlrequest *crq)
{
u8 ep_num = crq->wIndex & 0x7F;
u16 g_status = 0;
u32 ep_ctrl;
debug_cond(DEBUG_SETUP != 0,
"%s: *** USB_REQ_GET_STATUS\n", __func__);
printf("crq->brequest:0x%x\n", crq->bRequestType & USB_RECIP_MASK);
switch (crq->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_INTERFACE:
g_status = 0;
debug_cond(DEBUG_SETUP != 0,
"\tGET_STATUS:USB_RECIP_INTERFACE, g_stauts = %d\n",
g_status);
break;
case USB_RECIP_DEVICE:
g_status = 0x1; /* Self powered */
debug_cond(DEBUG_SETUP != 0,
"\tGET_STATUS: USB_RECIP_DEVICE, g_stauts = %d\n",
g_status);
break;
case USB_RECIP_ENDPOINT:
if (crq->wLength > 2) {
debug_cond(DEBUG_SETUP != 0,
"\tGET_STATUS:Not support EP or wLength\n");
return 1;
}
g_status = dev->ep[ep_num].stopped;
debug_cond(DEBUG_SETUP != 0,
"\tGET_STATUS: USB_RECIP_ENDPOINT, g_stauts = %d\n",
g_status);
break;
default:
return 1;
}
memcpy(usb_ctrl, &g_status, sizeof(g_status));
flush_dcache_range((unsigned long) usb_ctrl,
(unsigned long) usb_ctrl +
ROUND(sizeof(g_status), CONFIG_SYS_CACHELINE_SIZE));
writel(usb_ctrl_dma_addr, &reg->in_endp[EP0_CON].diepdma);
writel(DIEPT_SIZ_PKT_CNT(1) | DIEPT_SIZ_XFER_SIZE(2),
&reg->in_endp[EP0_CON].dieptsiz);
ep_ctrl = readl(&reg->in_endp[EP0_CON].diepctl);
writel(ep_ctrl|DEPCTL_EPENA|DEPCTL_CNAK,
&reg->in_endp[EP0_CON].diepctl);
dev->ep0state = WAIT_FOR_NULL_COMPLETE;
return 0;
}
static void dwc2_udc_set_nak(struct dwc2_ep *ep)
{
u8 ep_num;
u32 ep_ctrl = 0;
ep_num = ep_index(ep);
debug("%s: ep_num = %d, ep_type = %d\n", __func__, ep_num, ep->ep_type);
if (ep_is_in(ep)) {
ep_ctrl = readl(&reg->in_endp[ep_num].diepctl);
ep_ctrl |= DEPCTL_SNAK;
writel(ep_ctrl, &reg->in_endp[ep_num].diepctl);
debug("%s: set NAK, DIEPCTL%d = 0x%x\n",
__func__, ep_num, readl(&reg->in_endp[ep_num].diepctl));
} else {
ep_ctrl = readl(&reg->out_endp[ep_num].doepctl);
ep_ctrl |= DEPCTL_SNAK;
writel(ep_ctrl, &reg->out_endp[ep_num].doepctl);
debug("%s: set NAK, DOEPCTL%d = 0x%x\n",
__func__, ep_num, readl(&reg->out_endp[ep_num].doepctl));
}
return;
}
static void dwc2_udc_ep_set_stall(struct dwc2_ep *ep)
{
u8 ep_num;
u32 ep_ctrl = 0;
ep_num = ep_index(ep);
debug("%s: ep_num = %d, ep_type = %d\n", __func__, ep_num, ep->ep_type);
if (ep_is_in(ep)) {
ep_ctrl = readl(&reg->in_endp[ep_num].diepctl);
/* set the disable and stall bits */
if (ep_ctrl & DEPCTL_EPENA)
ep_ctrl |= DEPCTL_EPDIS;
ep_ctrl |= DEPCTL_STALL;
writel(ep_ctrl, &reg->in_endp[ep_num].diepctl);
debug("%s: set stall, DIEPCTL%d = 0x%x\n",
__func__, ep_num, readl(&reg->in_endp[ep_num].diepctl));
} else {
ep_ctrl = readl(&reg->out_endp[ep_num].doepctl);
/* set the stall bit */
ep_ctrl |= DEPCTL_STALL;
writel(ep_ctrl, &reg->out_endp[ep_num].doepctl);
debug("%s: set stall, DOEPCTL%d = 0x%x\n",
__func__, ep_num, readl(&reg->out_endp[ep_num].doepctl));
}
return;
}
static void dwc2_udc_ep_clear_stall(struct dwc2_ep *ep)
{
u8 ep_num;
u32 ep_ctrl = 0;
ep_num = ep_index(ep);
debug("%s: ep_num = %d, ep_type = %d\n", __func__, ep_num, ep->ep_type);
if (ep_is_in(ep)) {
ep_ctrl = readl(&reg->in_endp[ep_num].diepctl);
/* clear stall bit */
ep_ctrl &= ~DEPCTL_STALL;
/*
* USB Spec 9.4.5: For endpoints using data toggle, regardless
* of whether an endpoint has the Halt feature set, a
* ClearFeature(ENDPOINT_HALT) request always results in the
* data toggle being reinitialized to DATA0.
*/
if (ep->bmAttributes == USB_ENDPOINT_XFER_INT
|| ep->bmAttributes == USB_ENDPOINT_XFER_BULK) {
ep_ctrl |= DEPCTL_SETD0PID; /* DATA0 */
}
writel(ep_ctrl, &reg->in_endp[ep_num].diepctl);
debug("%s: cleared stall, DIEPCTL%d = 0x%x\n",
__func__, ep_num, readl(&reg->in_endp[ep_num].diepctl));
} else {
ep_ctrl = readl(&reg->out_endp[ep_num].doepctl);
/* clear stall bit */
ep_ctrl &= ~DEPCTL_STALL;
if (ep->bmAttributes == USB_ENDPOINT_XFER_INT
|| ep->bmAttributes == USB_ENDPOINT_XFER_BULK) {
ep_ctrl |= DEPCTL_SETD0PID; /* DATA0 */
}
writel(ep_ctrl, &reg->out_endp[ep_num].doepctl);
debug("%s: cleared stall, DOEPCTL%d = 0x%x\n",
__func__, ep_num, readl(&reg->out_endp[ep_num].doepctl));
}
return;
}
static int dwc2_udc_set_halt(struct usb_ep *_ep, int value)
{
struct dwc2_ep *ep;
struct dwc2_udc *dev;
unsigned long flags = 0;
u8 ep_num;
ep = container_of(_ep, struct dwc2_ep, ep);
ep_num = ep_index(ep);
if (unlikely(!_ep || !ep->desc || ep_num == EP0_CON ||
ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC)) {
debug("%s: %s bad ep or descriptor\n", __func__, ep->ep.name);
return -EINVAL;
}
/* Attempt to halt IN ep will fail if any transfer requests
* are still queue */
if (value && ep_is_in(ep) && !list_empty(&ep->queue)) {
debug("%s: %s queue not empty, req = %p\n",
__func__, ep->ep.name,
list_entry(ep->queue.next, struct dwc2_request, queue));
return -EAGAIN;
}
dev = ep->dev;
debug("%s: ep_num = %d, value = %d\n", __func__, ep_num, value);
spin_lock_irqsave(&dev->lock, flags);
if (value == 0) {
ep->stopped = 0;
dwc2_udc_ep_clear_stall(ep);
} else {
if (ep_num == 0)
dev->ep0state = WAIT_FOR_SETUP;
ep->stopped = 1;
dwc2_udc_ep_set_stall(ep);
}
spin_unlock_irqrestore(&dev->lock, flags);
return 0;
}
static void dwc2_udc_ep_activate(struct dwc2_ep *ep)
{
u8 ep_num;
u32 ep_ctrl = 0, daintmsk = 0;
ep_num = ep_index(ep);
/* Read DEPCTLn register */
if (ep_is_in(ep)) {
ep_ctrl = readl(&reg->in_endp[ep_num].diepctl);
daintmsk = 1 << ep_num;
} else {
ep_ctrl = readl(&reg->out_endp[ep_num].doepctl);
daintmsk = (1 << ep_num) << DAINT_OUT_BIT;
}
debug("%s: EPCTRL%d = 0x%x, ep_is_in = %d\n",
__func__, ep_num, ep_ctrl, ep_is_in(ep));
/* If the EP is already active don't change the EP Control
* register. */
if (!(ep_ctrl & DEPCTL_USBACTEP)) {
ep_ctrl = (ep_ctrl & ~DEPCTL_TYPE_MASK) |
(ep->bmAttributes << DEPCTL_TYPE_BIT);
ep_ctrl = (ep_ctrl & ~DEPCTL_MPS_MASK) |
(ep->ep.maxpacket << DEPCTL_MPS_BIT);
ep_ctrl |= (DEPCTL_SETD0PID | DEPCTL_USBACTEP | DEPCTL_SNAK);
if (ep_is_in(ep)) {
writel(ep_ctrl, &reg->in_endp[ep_num].diepctl);
debug("%s: USB Ative EP%d, DIEPCTRL%d = 0x%x\n",
__func__, ep_num, ep_num,
readl(&reg->in_endp[ep_num].diepctl));
} else {
writel(ep_ctrl, &reg->out_endp[ep_num].doepctl);
debug("%s: USB Ative EP%d, DOEPCTRL%d = 0x%x\n",
__func__, ep_num, ep_num,
readl(&reg->out_endp[ep_num].doepctl));
}
}
/* Unmask EP Interrtupt */
writel(readl(&reg->daintmsk)|daintmsk, &reg->daintmsk);
debug("%s: DAINTMSK = 0x%x\n", __func__, readl(&reg->daintmsk));
}
static int dwc2_udc_clear_feature(struct usb_ep *_ep)
{
struct dwc2_udc *dev;
struct dwc2_ep *ep;
u8 ep_num;
ep = container_of(_ep, struct dwc2_ep, ep);
ep_num = ep_index(ep);
dev = ep->dev;
debug_cond(DEBUG_SETUP != 0,
"%s: ep_num = %d, is_in = %d, clear_feature_flag = %d\n",
__func__, ep_num, ep_is_in(ep), clear_feature_flag);
if (usb_ctrl->wLength != 0) {
debug_cond(DEBUG_SETUP != 0,
"\tCLEAR_FEATURE: wLength is not zero.....\n");
return 1;
}
switch (usb_ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
switch (usb_ctrl->wValue) {
case USB_DEVICE_REMOTE_WAKEUP:
debug_cond(DEBUG_SETUP != 0,
"\tOFF:USB_DEVICE_REMOTE_WAKEUP\n");
break;
case USB_DEVICE_TEST_MODE:
debug_cond(DEBUG_SETUP != 0,
"\tCLEAR_FEATURE: USB_DEVICE_TEST_MODE\n");
/** @todo Add CLEAR_FEATURE for TEST modes. */
break;
}
dwc2_udc_ep0_zlp(dev);
break;
case USB_RECIP_ENDPOINT:
debug_cond(DEBUG_SETUP != 0,
"\tCLEAR_FEATURE:USB_RECIP_ENDPOINT, wValue = %d\n",
usb_ctrl->wValue);
if (usb_ctrl->wValue == USB_ENDPOINT_HALT) {
if (ep_num == 0) {
dwc2_udc_ep0_set_stall(ep);
return 0;
}
dwc2_udc_ep0_zlp(dev);
dwc2_udc_ep_clear_stall(ep);
dwc2_udc_ep_activate(ep);
ep->stopped = 0;
clear_feature_num = ep_num;
clear_feature_flag = 1;
}
break;
}
return 0;
}
static int dwc2_udc_set_feature(struct usb_ep *_ep)
{
struct dwc2_udc *dev;
struct dwc2_ep *ep;
u8 ep_num;
ep = container_of(_ep, struct dwc2_ep, ep);
ep_num = ep_index(ep);
dev = ep->dev;
debug_cond(DEBUG_SETUP != 0,
"%s: *** USB_REQ_SET_FEATURE , ep_num = %d\n",
__func__, ep_num);
if (usb_ctrl->wLength != 0) {
debug_cond(DEBUG_SETUP != 0,
"\tSET_FEATURE: wLength is not zero.....\n");
return 1;
}
switch (usb_ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
switch (usb_ctrl->wValue) {
case USB_DEVICE_REMOTE_WAKEUP:
debug_cond(DEBUG_SETUP != 0,
"\tSET_FEATURE:USB_DEVICE_REMOTE_WAKEUP\n");
break;
case USB_DEVICE_B_HNP_ENABLE:
debug_cond(DEBUG_SETUP != 0,
"\tSET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
break;
case USB_DEVICE_A_HNP_SUPPORT:
/* RH port supports HNP */
debug_cond(DEBUG_SETUP != 0,
"\tSET_FEATURE:USB_DEVICE_A_HNP_SUPPORT\n");
break;
case USB_DEVICE_A_ALT_HNP_SUPPORT:
/* other RH port does */
debug_cond(DEBUG_SETUP != 0,
"\tSET: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
break;
}
dwc2_udc_ep0_zlp(dev);
return 0;
case USB_RECIP_INTERFACE:
debug_cond(DEBUG_SETUP != 0,
"\tSET_FEATURE: USB_RECIP_INTERFACE\n");
break;
case USB_RECIP_ENDPOINT:
debug_cond(DEBUG_SETUP != 0,
"\tSET_FEATURE: USB_RECIP_ENDPOINT\n");
if (usb_ctrl->wValue == USB_ENDPOINT_HALT) {
if (ep_num == 0) {
dwc2_udc_ep0_set_stall(ep);
return 0;
}
ep->stopped = 1;
dwc2_udc_ep_set_stall(ep);
}
dwc2_udc_ep0_zlp(dev);
return 0;
}
return 1;
}
/*
* WAIT_FOR_SETUP (OUT_PKT_RDY)
*/
static void dwc2_ep0_setup(struct dwc2_udc *dev)
{
struct dwc2_ep *ep = &dev->ep[0];
int i;
u8 ep_num;
/* Nuke all previous transfers */
nuke(ep, -EPROTO);
/* read control req from fifo (8 bytes) */
dwc2_fifo_read(ep, (u32 *)usb_ctrl, 8);
debug_cond(DEBUG_SETUP != 0,
"%s: bRequestType = 0x%x(%s), bRequest = 0x%x"
"\twLength = 0x%x, wValue = 0x%x, wIndex= 0x%x\n",
__func__, usb_ctrl->bRequestType,
(usb_ctrl->bRequestType & USB_DIR_IN) ? "IN" : "OUT",
usb_ctrl->bRequest,
usb_ctrl->wLength, usb_ctrl->wValue, usb_ctrl->wIndex);
#ifdef DEBUG
{
int i, len = sizeof(*usb_ctrl);
char *p = (char *)usb_ctrl;
printf("pkt = ");
for (i = 0; i < len; i++) {
printf("%02x", ((u8 *)p)[i]);
if ((i & 7) == 7)
printf(" ");
}
printf("\n");
}
#endif
if (usb_ctrl->bRequest == GET_MAX_LUN_REQUEST &&
usb_ctrl->wLength != 1) {
debug_cond(DEBUG_SETUP != 0,
"\t%s:GET_MAX_LUN_REQUEST:invalid",
__func__);
debug_cond(DEBUG_SETUP != 0,
"wLength = %d, setup returned\n",
usb_ctrl->wLength);
dwc2_udc_ep0_set_stall(ep);
dev->ep0state = WAIT_FOR_SETUP;
return;
} else if (usb_ctrl->bRequest == BOT_RESET_REQUEST &&
usb_ctrl->wLength != 0) {
/* Bulk-Only *mass storge reset of class-specific request */
debug_cond(DEBUG_SETUP != 0,
"%s:BOT Rest:invalid wLength =%d, setup returned\n",
__func__, usb_ctrl->wLength);
dwc2_udc_ep0_set_stall(ep);
dev->ep0state = WAIT_FOR_SETUP;
return;
}
/* Set direction of EP0 */
if (likely(usb_ctrl->bRequestType & USB_DIR_IN)) {
ep->bEndpointAddress |= USB_DIR_IN;
} else {
ep->bEndpointAddress &= ~USB_DIR_IN;
}
/* cope with automagic for some standard requests. */
dev->req_std = (usb_ctrl->bRequestType & USB_TYPE_MASK)
== USB_TYPE_STANDARD;
dev->req_pending = 1;
/* Handle some SETUP packets ourselves */
if (dev->req_std) {
switch (usb_ctrl->bRequest) {
case USB_REQ_SET_ADDRESS:
debug_cond(DEBUG_SETUP != 0,
"%s: *** USB_REQ_SET_ADDRESS (%d)\n",
__func__, usb_ctrl->wValue);
if (usb_ctrl->bRequestType
!= (USB_TYPE_STANDARD | USB_RECIP_DEVICE))
break;
udc_set_address(dev, usb_ctrl->wValue);
return;
case USB_REQ_SET_CONFIGURATION:
debug_cond(DEBUG_SETUP != 0,
"=====================================\n");
debug_cond(DEBUG_SETUP != 0,
"%s: USB_REQ_SET_CONFIGURATION (%d)\n",
__func__, usb_ctrl->wValue);
if (usb_ctrl->bRequestType == USB_RECIP_DEVICE)
reset_available = 1;
break;
case USB_REQ_GET_DESCRIPTOR:
debug_cond(DEBUG_SETUP != 0,
"%s: *** USB_REQ_GET_DESCRIPTOR\n",
__func__);
break;
case USB_REQ_SET_INTERFACE:
debug_cond(DEBUG_SETUP != 0,
"%s: *** USB_REQ_SET_INTERFACE (%d)\n",
__func__, usb_ctrl->wValue);
if (usb_ctrl->bRequestType == USB_RECIP_INTERFACE)
reset_available = 1;
break;
case USB_REQ_GET_CONFIGURATION:
debug_cond(DEBUG_SETUP != 0,
"%s: *** USB_REQ_GET_CONFIGURATION\n",
__func__);
break;
case USB_REQ_GET_STATUS:
if (!dwc2_udc_get_status(dev, usb_ctrl))
return;
break;
case USB_REQ_CLEAR_FEATURE:
ep_num = usb_ctrl->wIndex & 0x7f;
if (!dwc2_udc_clear_feature(&dev->ep[ep_num].ep))
return;
break;
case USB_REQ_SET_FEATURE:
ep_num = usb_ctrl->wIndex & 0x7f;
if (!dwc2_udc_set_feature(&dev->ep[ep_num].ep))
return;
break;
default:
debug_cond(DEBUG_SETUP != 0,
"%s: *** Default of usb_ctrl->bRequest=0x%x"
"happened.\n", __func__, usb_ctrl->bRequest);
break;
}
}
if (likely(dev->driver)) {
/* device-2-host (IN) or no data setup command,
* process immediately */
debug_cond(DEBUG_SETUP != 0,
"%s:usb_ctrlreq will be passed to fsg_setup()\n",
__func__);
spin_unlock(&dev->lock);
i = dev->driver->setup(&dev->gadget, usb_ctrl);
spin_lock(&dev->lock);
if (i < 0) {
/* setup processing failed, force stall */
dwc2_udc_ep0_set_stall(ep);
dev->ep0state = WAIT_FOR_SETUP;
debug_cond(DEBUG_SETUP != 0,
"\tdev->driver->setup failed (%d),"
" bRequest = %d\n",
i, usb_ctrl->bRequest);
} else if (dev->req_pending) {
dev->req_pending = 0;
debug_cond(DEBUG_SETUP != 0,
"\tdev->req_pending...\n");
}
debug_cond(DEBUG_SETUP != 0,
"\tep0state = %s\n", state_names[dev->ep0state]);
}
}
/*
* handle ep0 interrupt
*/
static void dwc2_handle_ep0(struct dwc2_udc *dev)
{
if (dev->ep0state == WAIT_FOR_SETUP) {
debug_cond(DEBUG_OUT_EP != 0,
"%s: WAIT_FOR_SETUP\n", __func__);
dwc2_ep0_setup(dev);
} else {
debug_cond(DEBUG_OUT_EP != 0,
"%s: strange state!!(state = %s)\n",
__func__, state_names[dev->ep0state]);
}
}
static void dwc2_ep0_kick(struct dwc2_udc *dev, struct dwc2_ep *ep)
{
debug_cond(DEBUG_EP0 != 0,
"%s: ep_is_in = %d\n", __func__, ep_is_in(ep));
if (ep_is_in(ep)) {
dev->ep0state = DATA_STATE_XMIT;
dwc2_ep0_write(dev);
} else {
dev->ep0state = DATA_STATE_RECV;
dwc2_ep0_read(dev);
}
}