u-boot/include/ec_commands.h
Simon Glass e37d963ec8 cros_ec: Add MEC_EMI_BASE and size to the header file
Provide these values which are part of the EC interface now.

Signed-off-by: Simon Glass <sjg@chromium.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
2019-10-08 13:57:44 +08:00

4606 lines
131 KiB
C

/* Copyright (c) 2018 The Chromium OS Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
/* Host communication command constants for Chrome EC */
#ifndef __CROS_EC_COMMANDS_H
#define __CROS_EC_COMMANDS_H
/*
* Protocol overview
*
* request: CMD [ P0 P1 P2 ... Pn S ]
* response: ERR [ P0 P1 P2 ... Pn S ]
*
* where the bytes are defined as follow :
* - CMD is the command code. (defined by EC_CMD_ constants)
* - ERR is the error code. (defined by EC_RES_ constants)
* - Px is the optional payload.
* it is not sent if the error code is not success.
* (defined by ec_params_ and ec_response_ structures)
* - S is the checksum which is the sum of all payload bytes.
*
* On LPC, CMD and ERR are sent/received at EC_LPC_ADDR_KERNEL|USER_CMD
* and the payloads are sent/received at EC_LPC_ADDR_KERNEL|USER_PARAM.
* On I2C, all bytes are sent serially in the same message.
*/
/*
* Current version of this protocol
*
* TODO(crosbug.com/p/11223): This is effectively useless; protocol is
* determined in other ways. Remove this once the kernel code no longer
* depends on it.
*/
#define EC_PROTO_VERSION 0x00000002
/* Command version mask */
#define EC_VER_MASK(version) (1UL << (version))
/* I/O addresses for ACPI commands */
#define EC_LPC_ADDR_ACPI_DATA 0x62
#define EC_LPC_ADDR_ACPI_CMD 0x66
/* I/O addresses for host command */
#define EC_LPC_ADDR_HOST_DATA 0x200
#define EC_LPC_ADDR_HOST_CMD 0x204
/* I/O addresses for host command args and params */
/* Protocol version 2 */
#define EC_LPC_ADDR_HOST_ARGS 0x800 /* And 0x801, 0x802, 0x803 */
#define EC_LPC_ADDR_HOST_PARAM 0x804 /* For version 2 params; size is
* EC_PROTO2_MAX_PARAM_SIZE */
/* Protocol version 3 */
#define EC_LPC_ADDR_HOST_PACKET 0x800 /* Offset of version 3 packet */
#define EC_LPC_HOST_PACKET_SIZE 0x100 /* Max size of version 3 packet */
/* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
* and they tell the kernel that so we have to think of it as two parts. */
#define EC_HOST_CMD_REGION0 0x800
#define EC_HOST_CMD_REGION1 0x880
#define EC_HOST_CMD_REGION_SIZE 0x80
/* EC command register bit functions */
#define EC_LPC_CMDR_DATA (1 << 0) /* Data ready for host to read */
#define EC_LPC_CMDR_PENDING (1 << 1) /* Write pending to EC */
#define EC_LPC_CMDR_BUSY (1 << 2) /* EC is busy processing a command */
#define EC_LPC_CMDR_CMD (1 << 3) /* Last host write was a command */
#define EC_LPC_CMDR_ACPI_BRST (1 << 4) /* Burst mode (not used) */
#define EC_LPC_CMDR_SCI (1 << 5) /* SCI event is pending */
#define EC_LPC_CMDR_SMI (1 << 6) /* SMI event is pending */
/* MEC uses 0x800/0x804 as register/index pair, thus an 8-byte resource */
#define MEC_EMI_BASE 0x800
#define MEC_EMI_SIZE 8
#define EC_LPC_ADDR_MEMMAP 0x900
#define EC_MEMMAP_SIZE 255 /* ACPI IO buffer max is 255 bytes */
#define EC_MEMMAP_TEXT_MAX 8 /* Size of a string in the memory map */
/* The offset address of each type of data in mapped memory. */
#define EC_MEMMAP_TEMP_SENSOR 0x00 /* Temp sensors 0x00 - 0x0f */
#define EC_MEMMAP_FAN 0x10 /* Fan speeds 0x10 - 0x17 */
#define EC_MEMMAP_TEMP_SENSOR_B 0x18 /* More temp sensors 0x18 - 0x1f */
#define EC_MEMMAP_ID 0x20 /* 0x20 == 'E', 0x21 == 'C' */
#define EC_MEMMAP_ID_VERSION 0x22 /* Version of data in 0x20 - 0x2f */
#define EC_MEMMAP_THERMAL_VERSION 0x23 /* Version of data in 0x00 - 0x1f */
#define EC_MEMMAP_BATTERY_VERSION 0x24 /* Version of data in 0x40 - 0x7f */
#define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
#define EC_MEMMAP_EVENTS_VERSION 0x26 /* Version of data in 0x34 - 0x3f */
#define EC_MEMMAP_HOST_CMD_FLAGS 0x27 /* Host cmd interface flags (8 bits) */
/* Unused 0x28 - 0x2f */
#define EC_MEMMAP_SWITCHES 0x30 /* 8 bits */
/* Unused 0x31 - 0x33 */
#define EC_MEMMAP_HOST_EVENTS 0x34 /* 32 bits */
/* Reserve 0x38 - 0x3f for additional host event-related stuff */
/* Battery values are all 32 bits */
#define EC_MEMMAP_BATT_VOLT 0x40 /* Battery Present Voltage */
#define EC_MEMMAP_BATT_RATE 0x44 /* Battery Present Rate */
#define EC_MEMMAP_BATT_CAP 0x48 /* Battery Remaining Capacity */
#define EC_MEMMAP_BATT_FLAG 0x4c /* Battery State, defined below */
#define EC_MEMMAP_BATT_DCAP 0x50 /* Battery Design Capacity */
#define EC_MEMMAP_BATT_DVLT 0x54 /* Battery Design Voltage */
#define EC_MEMMAP_BATT_LFCC 0x58 /* Battery Last Full Charge Capacity */
#define EC_MEMMAP_BATT_CCNT 0x5c /* Battery Cycle Count */
/* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
#define EC_MEMMAP_BATT_MFGR 0x60 /* Battery Manufacturer String */
#define EC_MEMMAP_BATT_MODEL 0x68 /* Battery Model Number String */
#define EC_MEMMAP_BATT_SERIAL 0x70 /* Battery Serial Number String */
#define EC_MEMMAP_BATT_TYPE 0x78 /* Battery Type String */
#define EC_MEMMAP_ALS 0x80 /* ALS readings in lux (2 X 16 bits) */
/* Unused 0x84 - 0x8f */
#define EC_MEMMAP_ACC_STATUS 0x90 /* Accelerometer status (8 bits )*/
/* Unused 0x91 */
#define EC_MEMMAP_ACC_DATA 0x92 /* Accelerometers data 0x92 - 0x9f */
/* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
/* 0x94 - 0x99: 1st Accelerometer */
/* 0x9a - 0x9f: 2nd Accelerometer */
#define EC_MEMMAP_GYRO_DATA 0xa0 /* Gyroscope data 0xa0 - 0xa5 */
/* Unused 0xa6 - 0xdf */
/*
* ACPI is unable to access memory mapped data at or above this offset due to
* limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
* which might be needed by ACPI.
*/
#define EC_MEMMAP_NO_ACPI 0xe0
/* Define the format of the accelerometer mapped memory status byte. */
#define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK 0x0f
#define EC_MEMMAP_ACC_STATUS_BUSY_BIT (1 << 4)
#define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT (1 << 7)
/* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
#define EC_TEMP_SENSOR_ENTRIES 16
/*
* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
*
* Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
*/
#define EC_TEMP_SENSOR_B_ENTRIES 8
/* Special values for mapped temperature sensors */
#define EC_TEMP_SENSOR_NOT_PRESENT 0xff
#define EC_TEMP_SENSOR_ERROR 0xfe
#define EC_TEMP_SENSOR_NOT_POWERED 0xfd
#define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
/*
* The offset of temperature value stored in mapped memory. This allows
* reporting a temperature range of 200K to 454K = -73C to 181C.
*/
#define EC_TEMP_SENSOR_OFFSET 200
/*
* Number of ALS readings at EC_MEMMAP_ALS
*/
#define EC_ALS_ENTRIES 2
/*
* The default value a temperature sensor will return when it is present but
* has not been read this boot. This is a reasonable number to avoid
* triggering alarms on the host.
*/
#define EC_TEMP_SENSOR_DEFAULT (296 - EC_TEMP_SENSOR_OFFSET)
#define EC_FAN_SPEED_ENTRIES 4 /* Number of fans at EC_MEMMAP_FAN */
#define EC_FAN_SPEED_NOT_PRESENT 0xffff /* Entry not present */
#define EC_FAN_SPEED_STALLED 0xfffe /* Fan stalled */
/* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
#define EC_BATT_FLAG_AC_PRESENT 0x01
#define EC_BATT_FLAG_BATT_PRESENT 0x02
#define EC_BATT_FLAG_DISCHARGING 0x04
#define EC_BATT_FLAG_CHARGING 0x08
#define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
/* Switch flags at EC_MEMMAP_SWITCHES */
#define EC_SWITCH_LID_OPEN 0x01
#define EC_SWITCH_POWER_BUTTON_PRESSED 0x02
#define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
/* Was recovery requested via keyboard; now unused. */
#define EC_SWITCH_IGNORE1 0x08
/* Recovery requested via dedicated signal (from servo board) */
#define EC_SWITCH_DEDICATED_RECOVERY 0x10
/* Was fake developer mode switch; now unused. Remove in next refactor. */
#define EC_SWITCH_IGNORE0 0x20
/* Host command interface flags */
/* Host command interface supports LPC args (LPC interface only) */
#define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED 0x01
/* Host command interface supports version 3 protocol */
#define EC_HOST_CMD_FLAG_VERSION_3 0x02
/* Wireless switch flags */
#define EC_WIRELESS_SWITCH_ALL ~0x00 /* All flags */
#define EC_WIRELESS_SWITCH_WLAN 0x01 /* WLAN radio */
#define EC_WIRELESS_SWITCH_BLUETOOTH 0x02 /* Bluetooth radio */
#define EC_WIRELESS_SWITCH_WWAN 0x04 /* WWAN power */
#define EC_WIRELESS_SWITCH_WLAN_POWER 0x08 /* WLAN power */
/*****************************************************************************/
/*
* ACPI commands
*
* These are valid ONLY on the ACPI command/data port.
*/
/*
* ACPI Read Embedded Controller
*
* This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
*
* Use the following sequence:
*
* - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
* - Wait for EC_LPC_CMDR_PENDING bit to clear
* - Write address to EC_LPC_ADDR_ACPI_DATA
* - Wait for EC_LPC_CMDR_DATA bit to set
* - Read value from EC_LPC_ADDR_ACPI_DATA
*/
#define EC_CMD_ACPI_READ 0x0080
/*
* ACPI Write Embedded Controller
*
* This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
*
* Use the following sequence:
*
* - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
* - Wait for EC_LPC_CMDR_PENDING bit to clear
* - Write address to EC_LPC_ADDR_ACPI_DATA
* - Wait for EC_LPC_CMDR_PENDING bit to clear
* - Write value to EC_LPC_ADDR_ACPI_DATA
*/
#define EC_CMD_ACPI_WRITE 0x0081
/*
* ACPI Burst Enable Embedded Controller
*
* This enables burst mode on the EC to allow the host to issue several
* commands back-to-back. While in this mode, writes to mapped multi-byte
* data are locked out to ensure data consistency.
*/
#define EC_CMD_ACPI_BURST_ENABLE 0x0082
/*
* ACPI Burst Disable Embedded Controller
*
* This disables burst mode on the EC and stops preventing EC writes to mapped
* multi-byte data.
*/
#define EC_CMD_ACPI_BURST_DISABLE 0x0083
/*
* ACPI Query Embedded Controller
*
* This clears the lowest-order bit in the currently pending host events, and
* sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
* event 0x80000000 = 32), or 0 if no event was pending.
*/
#define EC_CMD_ACPI_QUERY_EVENT 0x0084
/* Valid addresses in ACPI memory space, for read/write commands */
/* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
#define EC_ACPI_MEM_VERSION 0x00
/*
* Test location; writing value here updates test compliment byte to (0xff -
* value).
*/
#define EC_ACPI_MEM_TEST 0x01
/* Test compliment; writes here are ignored. */
#define EC_ACPI_MEM_TEST_COMPLIMENT 0x02
/* Keyboard backlight brightness percent (0 - 100) */
#define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
/* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
#define EC_ACPI_MEM_FAN_DUTY 0x04
/*
* DPTF temp thresholds. Any of the EC's temp sensors can have up to two
* independent thresholds attached to them. The current value of the ID
* register determines which sensor is affected by the THRESHOLD and COMMIT
* registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
* as the memory-mapped sensors. The COMMIT register applies those settings.
*
* The spec does not mandate any way to read back the threshold settings
* themselves, but when a threshold is crossed the AP needs a way to determine
* which sensor(s) are responsible. Each reading of the ID register clears and
* returns one sensor ID that has crossed one of its threshold (in either
* direction) since the last read. A value of 0xFF means "no new thresholds
* have tripped". Setting or enabling the thresholds for a sensor will clear
* the unread event count for that sensor.
*/
#define EC_ACPI_MEM_TEMP_ID 0x05
#define EC_ACPI_MEM_TEMP_THRESHOLD 0x06
#define EC_ACPI_MEM_TEMP_COMMIT 0x07
/*
* Here are the bits for the COMMIT register:
* bit 0 selects the threshold index for the chosen sensor (0/1)
* bit 1 enables/disables the selected threshold (0 = off, 1 = on)
* Each write to the commit register affects one threshold.
*/
#define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
#define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
/*
* Example:
*
* Set the thresholds for sensor 2 to 50 C and 60 C:
* write 2 to [0x05] -- select temp sensor 2
* write 0x7b to [0x06] -- C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
* write 0x2 to [0x07] -- enable threshold 0 with this value
* write 0x85 to [0x06] -- C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
* write 0x3 to [0x07] -- enable threshold 1 with this value
*
* Disable the 60 C threshold, leaving the 50 C threshold unchanged:
* write 2 to [0x05] -- select temp sensor 2
* write 0x1 to [0x07] -- disable threshold 1
*/
/* DPTF battery charging current limit */
#define EC_ACPI_MEM_CHARGING_LIMIT 0x08
/* Charging limit is specified in 64 mA steps */
#define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA 64
/* Value to disable DPTF battery charging limit */
#define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED 0xff
/*
* Report device orientation
* bit 0 device is tablet mode
*/
#define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
#define EC_ACPI_MEM_DEVICE_TABLET_MODE 0x01
/*
* ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf. This data
* is read-only from the AP. Added in EC_ACPI_MEM_VERSION 2.
*/
#define EC_ACPI_MEM_MAPPED_BEGIN 0x20
#define EC_ACPI_MEM_MAPPED_SIZE 0xe0
/* Current version of ACPI memory address space */
#define EC_ACPI_MEM_VERSION_CURRENT 2
/*
* This header file is used in coreboot both in C and ACPI code. The ACPI code
* is pre-processed to handle constants but the ASL compiler is unable to
* handle actual C code so keep it separate.
*/
#ifndef __ACPI__
/*
* Define __packed if someone hasn't beat us to it. Linux kernel style
* checking prefers __packed over __attribute__((packed)).
*/
#ifndef __packed
#define __packed __attribute__((packed))
#endif
#ifndef __aligned
#define __aligned(x) __attribute__((aligned(x)))
#endif
/*
* Attributes for EC request and response packets. Just defining __packed
* results in inefficient assembly code on ARM, if the structure is actually
* 32-bit aligned, as it should be for all buffers.
*
* Be very careful when adding these to existing structures. They will round
* up the structure size to the specified boundary.
*
* Also be very careful to make that if a structure is included in some other
* parent structure that the alignment will still be true given the packing of
* the parent structure. This is particularly important if the sub-structure
* will be passed as a pointer to another function, since that function will
* not know about the misaligment caused by the parent structure's packing.
*
* Also be very careful using __packed - particularly when nesting non-packed
* structures inside packed ones. In fact, DO NOT use __packed directly;
* always use one of these attributes.
*
* Once everything is annotated properly, the following search strings should
* not return ANY matches in this file other than right here:
*
* "__packed" - generates inefficient code; all sub-structs must also be packed
*
* "struct [^_]" - all structs should be annotated, except for structs that are
* members of other structs/unions (and their original declarations should be
* annotated).
*/
#ifdef CONFIG_HOSTCMD_ALIGNED
/*
* Packed structures where offset and size are always aligned to 1, 2, or 4
* byte boundary.
*/
#define __ec_align1 __packed
#define __ec_align2 __packed __aligned(2)
#define __ec_align4 __packed __aligned(4)
/*
* Packed structure which must be under-aligned, because its size is not a
* 4-byte multiple. This is sub-optimal because it forces byte-wise access
* of all multi-byte fields in it, even though they are themselves aligned.
*
* In theory, we could duplicate the structure with __aligned(4) for accessing
* its members, but use the __packed version for sizeof().
*/
#define __ec_align_size1 __packed
/*
* Packed structure which must be under-aligned, because its offset inside a
* parent structure is not a 4-byte multiple.
*/
#define __ec_align_offset1 __packed
#define __ec_align_offset2 __packed __aligned(2)
/*
* Structures which are complicated enough that I'm skipping them on the first
* pass. They are effectively unchanged from their previous definitions.
*
* TODO(rspangler): Figure out what to do with these. It's likely necessary
* to work out the size and offset of each member and add explicit padding to
* maintain those.
*/
#define __ec_todo_packed __packed
#define __ec_todo_unpacked
#else /* !CONFIG_HOSTCMD_ALIGNED */
/*
* Packed structures make no assumption about alignment, so they do inefficient
* byte-wise reads.
*/
#define __ec_align1 __packed
#define __ec_align2 __packed
#define __ec_align4 __packed
#define __ec_align_size1 __packed
#define __ec_align_offset1 __packed
#define __ec_align_offset2 __packed
#define __ec_todo_packed __packed
#define __ec_todo_unpacked
#endif /* !CONFIG_HOSTCMD_ALIGNED */
/* LPC command status byte masks */
/* EC has written a byte in the data register and host hasn't read it yet */
#define EC_LPC_STATUS_TO_HOST 0x01
/* Host has written a command/data byte and the EC hasn't read it yet */
#define EC_LPC_STATUS_FROM_HOST 0x02
/* EC is processing a command */
#define EC_LPC_STATUS_PROCESSING 0x04
/* Last write to EC was a command, not data */
#define EC_LPC_STATUS_LAST_CMD 0x08
/* EC is in burst mode */
#define EC_LPC_STATUS_BURST_MODE 0x10
/* SCI event is pending (requesting SCI query) */
#define EC_LPC_STATUS_SCI_PENDING 0x20
/* SMI event is pending (requesting SMI query) */
#define EC_LPC_STATUS_SMI_PENDING 0x40
/* (reserved) */
#define EC_LPC_STATUS_RESERVED 0x80
/*
* EC is busy. This covers both the EC processing a command, and the host has
* written a new command but the EC hasn't picked it up yet.
*/
#define EC_LPC_STATUS_BUSY_MASK \
(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
/* Host command response codes (16-bit). Note that response codes should be
* stored in a uint16_t rather than directly in a value of this type.
*/
enum ec_status {
EC_RES_SUCCESS = 0,
EC_RES_INVALID_COMMAND = 1,
EC_RES_ERROR = 2,
EC_RES_INVALID_PARAM = 3,
EC_RES_ACCESS_DENIED = 4,
EC_RES_INVALID_RESPONSE = 5,
EC_RES_INVALID_VERSION = 6,
EC_RES_INVALID_CHECKSUM = 7,
EC_RES_IN_PROGRESS = 8, /* Accepted, command in progress */
EC_RES_UNAVAILABLE = 9, /* No response available */
EC_RES_TIMEOUT = 10, /* We got a timeout */
EC_RES_OVERFLOW = 11, /* Table / data overflow */
EC_RES_INVALID_HEADER = 12, /* Header contains invalid data */
EC_RES_REQUEST_TRUNCATED = 13, /* Didn't get the entire request */
EC_RES_RESPONSE_TOO_BIG = 14, /* Response was too big to handle */
EC_RES_BUS_ERROR = 15, /* Communications bus error */
EC_RES_BUSY = 16 /* Up but too busy. Should retry */
};
/*
* Host event codes. Note these are 1-based, not 0-based, because ACPI query
* EC command uses code 0 to mean "no event pending". We explicitly specify
* each value in the enum listing so they won't change if we delete/insert an
* item or rearrange the list (it needs to be stable across platforms, not
* just within a single compiled instance).
*/
enum host_event_code {
EC_HOST_EVENT_LID_CLOSED = 1,
EC_HOST_EVENT_LID_OPEN = 2,
EC_HOST_EVENT_POWER_BUTTON = 3,
EC_HOST_EVENT_AC_CONNECTED = 4,
EC_HOST_EVENT_AC_DISCONNECTED = 5,
EC_HOST_EVENT_BATTERY_LOW = 6,
EC_HOST_EVENT_BATTERY_CRITICAL = 7,
EC_HOST_EVENT_BATTERY = 8,
EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
/* Event generated by a device attached to the EC */
EC_HOST_EVENT_DEVICE = 10,
EC_HOST_EVENT_THERMAL = 11,
EC_HOST_EVENT_USB_CHARGER = 12,
EC_HOST_EVENT_KEY_PRESSED = 13,
/*
* EC has finished initializing the host interface. The host can check
* for this event following sending a EC_CMD_REBOOT_EC command to
* determine when the EC is ready to accept subsequent commands.
*/
EC_HOST_EVENT_INTERFACE_READY = 14,
/* Keyboard recovery combo has been pressed */
EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
/* Shutdown due to thermal overload */
EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
/* Shutdown due to battery level too low */
EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
/* Suggest that the AP throttle itself */
EC_HOST_EVENT_THROTTLE_START = 18,
/* Suggest that the AP resume normal speed */
EC_HOST_EVENT_THROTTLE_STOP = 19,
/* Hang detect logic detected a hang and host event timeout expired */
EC_HOST_EVENT_HANG_DETECT = 20,
/* Hang detect logic detected a hang and warm rebooted the AP */
EC_HOST_EVENT_HANG_REBOOT = 21,
/* PD MCU triggering host event */
EC_HOST_EVENT_PD_MCU = 22,
/* Battery Status flags have changed */
EC_HOST_EVENT_BATTERY_STATUS = 23,
/* EC encountered a panic, triggering a reset */
EC_HOST_EVENT_PANIC = 24,
/* Keyboard fastboot combo has been pressed */
EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
/* EC RTC event occurred */
EC_HOST_EVENT_RTC = 26,
/* Emulate MKBP event */
EC_HOST_EVENT_MKBP = 27,
/* EC desires to change state of host-controlled USB mux */
EC_HOST_EVENT_USB_MUX = 28,
/* TABLET/LAPTOP mode event*/
EC_HOST_EVENT_MODE_CHANGE = 29,
/* Keyboard recovery combo with hardware reinitialization */
EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
/*
* Reserve this last bit to indicate that at least one bit in a
* secondary host event word is set. See crbug.com/633646.
*/
EC_HOST_EVENT_EXTENDED = 31,
/*
* The high bit of the event mask is not used as a host event code. If
* it reads back as set, then the entire event mask should be
* considered invalid by the host. This can happen when reading the
* raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
* not initialized on the EC, or improperly configured on the host.
*/
EC_HOST_EVENT_INVALID = 32
};
/* Host event mask */
#define EC_HOST_EVENT_MASK(event_code) (1ULL << ((event_code) - 1))
/* Arguments at EC_LPC_ADDR_HOST_ARGS */
struct __ec_align4 ec_lpc_host_args {
uint8_t flags;
uint8_t command_version;
uint8_t data_size;
/*
* Checksum; sum of command + flags + command_version + data_size +
* all params/response data bytes.
*/
uint8_t checksum;
};
/* Flags for ec_lpc_host_args.flags */
/*
* Args are from host. Data area at EC_LPC_ADDR_HOST_PARAM contains command
* params.
*
* If EC gets a command and this flag is not set, this is an old-style command.
* Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
* unknown length. EC must respond with an old-style response (that is,
* without setting EC_HOST_ARGS_FLAG_TO_HOST).
*/
#define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
/*
* Args are from EC. Data area at EC_LPC_ADDR_HOST_PARAM contains response.
*
* If EC responds to a command and this flag is not set, this is an old-style
* response. Command version is 0 and response data from EC is at
* EC_LPC_ADDR_OLD_PARAM with unknown length.
*/
#define EC_HOST_ARGS_FLAG_TO_HOST 0x02
/*****************************************************************************/
/*
* Byte codes returned by EC over SPI interface.
*
* These can be used by the AP to debug the EC interface, and to determine
* when the EC is not in a state where it will ever get around to responding
* to the AP.
*
* Example of sequence of bytes read from EC for a current good transfer:
* 1. - - AP asserts chip select (CS#)
* 2. EC_SPI_OLD_READY - AP sends first byte(s) of request
* 3. - - EC starts handling CS# interrupt
* 4. EC_SPI_RECEIVING - AP sends remaining byte(s) of request
* 5. EC_SPI_PROCESSING - EC starts processing request; AP is clocking in
* bytes looking for EC_SPI_FRAME_START
* 6. - - EC finishes processing and sets up response
* 7. EC_SPI_FRAME_START - AP reads frame byte
* 8. (response packet) - AP reads response packet
* 9. EC_SPI_PAST_END - Any additional bytes read by AP
* 10 - - AP deasserts chip select
* 11 - - EC processes CS# interrupt and sets up DMA for
* next request
*
* If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
* the following byte values:
* EC_SPI_OLD_READY
* EC_SPI_RX_READY
* EC_SPI_RECEIVING
* EC_SPI_PROCESSING
*
* Then the EC found an error in the request, or was not ready for the request
* and lost data. The AP should give up waiting for EC_SPI_FRAME_START,
* because the EC is unable to tell when the AP is done sending its request.
*/
/*
* Framing byte which precedes a response packet from the EC. After sending a
* request, the AP will clock in bytes until it sees the framing byte, then
* clock in the response packet.
*/
#define EC_SPI_FRAME_START 0xec
/*
* Padding bytes which are clocked out after the end of a response packet.
*/
#define EC_SPI_PAST_END 0xed
/*
* EC is ready to receive, and has ignored the byte sent by the AP. EC expects
* that the AP will send a valid packet header (starting with
* EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
*/
#define EC_SPI_RX_READY 0xf8
/*
* EC has started receiving the request from the AP, but hasn't started
* processing it yet.
*/
#define EC_SPI_RECEIVING 0xf9
/* EC has received the entire request from the AP and is processing it. */
#define EC_SPI_PROCESSING 0xfa
/*
* EC received bad data from the AP, such as a packet header with an invalid
* length. EC will ignore all data until chip select deasserts.
*/
#define EC_SPI_RX_BAD_DATA 0xfb
/*
* EC received data from the AP before it was ready. That is, the AP asserted
* chip select and started clocking data before the EC was ready to receive it.
* EC will ignore all data until chip select deasserts.
*/
#define EC_SPI_NOT_READY 0xfc
/*
* EC was ready to receive a request from the AP. EC has treated the byte sent
* by the AP as part of a request packet, or (for old-style ECs) is processing
* a fully received packet but is not ready to respond yet.
*/
#define EC_SPI_OLD_READY 0xfd
/*****************************************************************************/
/*
* Protocol version 2 for I2C and SPI send a request this way:
*
* 0 EC_CMD_VERSION0 + (command version)
* 1 Command number
* 2 Length of params = N
* 3..N+2 Params, if any
* N+3 8-bit checksum of bytes 0..N+2
*
* The corresponding response is:
*
* 0 Result code (EC_RES_*)
* 1 Length of params = M
* 2..M+1 Params, if any
* M+2 8-bit checksum of bytes 0..M+1
*/
#define EC_PROTO2_REQUEST_HEADER_BYTES 3
#define EC_PROTO2_REQUEST_TRAILER_BYTES 1
#define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES + \
EC_PROTO2_REQUEST_TRAILER_BYTES)
#define EC_PROTO2_RESPONSE_HEADER_BYTES 2
#define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
#define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES + \
EC_PROTO2_RESPONSE_TRAILER_BYTES)
/* Parameter length was limited by the LPC interface */
#define EC_PROTO2_MAX_PARAM_SIZE 0xfc
/* Maximum request and response packet sizes for protocol version 2 */
#define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD + \
EC_PROTO2_MAX_PARAM_SIZE)
#define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD + \
EC_PROTO2_MAX_PARAM_SIZE)
/*****************************************************************************/
/*
* Value written to legacy command port / prefix byte to indicate protocol
* 3+ structs are being used. Usage is bus-dependent.
*/
#define EC_COMMAND_PROTOCOL_3 0xda
#define EC_HOST_REQUEST_VERSION 3
/* Version 3 request from host */
struct __ec_align4 ec_host_request {
/* Structure version (=3)
*
* EC will return EC_RES_INVALID_HEADER if it receives a header with a
* version it doesn't know how to parse.
*/
uint8_t struct_version;
/*
* Checksum of request and data; sum of all bytes including checksum
* should total to 0.
*/
uint8_t checksum;
/* Command code */
uint16_t command;
/* Command version */
uint8_t command_version;
/* Unused byte in current protocol version; set to 0 */
uint8_t reserved;
/* Length of data which follows this header */
uint16_t data_len;
};
#define EC_HOST_RESPONSE_VERSION 3
/* Version 3 response from EC */
struct __ec_align4 ec_host_response {
/* Structure version (=3) */
uint8_t struct_version;
/*
* Checksum of response and data; sum of all bytes including checksum
* should total to 0.
*/
uint8_t checksum;
/* Result code (EC_RES_*) */
uint16_t result;
/* Length of data which follows this header */
uint16_t data_len;
/* Unused bytes in current protocol version; set to 0 */
uint16_t reserved;
};
/*****************************************************************************/
/*
* Notes on commands:
*
* Each command is an 16-bit command value. Commands which take params or
* return response data specify structures for that data. If no structure is
* specified, the command does not input or output data, respectively.
* Parameter/response length is implicit in the structs. Some underlying
* communication protocols (I2C, SPI) may add length or checksum headers, but
* those are implementation-dependent and not defined here.
*
* All commands MUST be #defined to be 4-digit UPPER CASE hex values
* (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
*/
/*****************************************************************************/
/* General / test commands */
/*
* Get protocol version, used to deal with non-backward compatible protocol
* changes.
*/
#define EC_CMD_PROTO_VERSION 0x0000
struct __ec_align4 ec_response_proto_version {
uint32_t version;
};
/*
* Hello. This is a simple command to test the EC is responsive to
* commands.
*/
#define EC_CMD_HELLO 0x0001
struct __ec_align4 ec_params_hello {
uint32_t in_data; /* Pass anything here */
};
struct __ec_align4 ec_response_hello {
uint32_t out_data; /* Output will be in_data + 0x01020304 */
};
/* Get version number */
#define EC_CMD_GET_VERSION 0x0002
enum ec_current_image {
EC_IMAGE_UNKNOWN = 0,
EC_IMAGE_RO,
EC_IMAGE_RW
};
struct __ec_align4 ec_response_get_version {
/* Null-terminated version strings for RO, RW */
char version_string_ro[32];
char version_string_rw[32];
char reserved[32]; /* Was previously RW-B string */
uint32_t current_image; /* One of ec_current_image */
};
/* Read test */
#define EC_CMD_READ_TEST 0x0003
struct __ec_align4 ec_params_read_test {
uint32_t offset; /* Starting value for read buffer */
uint32_t size; /* Size to read in bytes */
};
struct __ec_align4 ec_response_read_test {
uint32_t data[32];
};
/*
* Get build information
*
* Response is null-terminated string.
*/
#define EC_CMD_GET_BUILD_INFO 0x0004
/* Get chip info */
#define EC_CMD_GET_CHIP_INFO 0x0005
struct __ec_align4 ec_response_get_chip_info {
/* Null-terminated strings */
char vendor[32];
char name[32];
char revision[32]; /* Mask version */
};
/* Get board HW version */
#define EC_CMD_GET_BOARD_VERSION 0x0006
struct __ec_align2 ec_response_board_version {
uint16_t board_version; /* A monotonously incrementing number. */
};
/*
* Read memory-mapped data.
*
* This is an alternate interface to memory-mapped data for bus protocols
* which don't support direct-mapped memory - I2C, SPI, etc.
*
* Response is params.size bytes of data.
*/
#define EC_CMD_READ_MEMMAP 0x0007
struct __ec_align1 ec_params_read_memmap {
uint8_t offset; /* Offset in memmap (EC_MEMMAP_*) */
uint8_t size; /* Size to read in bytes */
};
/* Read versions supported for a command */
#define EC_CMD_GET_CMD_VERSIONS 0x0008
struct __ec_align1 ec_params_get_cmd_versions {
uint8_t cmd; /* Command to check */
};
struct __ec_align2 ec_params_get_cmd_versions_v1 {
uint16_t cmd; /* Command to check */
};
struct __ec_align4 ec_response_get_cmd_versions {
/*
* Mask of supported versions; use EC_VER_MASK() to compare with a
* desired version.
*/
uint32_t version_mask;
};
/*
* Check EC communications status (busy). This is needed on i2c/spi but not
* on lpc since it has its own out-of-band busy indicator.
*
* lpc must read the status from the command register. Attempting this on
* lpc will overwrite the args/parameter space and corrupt its data.
*/
#define EC_CMD_GET_COMMS_STATUS 0x0009
/* Avoid using ec_status which is for return values */
enum ec_comms_status {
EC_COMMS_STATUS_PROCESSING = 1 << 0, /* Processing cmd */
};
struct __ec_align4 ec_response_get_comms_status {
uint32_t flags; /* Mask of enum ec_comms_status */
};
/* Fake a variety of responses, purely for testing purposes. */
#define EC_CMD_TEST_PROTOCOL 0x000A
/* Tell the EC what to send back to us. */
struct __ec_align4 ec_params_test_protocol {
uint32_t ec_result;
uint32_t ret_len;
uint8_t buf[32];
};
/* Here it comes... */
struct __ec_align4 ec_response_test_protocol {
uint8_t buf[32];
};
/* Get protocol information */
#define EC_CMD_GET_PROTOCOL_INFO 0x000B
/* Flags for ec_response_get_protocol_info.flags */
/* EC_RES_IN_PROGRESS may be returned if a command is slow */
#define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
struct __ec_align4 ec_response_get_protocol_info {
/* Fields which exist if at least protocol version 3 supported */
/* Bitmask of protocol versions supported (1 << n means version n)*/
uint32_t protocol_versions;
/* Maximum request packet size, in bytes */
uint16_t max_request_packet_size;
/* Maximum response packet size, in bytes */
uint16_t max_response_packet_size;
/* Flags; see EC_PROTOCOL_INFO_* */
uint32_t flags;
};
/*****************************************************************************/
/* Get/Set miscellaneous values */
/* The upper byte of .flags tells what to do (nothing means "get") */
#define EC_GSV_SET 0x80000000
/* The lower three bytes of .flags identifies the parameter, if that has
meaning for an individual command. */
#define EC_GSV_PARAM_MASK 0x00ffffff
struct __ec_align4 ec_params_get_set_value {
uint32_t flags;
uint32_t value;
};
struct __ec_align4 ec_response_get_set_value {
uint32_t flags;
uint32_t value;
};
/* More than one command can use these structs to get/set parameters. */
#define EC_CMD_GSV_PAUSE_IN_S5 0x000C
/*****************************************************************************/
/* List the features supported by the firmware */
#define EC_CMD_GET_FEATURES 0x000D
/* Supported features */
enum ec_feature_code {
/*
* This image contains a limited set of features. Another image
* in RW partition may support more features.
*/
EC_FEATURE_LIMITED = 0,
/*
* Commands for probing/reading/writing/erasing the flash in the
* EC are present.
*/
EC_FEATURE_FLASH = 1,
/*
* Can control the fan speed directly.
*/
EC_FEATURE_PWM_FAN = 2,
/*
* Can control the intensity of the keyboard backlight.
*/
EC_FEATURE_PWM_KEYB = 3,
/*
* Support Google lightbar, introduced on Pixel.
*/
EC_FEATURE_LIGHTBAR = 4,
/* Control of LEDs */
EC_FEATURE_LED = 5,
/* Exposes an interface to control gyro and sensors.
* The host goes through the EC to access these sensors.
* In addition, the EC may provide composite sensors, like lid angle.
*/
EC_FEATURE_MOTION_SENSE = 6,
/* The keyboard is controlled by the EC */
EC_FEATURE_KEYB = 7,
/* The AP can use part of the EC flash as persistent storage. */
EC_FEATURE_PSTORE = 8,
/* The EC monitors BIOS port 80h, and can return POST codes. */
EC_FEATURE_PORT80 = 9,
/*
* Thermal management: include TMP specific commands.
* Higher level than direct fan control.
*/
EC_FEATURE_THERMAL = 10,
/* Can switch the screen backlight on/off */
EC_FEATURE_BKLIGHT_SWITCH = 11,
/* Can switch the wifi module on/off */
EC_FEATURE_WIFI_SWITCH = 12,
/* Monitor host events, through for example SMI or SCI */
EC_FEATURE_HOST_EVENTS = 13,
/* The EC exposes GPIO commands to control/monitor connected devices. */
EC_FEATURE_GPIO = 14,
/* The EC can send i2c messages to downstream devices. */
EC_FEATURE_I2C = 15,
/* Command to control charger are included */
EC_FEATURE_CHARGER = 16,
/* Simple battery support. */
EC_FEATURE_BATTERY = 17,
/*
* Support Smart battery protocol
* (Common Smart Battery System Interface Specification)
*/
EC_FEATURE_SMART_BATTERY = 18,
/* EC can detect when the host hangs. */
EC_FEATURE_HANG_DETECT = 19,
/* Report power information, for pit only */
EC_FEATURE_PMU = 20,
/* Another Cros EC device is present downstream of this one */
EC_FEATURE_SUB_MCU = 21,
/* Support USB Power delivery (PD) commands */
EC_FEATURE_USB_PD = 22,
/* Control USB multiplexer, for audio through USB port for instance. */
EC_FEATURE_USB_MUX = 23,
/* Motion Sensor code has an internal software FIFO */
EC_FEATURE_MOTION_SENSE_FIFO = 24,
/* Support temporary secure vstore */
EC_FEATURE_VSTORE = 25,
/* EC decides on USB-C SS mux state, muxes configured by host */
EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
/* EC has RTC feature that can be controlled by host commands */
EC_FEATURE_RTC = 27,
/* The MCU exposes a Fingerprint sensor */
EC_FEATURE_FINGERPRINT = 28,
/* The MCU exposes a Touchpad */
EC_FEATURE_TOUCHPAD = 29,
/* The MCU has RWSIG task enabled */
EC_FEATURE_RWSIG = 30,
/* EC has device events support */
EC_FEATURE_DEVICE_EVENT = 31,
/* EC supports the unified wake masks for LPC/eSPI systems */
EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
};
#define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
#define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
struct __ec_align4 ec_response_get_features {
uint32_t flags[2];
};
/*****************************************************************************/
/* Get the board's SKU ID from EC */
#define EC_CMD_GET_SKU_ID 0x000E
/* Set SKU ID from AP */
#define EC_CMD_SET_SKU_ID 0x000F
struct __ec_align4 ec_sku_id_info {
uint32_t sku_id;
};
/*****************************************************************************/
/* Flash commands */
/* Get flash info */
#define EC_CMD_FLASH_INFO 0x0010
#define EC_VER_FLASH_INFO 2
/* Version 0 returns these fields */
struct __ec_align4 ec_response_flash_info {
/* Usable flash size, in bytes */
uint32_t flash_size;
/*
* Write block size. Write offset and size must be a multiple
* of this.
*/
uint32_t write_block_size;
/*
* Erase block size. Erase offset and size must be a multiple
* of this.
*/
uint32_t erase_block_size;
/*
* Protection block size. Protection offset and size must be a
* multiple of this.
*/
uint32_t protect_block_size;
};
/* Flags for version 1+ flash info command */
/* EC flash erases bits to 0 instead of 1 */
#define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
/* Flash must be selected for read/write/erase operations to succeed. This may
* be necessary on a chip where write/erase can be corrupted by other board
* activity, or where the chip needs to enable some sort of programming voltage,
* or where the read/write/erase operations require cleanly suspending other
* chip functionality. */
#define EC_FLASH_INFO_SELECT_REQUIRED (1 << 1)
/*
* Version 1 returns the same initial fields as version 0, with additional
* fields following.
*
* gcc anonymous structs don't seem to get along with the __packed directive;
* if they did we'd define the version 0 structure as a sub-structure of this
* one.
*
* Version 2 supports flash banks of different sizes:
* The caller specified the number of banks it has preallocated
* (num_banks_desc)
* The EC returns the number of banks describing the flash memory.
* It adds banks descriptions up to num_banks_desc.
*/
struct __ec_align4 ec_response_flash_info_1 {
/* Version 0 fields; see above for description */
uint32_t flash_size;
uint32_t write_block_size;
uint32_t erase_block_size;
uint32_t protect_block_size;
/* Version 1 adds these fields: */
/*
* Ideal write size in bytes. Writes will be fastest if size is
* exactly this and offset is a multiple of this. For example, an EC
* may have a write buffer which can do half-page operations if data is
* aligned, and a slower word-at-a-time write mode.
*/
uint32_t write_ideal_size;
/* Flags; see EC_FLASH_INFO_* */
uint32_t flags;
};
struct __ec_align4 ec_params_flash_info_2 {
/* Number of banks to describe */
uint16_t num_banks_desc;
/* Reserved; set 0; ignore on read */
uint8_t reserved[2];
};
struct ec_flash_bank {
/* Number of sector is in this bank. */
uint16_t count;
/* Size in power of 2 of each sector (8 --> 256 bytes) */
uint8_t size_exp;
/* Minimal write size for the sectors in this bank */
uint8_t write_size_exp;
/* Erase size for the sectors in this bank */
uint8_t erase_size_exp;
/* Size for write protection, usually identical to erase size. */
uint8_t protect_size_exp;
/* Reserved; set 0; ignore on read */
uint8_t reserved[2];
};
struct __ec_align4 ec_response_flash_info_2 {
/* Total flash in the EC. */
uint32_t flash_size;
/* Flags; see EC_FLASH_INFO_* */
uint32_t flags;
/* Maximum size to use to send data to write to the EC. */
uint32_t write_ideal_size;
/* Number of banks present in the EC. */
uint16_t num_banks_total;
/* Number of banks described in banks array. */
uint16_t num_banks_desc;
struct ec_flash_bank banks[0];
};
/*
* Read flash
*
* Response is params.size bytes of data.
*/
#define EC_CMD_FLASH_READ 0x0011
struct __ec_align4 ec_params_flash_read {
uint32_t offset; /* Byte offset to read */
uint32_t size; /* Size to read in bytes */
};
/* Write flash */
#define EC_CMD_FLASH_WRITE 0x0012
#define EC_VER_FLASH_WRITE 1
/* Version 0 of the flash command supported only 64 bytes of data */
#define EC_FLASH_WRITE_VER0_SIZE 64
struct __ec_align4 ec_params_flash_write {
uint32_t offset; /* Byte offset to write */
uint32_t size; /* Size to write in bytes */
/* Followed by data to write */
};
/* Erase flash */
#define EC_CMD_FLASH_ERASE 0x0013
/* v0 */
struct __ec_align4 ec_params_flash_erase {
uint32_t offset; /* Byte offset to erase */
uint32_t size; /* Size to erase in bytes */
};
#define EC_VER_FLASH_WRITE 1
/* v1 add async erase:
* subcommands can returns:
* EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
* EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
* EC_RES_ERROR : other errors.
* EC_RES_BUSY : an existing erase operation is in progress.
* EC_RES_ACCESS_DENIED: Trying to erase running image.
*
* When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
* properly queued. The user must call ERASE_GET_RESULT subcommand to get
* the proper result.
* When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
* ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
* ERASE_GET_RESULT command may timeout on EC where flash access is not
* permitted while erasing. (For instance, STM32F4).
*/
enum ec_flash_erase_cmd {
FLASH_ERASE_SECTOR, /* Erase and wait for result */
FLASH_ERASE_SECTOR_ASYNC, /* Erase and return immediately. */
FLASH_ERASE_GET_RESULT, /* Ask for last erase result */
};
struct __ec_align4 ec_params_flash_erase_v1 {
/* One of ec_flash_erase_cmd. */
uint8_t cmd;
/* Pad byte; currently always contains 0 */
uint8_t reserved;
/* No flags defined yet; set to 0 */
uint16_t flag;
/* Same as v0 parameters. */
struct ec_params_flash_erase params;
};
/*
* Get/set flash protection.
*
* If mask!=0, sets/clear the requested bits of flags. Depending on the
* firmware write protect GPIO, not all flags will take effect immediately;
* some flags require a subsequent hard reset to take effect. Check the
* returned flags bits to see what actually happened.
*
* If mask=0, simply returns the current flags state.
*/
#define EC_CMD_FLASH_PROTECT 0x0015
#define EC_VER_FLASH_PROTECT 1 /* Command version 1 */
/* Flags for flash protection */
/* RO flash code protected when the EC boots */
#define EC_FLASH_PROTECT_RO_AT_BOOT (1 << 0)
/*
* RO flash code protected now. If this bit is set, at-boot status cannot
* be changed.
*/
#define EC_FLASH_PROTECT_RO_NOW (1 << 1)
/* Entire flash code protected now, until reboot. */
#define EC_FLASH_PROTECT_ALL_NOW (1 << 2)
/* Flash write protect GPIO is asserted now */
#define EC_FLASH_PROTECT_GPIO_ASSERTED (1 << 3)
/* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
#define EC_FLASH_PROTECT_ERROR_STUCK (1 << 4)
/*
* Error - flash protection is in inconsistent state. At least one bank of
* flash which should be protected is not protected. Usually fixed by
* re-requesting the desired flags, or by a hard reset if that fails.
*/
#define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
/* Entire flash code protected when the EC boots */
#define EC_FLASH_PROTECT_ALL_AT_BOOT (1 << 6)
/* RW flash code protected when the EC boots */
#define EC_FLASH_PROTECT_RW_AT_BOOT (1 << 7)
/* RW flash code protected now. */
#define EC_FLASH_PROTECT_RW_NOW (1 << 8)
/* Rollback information flash region protected when the EC boots */
#define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT (1 << 9)
/* Rollback information flash region protected now */
#define EC_FLASH_PROTECT_ROLLBACK_NOW (1 << 10)
struct __ec_align4 ec_params_flash_protect {
uint32_t mask; /* Bits in flags to apply */
uint32_t flags; /* New flags to apply */
};
struct __ec_align4 ec_response_flash_protect {
/* Current value of flash protect flags */
uint32_t flags;
/*
* Flags which are valid on this platform. This allows the caller
* to distinguish between flags which aren't set vs. flags which can't
* be set on this platform.
*/
uint32_t valid_flags;
/* Flags which can be changed given the current protection state */
uint32_t writable_flags;
};
/*
* Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
* write protect. These commands may be reused with version > 0.
*/
/* Get the region offset/size */
#define EC_CMD_FLASH_REGION_INFO 0x0016
#define EC_VER_FLASH_REGION_INFO 1
enum ec_flash_region {
/* Region which holds read-only EC image */
EC_FLASH_REGION_RO = 0,
/* Region which holds active rewritable EC image */
EC_FLASH_REGION_ACTIVE,
/*
* Region which should be write-protected in the factory (a superset of
* EC_FLASH_REGION_RO)
*/
EC_FLASH_REGION_WP_RO,
/* Region which holds updatable image */
EC_FLASH_REGION_UPDATE,
/* Number of regions */
EC_FLASH_REGION_COUNT,
};
struct __ec_align4 ec_params_flash_region_info {
uint32_t region; /* enum ec_flash_region */
};
struct __ec_align4 ec_response_flash_region_info {
uint32_t offset;
uint32_t size;
};
/* Read/write VbNvContext */
#define EC_CMD_VBNV_CONTEXT 0x0017
#define EC_VER_VBNV_CONTEXT 1
#define EC_VBNV_BLOCK_SIZE 16
#define EC_VBNV_BLOCK_SIZE_V2 64
enum ec_vbnvcontext_op {
EC_VBNV_CONTEXT_OP_READ,
EC_VBNV_CONTEXT_OP_WRITE,
};
struct __ec_align4 ec_params_vbnvcontext {
uint32_t op;
uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
};
struct __ec_align4 ec_response_vbnvcontext {
uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
};
/* Get SPI flash information */
#define EC_CMD_FLASH_SPI_INFO 0x0018
struct __ec_align1 ec_response_flash_spi_info {
/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
uint8_t jedec[3];
/* Pad byte; currently always contains 0 */
uint8_t reserved0;
/* Manufacturer / device ID from command 0x90 */
uint8_t mfr_dev_id[2];
/* Status registers from command 0x05 and 0x35 */
uint8_t sr1, sr2;
};
/* Select flash during flash operations */
#define EC_CMD_FLASH_SELECT 0x0019
struct __ec_align4 ec_params_flash_select {
/* 1 to select flash, 0 to deselect flash */
uint8_t select;
};
/*****************************************************************************/
/* PWM commands */
/* Get fan target RPM */
#define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
struct __ec_align4 ec_response_pwm_get_fan_rpm {
uint32_t rpm;
};
/* Set target fan RPM */
#define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
/* Version 0 of input params */
struct __ec_align4 ec_params_pwm_set_fan_target_rpm_v0 {
uint32_t rpm;
};
/* Version 1 of input params */
struct __ec_align_size1 ec_params_pwm_set_fan_target_rpm_v1 {
uint32_t rpm;
uint8_t fan_idx;
};
/* Get keyboard backlight */
/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
#define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
struct __ec_align1 ec_response_pwm_get_keyboard_backlight {
uint8_t percent;
uint8_t enabled;
};
/* Set keyboard backlight */
/* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
#define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
struct __ec_align1 ec_params_pwm_set_keyboard_backlight {
uint8_t percent;
};
/* Set target fan PWM duty cycle */
#define EC_CMD_PWM_SET_FAN_DUTY 0x0024
/* Version 0 of input params */
struct __ec_align4 ec_params_pwm_set_fan_duty_v0 {
uint32_t percent;
};
/* Version 1 of input params */
struct __ec_align_size1 ec_params_pwm_set_fan_duty_v1 {
uint32_t percent;
uint8_t fan_idx;
};
#define EC_CMD_PWM_SET_DUTY 0x0025
/* 16 bit duty cycle, 0xffff = 100% */
#define EC_PWM_MAX_DUTY 0xffff
enum ec_pwm_type {
/* All types, indexed by board-specific enum pwm_channel */
EC_PWM_TYPE_GENERIC = 0,
/* Keyboard backlight */
EC_PWM_TYPE_KB_LIGHT,
/* Display backlight */
EC_PWM_TYPE_DISPLAY_LIGHT,
EC_PWM_TYPE_COUNT,
};
struct __ec_align4 ec_params_pwm_set_duty {
uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
uint8_t pwm_type; /* ec_pwm_type */
uint8_t index; /* Type-specific index, or 0 if unique */
};
#define EC_CMD_PWM_GET_DUTY 0x0026
struct __ec_align1 ec_params_pwm_get_duty {
uint8_t pwm_type; /* ec_pwm_type */
uint8_t index; /* Type-specific index, or 0 if unique */
};
struct __ec_align2 ec_response_pwm_get_duty {
uint16_t duty; /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
};
/*****************************************************************************/
/*
* Lightbar commands. This looks worse than it is. Since we only use one HOST
* command to say "talk to the lightbar", we put the "and tell it to do X" part
* into a subcommand. We'll make separate structs for subcommands with
* different input args, so that we know how much to expect.
*/
#define EC_CMD_LIGHTBAR_CMD 0x0028
struct __ec_todo_unpacked rgb_s {
uint8_t r, g, b;
};
#define LB_BATTERY_LEVELS 4
/* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
* host command, but the alignment is the same regardless. Keep it that way.
*/
struct __ec_todo_packed lightbar_params_v0 {
/* Timing */
int32_t google_ramp_up;
int32_t google_ramp_down;
int32_t s3s0_ramp_up;
int32_t s0_tick_delay[2]; /* AC=0/1 */
int32_t s0a_tick_delay[2]; /* AC=0/1 */
int32_t s0s3_ramp_down;
int32_t s3_sleep_for;
int32_t s3_ramp_up;
int32_t s3_ramp_down;
/* Oscillation */
uint8_t new_s0;
uint8_t osc_min[2]; /* AC=0/1 */
uint8_t osc_max[2]; /* AC=0/1 */
uint8_t w_ofs[2]; /* AC=0/1 */
/* Brightness limits based on the backlight and AC. */
uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
uint8_t bright_bl_on_min[2]; /* AC=0/1 */
uint8_t bright_bl_on_max[2]; /* AC=0/1 */
/* Battery level thresholds */
uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
/* Map [AC][battery_level] to color index */
uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
/* Color palette */
struct rgb_s color[8]; /* 0-3 are Google colors */
};
struct __ec_todo_packed lightbar_params_v1 {
/* Timing */
int32_t google_ramp_up;
int32_t google_ramp_down;
int32_t s3s0_ramp_up;
int32_t s0_tick_delay[2]; /* AC=0/1 */
int32_t s0a_tick_delay[2]; /* AC=0/1 */
int32_t s0s3_ramp_down;
int32_t s3_sleep_for;
int32_t s3_ramp_up;
int32_t s3_ramp_down;
int32_t s5_ramp_up;
int32_t s5_ramp_down;
int32_t tap_tick_delay;
int32_t tap_gate_delay;
int32_t tap_display_time;
/* Tap-for-battery params */
uint8_t tap_pct_red;
uint8_t tap_pct_green;
uint8_t tap_seg_min_on;
uint8_t tap_seg_max_on;
uint8_t tap_seg_osc;
uint8_t tap_idx[3];
/* Oscillation */
uint8_t osc_min[2]; /* AC=0/1 */
uint8_t osc_max[2]; /* AC=0/1 */
uint8_t w_ofs[2]; /* AC=0/1 */
/* Brightness limits based on the backlight and AC. */
uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
uint8_t bright_bl_on_min[2]; /* AC=0/1 */
uint8_t bright_bl_on_max[2]; /* AC=0/1 */
/* Battery level thresholds */
uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
/* Map [AC][battery_level] to color index */
uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
/* s5: single color pulse on inhibited power-up */
uint8_t s5_idx;
/* Color palette */
struct rgb_s color[8]; /* 0-3 are Google colors */
};
/* Lightbar command params v2
* crbug.com/467716
*
* lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
* logical groups to make it more manageable ( < 120 bytes).
*
* NOTE: Each of these groups must be less than 120 bytes.
*/
struct __ec_todo_packed lightbar_params_v2_timing {
/* Timing */
int32_t google_ramp_up;
int32_t google_ramp_down;
int32_t s3s0_ramp_up;
int32_t s0_tick_delay[2]; /* AC=0/1 */
int32_t s0a_tick_delay[2]; /* AC=0/1 */
int32_t s0s3_ramp_down;
int32_t s3_sleep_for;
int32_t s3_ramp_up;
int32_t s3_ramp_down;
int32_t s5_ramp_up;
int32_t s5_ramp_down;
int32_t tap_tick_delay;
int32_t tap_gate_delay;
int32_t tap_display_time;
};
struct __ec_todo_packed lightbar_params_v2_tap {
/* Tap-for-battery params */
uint8_t tap_pct_red;
uint8_t tap_pct_green;
uint8_t tap_seg_min_on;
uint8_t tap_seg_max_on;
uint8_t tap_seg_osc;
uint8_t tap_idx[3];
};
struct __ec_todo_packed lightbar_params_v2_oscillation {
/* Oscillation */
uint8_t osc_min[2]; /* AC=0/1 */
uint8_t osc_max[2]; /* AC=0/1 */
uint8_t w_ofs[2]; /* AC=0/1 */
};
struct __ec_todo_packed lightbar_params_v2_brightness {
/* Brightness limits based on the backlight and AC. */
uint8_t bright_bl_off_fixed[2]; /* AC=0/1 */
uint8_t bright_bl_on_min[2]; /* AC=0/1 */
uint8_t bright_bl_on_max[2]; /* AC=0/1 */
};
struct __ec_todo_packed lightbar_params_v2_thresholds {
/* Battery level thresholds */
uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
};
struct __ec_todo_packed lightbar_params_v2_colors {
/* Map [AC][battery_level] to color index */
uint8_t s0_idx[2][LB_BATTERY_LEVELS]; /* AP is running */
uint8_t s3_idx[2][LB_BATTERY_LEVELS]; /* AP is sleeping */
/* s5: single color pulse on inhibited power-up */
uint8_t s5_idx;
/* Color palette */
struct rgb_s color[8]; /* 0-3 are Google colors */
};
/* Lightbyte program. */
#define EC_LB_PROG_LEN 192
struct __ec_todo_unpacked lightbar_program {
uint8_t size;
uint8_t data[EC_LB_PROG_LEN];
};
struct __ec_todo_packed ec_params_lightbar {
uint8_t cmd; /* Command (see enum lightbar_command) */
union {
struct __ec_todo_unpacked {
/* no args */
} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
version, get_brightness, get_demo, suspend, resume,
get_params_v2_timing, get_params_v2_tap,
get_params_v2_osc, get_params_v2_bright,
get_params_v2_thlds, get_params_v2_colors;
struct __ec_todo_unpacked {
uint8_t num;
} set_brightness, seq, demo;
struct __ec_todo_unpacked {
uint8_t ctrl, reg, value;
} reg;
struct __ec_todo_unpacked {
uint8_t led, red, green, blue;
} set_rgb;
struct __ec_todo_unpacked {
uint8_t led;
} get_rgb;
struct __ec_todo_unpacked {
uint8_t enable;
} manual_suspend_ctrl;
struct lightbar_params_v0 set_params_v0;
struct lightbar_params_v1 set_params_v1;
struct lightbar_params_v2_timing set_v2par_timing;
struct lightbar_params_v2_tap set_v2par_tap;
struct lightbar_params_v2_oscillation set_v2par_osc;
struct lightbar_params_v2_brightness set_v2par_bright;
struct lightbar_params_v2_thresholds set_v2par_thlds;
struct lightbar_params_v2_colors set_v2par_colors;
struct lightbar_program set_program;
};
};
struct __ec_todo_packed ec_response_lightbar {
union {
struct __ec_todo_unpacked {
struct __ec_todo_unpacked {
uint8_t reg;
uint8_t ic0;
uint8_t ic1;
} vals[23];
} dump;
struct __ec_todo_unpacked {
uint8_t num;
} get_seq, get_brightness, get_demo;
struct lightbar_params_v0 get_params_v0;
struct lightbar_params_v1 get_params_v1;
struct lightbar_params_v2_timing get_params_v2_timing;
struct lightbar_params_v2_tap get_params_v2_tap;
struct lightbar_params_v2_oscillation get_params_v2_osc;
struct lightbar_params_v2_brightness get_params_v2_bright;
struct lightbar_params_v2_thresholds get_params_v2_thlds;
struct lightbar_params_v2_colors get_params_v2_colors;
struct __ec_todo_unpacked {
uint32_t num;
uint32_t flags;
} version;
struct __ec_todo_unpacked {
uint8_t red, green, blue;
} get_rgb;
struct __ec_todo_unpacked {
/* no return params */
} off, on, init, set_brightness, seq, reg, set_rgb,
demo, set_params_v0, set_params_v1,
set_program, manual_suspend_ctrl, suspend, resume,
set_v2par_timing, set_v2par_tap,
set_v2par_osc, set_v2par_bright, set_v2par_thlds,
set_v2par_colors;
};
};
/* Lightbar commands */
enum lightbar_command {
LIGHTBAR_CMD_DUMP = 0,
LIGHTBAR_CMD_OFF = 1,
LIGHTBAR_CMD_ON = 2,
LIGHTBAR_CMD_INIT = 3,
LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
LIGHTBAR_CMD_SEQ = 5,
LIGHTBAR_CMD_REG = 6,
LIGHTBAR_CMD_SET_RGB = 7,
LIGHTBAR_CMD_GET_SEQ = 8,
LIGHTBAR_CMD_DEMO = 9,
LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
LIGHTBAR_CMD_VERSION = 12,
LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
LIGHTBAR_CMD_GET_RGB = 14,
LIGHTBAR_CMD_GET_DEMO = 15,
LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
LIGHTBAR_CMD_SET_PROGRAM = 18,
LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
LIGHTBAR_CMD_SUSPEND = 20,
LIGHTBAR_CMD_RESUME = 21,
LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
LIGHTBAR_NUM_CMDS
};
/*****************************************************************************/
/* LED control commands */
#define EC_CMD_LED_CONTROL 0x0029
enum ec_led_id {
/* LED to indicate battery state of charge */
EC_LED_ID_BATTERY_LED = 0,
/*
* LED to indicate system power state (on or in suspend).
* May be on power button or on C-panel.
*/
EC_LED_ID_POWER_LED,
/* LED on power adapter or its plug */
EC_LED_ID_ADAPTER_LED,
/* LED to indicate left side */
EC_LED_ID_LEFT_LED,
/* LED to indicate right side */
EC_LED_ID_RIGHT_LED,
/* LED to indicate recovery mode with HW_REINIT */
EC_LED_ID_RECOVERY_HW_REINIT_LED,
/* LED to indicate sysrq debug mode. */
EC_LED_ID_SYSRQ_DEBUG_LED,
EC_LED_ID_COUNT
};
/* LED control flags */
#define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
#define EC_LED_FLAGS_AUTO (1 << 1) /* Switch LED back to automatic control */
enum ec_led_colors {
EC_LED_COLOR_RED = 0,
EC_LED_COLOR_GREEN,
EC_LED_COLOR_BLUE,
EC_LED_COLOR_YELLOW,
EC_LED_COLOR_WHITE,
EC_LED_COLOR_AMBER,
EC_LED_COLOR_COUNT
};
struct __ec_align1 ec_params_led_control {
uint8_t led_id; /* Which LED to control */
uint8_t flags; /* Control flags */
uint8_t brightness[EC_LED_COLOR_COUNT];
};
struct __ec_align1 ec_response_led_control {
/*
* Available brightness value range.
*
* Range 0 means color channel not present.
* Range 1 means on/off control.
* Other values means the LED is control by PWM.
*/
uint8_t brightness_range[EC_LED_COLOR_COUNT];
};
/*****************************************************************************/
/* Verified boot commands */
/*
* Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
* reused for other purposes with version > 0.
*/
/* Verified boot hash command */
#define EC_CMD_VBOOT_HASH 0x002A
struct __ec_align4 ec_params_vboot_hash {
uint8_t cmd; /* enum ec_vboot_hash_cmd */
uint8_t hash_type; /* enum ec_vboot_hash_type */
uint8_t nonce_size; /* Nonce size; may be 0 */
uint8_t reserved0; /* Reserved; set 0 */
uint32_t offset; /* Offset in flash to hash */
uint32_t size; /* Number of bytes to hash */
uint8_t nonce_data[64]; /* Nonce data; ignored if nonce_size=0 */
};
struct __ec_align4 ec_response_vboot_hash {
uint8_t status; /* enum ec_vboot_hash_status */
uint8_t hash_type; /* enum ec_vboot_hash_type */
uint8_t digest_size; /* Size of hash digest in bytes */
uint8_t reserved0; /* Ignore; will be 0 */
uint32_t offset; /* Offset in flash which was hashed */
uint32_t size; /* Number of bytes hashed */
uint8_t hash_digest[64]; /* Hash digest data */
};
enum ec_vboot_hash_cmd {
EC_VBOOT_HASH_GET = 0, /* Get current hash status */
EC_VBOOT_HASH_ABORT = 1, /* Abort calculating current hash */
EC_VBOOT_HASH_START = 2, /* Start computing a new hash */
EC_VBOOT_HASH_RECALC = 3, /* Synchronously compute a new hash */
};
enum ec_vboot_hash_type {
EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
};
enum ec_vboot_hash_status {
EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
};
/*
* Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
* If one of these is specified, the EC will automatically update offset and
* size to the correct values for the specified image (RO or RW).
*/
#define EC_VBOOT_HASH_OFFSET_RO 0xfffffffe
#define EC_VBOOT_HASH_OFFSET_ACTIVE 0xfffffffd
#define EC_VBOOT_HASH_OFFSET_UPDATE 0xfffffffc
/*****************************************************************************/
/*
* Motion sense commands. We'll make separate structs for sub-commands with
* different input args, so that we know how much to expect.
*/
#define EC_CMD_MOTION_SENSE_CMD 0x002B
/* Motion sense commands */
enum motionsense_command {
/*
* Dump command returns all motion sensor data including motion sense
* module flags and individual sensor flags.
*/
MOTIONSENSE_CMD_DUMP = 0,
/*
* Info command returns data describing the details of a given sensor,
* including enum motionsensor_type, enum motionsensor_location, and
* enum motionsensor_chip.
*/
MOTIONSENSE_CMD_INFO = 1,
/*
* EC Rate command is a setter/getter command for the EC sampling rate
* in milliseconds.
* It is per sensor, the EC run sample task at the minimum of all
* sensors EC_RATE.
* For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
* to collect all the sensor samples.
* For sensor with hardware FIFO, EC_RATE is used as the maximal delay
* to process of all motion sensors in milliseconds.
*/
MOTIONSENSE_CMD_EC_RATE = 2,
/*
* Sensor ODR command is a setter/getter command for the output data
* rate of a specific motion sensor in millihertz.
*/
MOTIONSENSE_CMD_SENSOR_ODR = 3,
/*
* Sensor range command is a setter/getter command for the range of
* a specified motion sensor in +/-G's or +/- deg/s.
*/
MOTIONSENSE_CMD_SENSOR_RANGE = 4,
/*
* Setter/getter command for the keyboard wake angle. When the lid
* angle is greater than this value, keyboard wake is disabled in S3,
* and when the lid angle goes less than this value, keyboard wake is
* enabled. Note, the lid angle measurement is an approximate,
* un-calibrated value, hence the wake angle isn't exact.
*/
MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
/*
* Returns a single sensor data.
*/
MOTIONSENSE_CMD_DATA = 6,
/*
* Return sensor fifo info.
*/
MOTIONSENSE_CMD_FIFO_INFO = 7,
/*
* Insert a flush element in the fifo and return sensor fifo info.
* The host can use that element to synchronize its operation.
*/
MOTIONSENSE_CMD_FIFO_FLUSH = 8,
/*
* Return a portion of the fifo.
*/
MOTIONSENSE_CMD_FIFO_READ = 9,
/*
* Perform low level calibration.
* On sensors that support it, ask to do offset calibration.
*/
MOTIONSENSE_CMD_PERFORM_CALIB = 10,
/*
* Sensor Offset command is a setter/getter command for the offset
* used for calibration.
* The offsets can be calculated by the host, or via
* PERFORM_CALIB command.
*/
MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
/*
* List available activities for a MOTION sensor.
* Indicates if they are enabled or disabled.
*/
MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
/*
* Activity management
* Enable/Disable activity recognition.
*/
MOTIONSENSE_CMD_SET_ACTIVITY = 13,
/*
* Lid Angle
*/
MOTIONSENSE_CMD_LID_ANGLE = 14,
/*
* Allow the FIFO to trigger interrupt via MKBP events.
* By default the FIFO does not send interrupt to process the FIFO
* until the AP is ready or it is coming from a wakeup sensor.
*/
MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
/*
* Spoof the readings of the sensors. The spoofed readings can be set
* to arbitrary values, or will lock to the last read actual values.
*/
MOTIONSENSE_CMD_SPOOF = 16,
/* Number of motionsense sub-commands. */
MOTIONSENSE_NUM_CMDS
};
/* List of motion sensor types. */
enum motionsensor_type {
MOTIONSENSE_TYPE_ACCEL = 0,
MOTIONSENSE_TYPE_GYRO = 1,
MOTIONSENSE_TYPE_MAG = 2,
MOTIONSENSE_TYPE_PROX = 3,
MOTIONSENSE_TYPE_LIGHT = 4,
MOTIONSENSE_TYPE_ACTIVITY = 5,
MOTIONSENSE_TYPE_BARO = 6,
MOTIONSENSE_TYPE_MAX,
};
/* List of motion sensor locations. */
enum motionsensor_location {
MOTIONSENSE_LOC_BASE = 0,
MOTIONSENSE_LOC_LID = 1,
MOTIONSENSE_LOC_MAX,
};
/* List of motion sensor chips. */
enum motionsensor_chip {
MOTIONSENSE_CHIP_KXCJ9 = 0,
MOTIONSENSE_CHIP_LSM6DS0 = 1,
MOTIONSENSE_CHIP_BMI160 = 2,
MOTIONSENSE_CHIP_SI1141 = 3,
MOTIONSENSE_CHIP_SI1142 = 4,
MOTIONSENSE_CHIP_SI1143 = 5,
MOTIONSENSE_CHIP_KX022 = 6,
MOTIONSENSE_CHIP_L3GD20H = 7,
MOTIONSENSE_CHIP_BMA255 = 8,
MOTIONSENSE_CHIP_BMP280 = 9,
MOTIONSENSE_CHIP_OPT3001 = 10,
};
struct __ec_todo_packed ec_response_motion_sensor_data {
/* Flags for each sensor. */
uint8_t flags;
/* sensor number the data comes from */
uint8_t sensor_num;
/* Each sensor is up to 3-axis. */
union {
int16_t data[3];
struct __ec_todo_packed {
uint16_t reserved;
uint32_t timestamp;
};
struct __ec_todo_unpacked {
uint8_t activity; /* motionsensor_activity */
uint8_t state;
int16_t add_info[2];
};
};
};
/* Note: used in ec_response_get_next_data */
struct __ec_todo_packed ec_response_motion_sense_fifo_info {
/* Size of the fifo */
uint16_t size;
/* Amount of space used in the fifo */
uint16_t count;
/* Timestamp recorded in us */
uint32_t timestamp;
/* Total amount of vector lost */
uint16_t total_lost;
/* Lost events since the last fifo_info, per sensors */
uint16_t lost[0];
};
struct __ec_todo_packed ec_response_motion_sense_fifo_data {
uint32_t number_data;
struct ec_response_motion_sensor_data data[0];
};
/* List supported activity recognition */
enum motionsensor_activity {
MOTIONSENSE_ACTIVITY_RESERVED = 0,
MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
};
struct __ec_todo_unpacked ec_motion_sense_activity {
uint8_t sensor_num;
uint8_t activity; /* one of enum motionsensor_activity */
uint8_t enable; /* 1: enable, 0: disable */
uint8_t reserved;
uint16_t parameters[3]; /* activity dependent parameters */
};
/* Module flag masks used for the dump sub-command. */
#define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
/* Sensor flag masks used for the dump sub-command. */
#define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
/*
* Flush entry for synchronization.
* data contains time stamp
*/
#define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0)
#define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1)
#define MOTIONSENSE_SENSOR_FLAG_WAKEUP (1<<2)
#define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE (1<<3)
/*
* Send this value for the data element to only perform a read. If you
* send any other value, the EC will interpret it as data to set and will
* return the actual value set.
*/
#define EC_MOTION_SENSE_NO_VALUE -1
#define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
/* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
/* Set Calibration information */
#define MOTION_SENSE_SET_OFFSET 1
#define LID_ANGLE_UNRELIABLE 500
enum motionsense_spoof_mode {
/* Disable spoof mode. */
MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
/* Enable spoof mode, but use provided component values. */
MOTIONSENSE_SPOOF_MODE_CUSTOM,
/* Enable spoof mode, but use the current sensor values. */
MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
/* Query the current spoof mode status for the sensor. */
MOTIONSENSE_SPOOF_MODE_QUERY,
};
struct __ec_todo_packed ec_params_motion_sense {
uint8_t cmd;
union {
/* Used for MOTIONSENSE_CMD_DUMP */
struct __ec_todo_unpacked {
/*
* Maximal number of sensor the host is expecting.
* 0 means the host is only interested in the number
* of sensors controlled by the EC.
*/
uint8_t max_sensor_count;
} dump;
/*
* Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
*/
struct __ec_todo_unpacked {
/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
* kb_wake_angle: angle to wakup AP.
*/
int16_t data;
} kb_wake_angle;
/* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
* and MOTIONSENSE_CMD_PERFORM_CALIB. */
struct __ec_todo_unpacked {
uint8_t sensor_num;
} info, info_3, data, fifo_flush, perform_calib,
list_activities;
/*
* Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
* and MOTIONSENSE_CMD_SENSOR_RANGE.
*/
struct __ec_todo_unpacked {
uint8_t sensor_num;
/* Rounding flag, true for round-up, false for down. */
uint8_t roundup;
uint16_t reserved;
/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
int32_t data;
} ec_rate, sensor_odr, sensor_range;
/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
struct __ec_todo_packed {
uint8_t sensor_num;
/*
* bit 0: If set (MOTION_SENSE_SET_OFFSET), set
* the calibration information in the EC.
* If unset, just retrieve calibration information.
*/
uint16_t flags;
/*
* Temperature at calibration, in units of 0.01 C
* 0x8000: invalid / unknown.
* 0x0: 0C
* 0x7fff: +327.67C
*/
int16_t temp;
/*
* Offset for calibration.
* Unit:
* Accelerometer: 1/1024 g
* Gyro: 1/1024 deg/s
* Compass: 1/16 uT
*/
int16_t offset[3];
} sensor_offset;
/* Used for MOTIONSENSE_CMD_FIFO_INFO */
struct __ec_todo_unpacked {
} fifo_info;
/* Used for MOTIONSENSE_CMD_FIFO_READ */
struct __ec_todo_unpacked {
/*
* Number of expected vector to return.
* EC may return less or 0 if none available.
*/
uint32_t max_data_vector;
} fifo_read;
struct ec_motion_sense_activity set_activity;
/* Used for MOTIONSENSE_CMD_LID_ANGLE */
struct __ec_todo_unpacked {
} lid_angle;
/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
struct __ec_todo_unpacked {
/*
* 1: enable, 0 disable fifo,
* EC_MOTION_SENSE_NO_VALUE return value.
*/
int8_t enable;
} fifo_int_enable;
/* Used for MOTIONSENSE_CMD_SPOOF */
struct __ec_todo_packed {
uint8_t sensor_id;
/* See enum motionsense_spoof_mode. */
uint8_t spoof_enable;
/* Ignored, used for alignment. */
uint8_t reserved;
/* Individual component values to spoof. */
int16_t components[3];
} spoof;
};
};
struct __ec_todo_packed ec_response_motion_sense {
union {
/* Used for MOTIONSENSE_CMD_DUMP */
struct __ec_todo_unpacked {
/* Flags representing the motion sensor module. */
uint8_t module_flags;
/* Number of sensors managed directly by the EC */
uint8_t sensor_count;
/*
* sensor data is truncated if response_max is too small
* for holding all the data.
*/
struct ec_response_motion_sensor_data sensor[0];
} dump;
/* Used for MOTIONSENSE_CMD_INFO. */
struct __ec_todo_unpacked {
/* Should be element of enum motionsensor_type. */
uint8_t type;
/* Should be element of enum motionsensor_location. */
uint8_t location;
/* Should be element of enum motionsensor_chip. */
uint8_t chip;
} info;
/* Used for MOTIONSENSE_CMD_INFO version 3 */
struct __ec_todo_unpacked {
/* Should be element of enum motionsensor_type. */
uint8_t type;
/* Should be element of enum motionsensor_location. */
uint8_t location;
/* Should be element of enum motionsensor_chip. */
uint8_t chip;
/* Minimum sensor sampling frequency */
uint32_t min_frequency;
/* Maximum sensor sampling frequency */
uint32_t max_frequency;
/* Max number of sensor events that could be in fifo */
uint32_t fifo_max_event_count;
} info_3;
/* Used for MOTIONSENSE_CMD_DATA */
struct ec_response_motion_sensor_data data;
/*
* Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
* MOTIONSENSE_CMD_SENSOR_RANGE,
* MOTIONSENSE_CMD_KB_WAKE_ANGLE,
* MOTIONSENSE_CMD_FIFO_INT_ENABLE and
* MOTIONSENSE_CMD_SPOOF.
*/
struct __ec_todo_unpacked {
/* Current value of the parameter queried. */
int32_t ret;
} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
fifo_int_enable, spoof;
/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
struct __ec_todo_unpacked {
int16_t temp;
int16_t offset[3];
} sensor_offset, perform_calib;
struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
struct ec_response_motion_sense_fifo_data fifo_read;
struct __ec_todo_packed {
uint16_t reserved;
uint32_t enabled;
uint32_t disabled;
} list_activities;
struct __ec_todo_unpacked {
} set_activity;
/* Used for MOTIONSENSE_CMD_LID_ANGLE */
struct __ec_todo_unpacked {
/*
* Angle between 0 and 360 degree if available,
* LID_ANGLE_UNRELIABLE otherwise.
*/
uint16_t value;
} lid_angle;
};
};
/*****************************************************************************/
/* Force lid open command */
/* Make lid event always open */
#define EC_CMD_FORCE_LID_OPEN 0x002C
struct __ec_align1 ec_params_force_lid_open {
uint8_t enabled;
};
/*****************************************************************************/
/* Configure the behavior of the power button */
#define EC_CMD_CONFIG_POWER_BUTTON 0x002D
enum ec_config_power_button_flags {
/* Enable/Disable power button pulses for x86 devices */
EC_POWER_BUTTON_ENABLE_PULSE = (1 << 0),
};
struct __ec_align1 ec_params_config_power_button {
/* See enum ec_config_power_button_flags */
uint8_t flags;
};
/*****************************************************************************/
/* USB charging control commands */
/* Set USB port charging mode */
#define EC_CMD_USB_CHARGE_SET_MODE 0x0030
struct __ec_align1 ec_params_usb_charge_set_mode {
uint8_t usb_port_id;
uint8_t mode;
};
/*****************************************************************************/
/* Persistent storage for host */
/* Maximum bytes that can be read/written in a single command */
#define EC_PSTORE_SIZE_MAX 64
/* Get persistent storage info */
#define EC_CMD_PSTORE_INFO 0x0040
struct __ec_align4 ec_response_pstore_info {
/* Persistent storage size, in bytes */
uint32_t pstore_size;
/* Access size; read/write offset and size must be a multiple of this */
uint32_t access_size;
};
/*
* Read persistent storage
*
* Response is params.size bytes of data.
*/
#define EC_CMD_PSTORE_READ 0x0041
struct __ec_align4 ec_params_pstore_read {
uint32_t offset; /* Byte offset to read */
uint32_t size; /* Size to read in bytes */
};
/* Write persistent storage */
#define EC_CMD_PSTORE_WRITE 0x0042
struct __ec_align4 ec_params_pstore_write {
uint32_t offset; /* Byte offset to write */
uint32_t size; /* Size to write in bytes */
uint8_t data[EC_PSTORE_SIZE_MAX];
};
/*****************************************************************************/
/* Real-time clock */
/* RTC params and response structures */
struct __ec_align4 ec_params_rtc {
uint32_t time;
};
struct __ec_align4 ec_response_rtc {
uint32_t time;
};
/* These use ec_response_rtc */
#define EC_CMD_RTC_GET_VALUE 0x0044
#define EC_CMD_RTC_GET_ALARM 0x0045
/* These all use ec_params_rtc */
#define EC_CMD_RTC_SET_VALUE 0x0046
#define EC_CMD_RTC_SET_ALARM 0x0047
/* Pass as time param to SET_ALARM to clear the current alarm */
#define EC_RTC_ALARM_CLEAR 0
/*****************************************************************************/
/* Port80 log access */
/* Maximum entries that can be read/written in a single command */
#define EC_PORT80_SIZE_MAX 32
/* Get last port80 code from previous boot */
#define EC_CMD_PORT80_LAST_BOOT 0x0048
#define EC_CMD_PORT80_READ 0x0048
enum ec_port80_subcmd {
EC_PORT80_GET_INFO = 0,
EC_PORT80_READ_BUFFER,
};
struct __ec_todo_packed ec_params_port80_read {
uint16_t subcmd;
union {
struct __ec_todo_unpacked {
uint32_t offset;
uint32_t num_entries;
} read_buffer;
};
};
struct __ec_todo_packed ec_response_port80_read {
union {
struct __ec_todo_unpacked {
uint32_t writes;
uint32_t history_size;
uint32_t last_boot;
} get_info;
struct __ec_todo_unpacked {
uint16_t codes[EC_PORT80_SIZE_MAX];
} data;
};
};
struct __ec_align2 ec_response_port80_last_boot {
uint16_t code;
};
/*****************************************************************************/
/* Temporary secure storage for host verified boot use */
/* Number of bytes in a vstore slot */
#define EC_VSTORE_SLOT_SIZE 64
/* Maximum number of vstore slots */
#define EC_VSTORE_SLOT_MAX 32
/* Get persistent storage info */
#define EC_CMD_VSTORE_INFO 0x0049
struct __ec_align_size1 ec_response_vstore_info {
/* Indicates which slots are locked */
uint32_t slot_locked;
/* Total number of slots available */
uint8_t slot_count;
};
/*
* Read temporary secure storage
*
* Response is EC_VSTORE_SLOT_SIZE bytes of data.
*/
#define EC_CMD_VSTORE_READ 0x004A
struct __ec_align1 ec_params_vstore_read {
uint8_t slot; /* Slot to read from */
};
struct __ec_align1 ec_response_vstore_read {
uint8_t data[EC_VSTORE_SLOT_SIZE];
};
/*
* Write temporary secure storage and lock it.
*/
#define EC_CMD_VSTORE_WRITE 0x004B
struct __ec_align1 ec_params_vstore_write {
uint8_t slot; /* Slot to write to */
uint8_t data[EC_VSTORE_SLOT_SIZE];
};
/*****************************************************************************/
/* Thermal engine commands. Note that there are two implementations. We'll
* reuse the command number, but the data and behavior is incompatible.
* Version 0 is what originally shipped on Link.
* Version 1 separates the CPU thermal limits from the fan control.
*/
#define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
#define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
/* The version 0 structs are opaque. You have to know what they are for
* the get/set commands to make any sense.
*/
/* Version 0 - set */
struct __ec_align2 ec_params_thermal_set_threshold {
uint8_t sensor_type;
uint8_t threshold_id;
uint16_t value;
};
/* Version 0 - get */
struct __ec_align1 ec_params_thermal_get_threshold {
uint8_t sensor_type;
uint8_t threshold_id;
};
struct __ec_align2 ec_response_thermal_get_threshold {
uint16_t value;
};
/* The version 1 structs are visible. */
enum ec_temp_thresholds {
EC_TEMP_THRESH_WARN = 0,
EC_TEMP_THRESH_HIGH,
EC_TEMP_THRESH_HALT,
EC_TEMP_THRESH_COUNT
};
/*
* Thermal configuration for one temperature sensor. Temps are in degrees K.
* Zero values will be silently ignored by the thermal task.
*
* Note that this structure is a sub-structure of
* ec_params_thermal_set_threshold_v1, but maintains its alignment there.
*/
struct __ec_align4 ec_thermal_config {
uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
uint32_t temp_fan_off; /* no active cooling needed */
uint32_t temp_fan_max; /* max active cooling needed */
};
/* Version 1 - get config for one sensor. */
struct __ec_align4 ec_params_thermal_get_threshold_v1 {
uint32_t sensor_num;
};
/* This returns a struct ec_thermal_config */
/* Version 1 - set config for one sensor.
* Use read-modify-write for best results! */
struct __ec_align4 ec_params_thermal_set_threshold_v1 {
uint32_t sensor_num;
struct ec_thermal_config cfg;
};
/* This returns no data */
/****************************************************************************/
/* Toggle automatic fan control */
#define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
/* Version 1 of input params */
struct __ec_align1 ec_params_auto_fan_ctrl_v1 {
uint8_t fan_idx;
};
/* Get/Set TMP006 calibration data */
#define EC_CMD_TMP006_GET_CALIBRATION 0x0053
#define EC_CMD_TMP006_SET_CALIBRATION 0x0054
/*
* The original TMP006 calibration only needed four params, but now we need
* more. Since the algorithm is nothing but magic numbers anyway, we'll leave
* the params opaque. The v1 "get" response will include the algorithm number
* and how many params it requires. That way we can change the EC code without
* needing to update this file. We can also use a different algorithm on each
* sensor.
*/
/* This is the same struct for both v0 and v1. */
struct __ec_align1 ec_params_tmp006_get_calibration {
uint8_t index;
};
/* Version 0 */
struct __ec_align4 ec_response_tmp006_get_calibration_v0 {
float s0;
float b0;
float b1;
float b2;
};
struct __ec_align4 ec_params_tmp006_set_calibration_v0 {
uint8_t index;
uint8_t reserved[3];
float s0;
float b0;
float b1;
float b2;
};
/* Version 1 */
struct __ec_align4 ec_response_tmp006_get_calibration_v1 {
uint8_t algorithm;
uint8_t num_params;
uint8_t reserved[2];
float val[0];
};
struct __ec_align4 ec_params_tmp006_set_calibration_v1 {
uint8_t index;
uint8_t algorithm;
uint8_t num_params;
uint8_t reserved;
float val[0];
};
/* Read raw TMP006 data */
#define EC_CMD_TMP006_GET_RAW 0x0055
struct __ec_align1 ec_params_tmp006_get_raw {
uint8_t index;
};
struct __ec_align4 ec_response_tmp006_get_raw {
int32_t t; /* In 1/100 K */
int32_t v; /* In nV */
};
/*****************************************************************************/
/* MKBP - Matrix KeyBoard Protocol */
/*
* Read key state
*
* Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
* expected response size.
*
* NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish
* to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
* EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
*/
#define EC_CMD_MKBP_STATE 0x0060
/*
* Provide information about various MKBP things. See enum ec_mkbp_info_type.
*/
#define EC_CMD_MKBP_INFO 0x0061
struct __ec_align_size1 ec_response_mkbp_info {
uint32_t rows;
uint32_t cols;
/* Formerly "switches", which was 0. */
uint8_t reserved;
};
struct __ec_align1 ec_params_mkbp_info {
uint8_t info_type;
uint8_t event_type;
};
enum ec_mkbp_info_type {
/*
* Info about the keyboard matrix: number of rows and columns.
*
* Returns struct ec_response_mkbp_info.
*/
EC_MKBP_INFO_KBD = 0,
/*
* For buttons and switches, info about which specifically are
* supported. event_type must be set to one of the values in enum
* ec_mkbp_event.
*
* For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
* bitmask indicating which buttons or switches are present. See the
* bit inidices below.
*/
EC_MKBP_INFO_SUPPORTED = 1,
/*
* Instantaneous state of buttons and switches.
*
* event_type must be set to one of the values in enum ec_mkbp_event.
*
* For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
* indicating the current state of the keyboard matrix.
*
* For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
* event state.
*
* For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
* state of supported buttons.
*
* For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
* state of supported switches.
*/
EC_MKBP_INFO_CURRENT = 2,
};
/* Simulate key press */
#define EC_CMD_MKBP_SIMULATE_KEY 0x0062
struct __ec_align1 ec_params_mkbp_simulate_key {
uint8_t col;
uint8_t row;
uint8_t pressed;
};
/* Configure keyboard scanning */
#define EC_CMD_MKBP_SET_CONFIG 0x0064
#define EC_CMD_MKBP_GET_CONFIG 0x0065
/* flags */
enum mkbp_config_flags {
EC_MKBP_FLAGS_ENABLE = 1, /* Enable keyboard scanning */
};
enum mkbp_config_valid {
EC_MKBP_VALID_SCAN_PERIOD = 1 << 0,
EC_MKBP_VALID_POLL_TIMEOUT = 1 << 1,
EC_MKBP_VALID_MIN_POST_SCAN_DELAY = 1 << 3,
EC_MKBP_VALID_OUTPUT_SETTLE = 1 << 4,
EC_MKBP_VALID_DEBOUNCE_DOWN = 1 << 5,
EC_MKBP_VALID_DEBOUNCE_UP = 1 << 6,
EC_MKBP_VALID_FIFO_MAX_DEPTH = 1 << 7,
};
/*
* Configuration for our key scanning algorithm.
*
* Note that this is used as a sub-structure of
* ec_{params/response}_mkbp_get_config.
*/
struct __ec_align_size1 ec_mkbp_config {
uint32_t valid_mask; /* valid fields */
uint8_t flags; /* some flags (enum mkbp_config_flags) */
uint8_t valid_flags; /* which flags are valid */
uint16_t scan_period_us; /* period between start of scans */
/* revert to interrupt mode after no activity for this long */
uint32_t poll_timeout_us;
/*
* minimum post-scan relax time. Once we finish a scan we check
* the time until we are due to start the next one. If this time is
* shorter this field, we use this instead.
*/
uint16_t min_post_scan_delay_us;
/* delay between setting up output and waiting for it to settle */
uint16_t output_settle_us;
uint16_t debounce_down_us; /* time for debounce on key down */
uint16_t debounce_up_us; /* time for debounce on key up */
/* maximum depth to allow for fifo (0 = no keyscan output) */
uint8_t fifo_max_depth;
};
struct __ec_align_size1 ec_params_mkbp_set_config {
struct ec_mkbp_config config;
};
struct __ec_align_size1 ec_response_mkbp_get_config {
struct ec_mkbp_config config;
};
/* Run the key scan emulation */
#define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
enum ec_keyscan_seq_cmd {
EC_KEYSCAN_SEQ_STATUS = 0, /* Get status information */
EC_KEYSCAN_SEQ_CLEAR = 1, /* Clear sequence */
EC_KEYSCAN_SEQ_ADD = 2, /* Add item to sequence */
EC_KEYSCAN_SEQ_START = 3, /* Start running sequence */
EC_KEYSCAN_SEQ_COLLECT = 4, /* Collect sequence summary data */
};
enum ec_collect_flags {
/*
* Indicates this scan was processed by the EC. Due to timing, some
* scans may be skipped.
*/
EC_KEYSCAN_SEQ_FLAG_DONE = 1 << 0,
};
struct __ec_align1 ec_collect_item {
uint8_t flags; /* some flags (enum ec_collect_flags) */
};
struct __ec_todo_packed ec_params_keyscan_seq_ctrl {
uint8_t cmd; /* Command to send (enum ec_keyscan_seq_cmd) */
union {
struct __ec_align1 {
uint8_t active; /* still active */
uint8_t num_items; /* number of items */
/* Current item being presented */
uint8_t cur_item;
} status;
struct __ec_todo_unpacked {
/*
* Absolute time for this scan, measured from the
* start of the sequence.
*/
uint32_t time_us;
uint8_t scan[0]; /* keyscan data */
} add;
struct __ec_align1 {
uint8_t start_item; /* First item to return */
uint8_t num_items; /* Number of items to return */
} collect;
};
};
struct __ec_todo_packed ec_result_keyscan_seq_ctrl {
union {
struct __ec_todo_unpacked {
uint8_t num_items; /* Number of items */
/* Data for each item */
struct ec_collect_item item[0];
} collect;
};
};
/*
* Get the next pending MKBP event.
*
* Returns EC_RES_UNAVAILABLE if there is no event pending.
*/
#define EC_CMD_GET_NEXT_EVENT 0x0067
enum ec_mkbp_event {
/* Keyboard matrix changed. The event data is the new matrix state. */
EC_MKBP_EVENT_KEY_MATRIX = 0,
/* New host event. The event data is 4 bytes of host event flags. */
EC_MKBP_EVENT_HOST_EVENT = 1,
/* New Sensor FIFO data. The event data is fifo_info structure. */
EC_MKBP_EVENT_SENSOR_FIFO = 2,
/* The state of the non-matrixed buttons have changed. */
EC_MKBP_EVENT_BUTTON = 3,
/* The state of the switches have changed. */
EC_MKBP_EVENT_SWITCH = 4,
/* New Fingerprint sensor event, the event data is fp_events bitmap. */
EC_MKBP_EVENT_FINGERPRINT = 5,
/*
* Sysrq event: send emulated sysrq. The event data is sysrq,
* corresponding to the key to be pressed.
*/
EC_MKBP_EVENT_SYSRQ = 6,
/* Number of MKBP events */
EC_MKBP_EVENT_COUNT,
};
union __ec_align_offset1 ec_response_get_next_data {
uint8_t key_matrix[13];
/* Unaligned */
uint32_t host_event;
struct __ec_todo_unpacked {
/* For aligning the fifo_info */
uint8_t reserved[3];
struct ec_response_motion_sense_fifo_info info;
} sensor_fifo;
uint32_t buttons;
uint32_t switches;
uint32_t fp_events;
uint32_t sysrq;
};
struct __ec_align1 ec_response_get_next_event {
uint8_t event_type;
/* Followed by event data if any */
union ec_response_get_next_data data;
};
/* Bit indices for buttons and switches.*/
/* Buttons */
#define EC_MKBP_POWER_BUTTON 0
#define EC_MKBP_VOL_UP 1
#define EC_MKBP_VOL_DOWN 2
#define EC_MKBP_RECOVERY 3
/* Switches */
#define EC_MKBP_LID_OPEN 0
#define EC_MKBP_TABLET_MODE 1
/* Run keyboard factory test scanning */
#define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
struct __ec_align2 ec_response_keyboard_factory_test {
uint16_t shorted; /* Keyboard pins are shorted */
};
/* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
#define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
#define EC_MKBP_FP_FINGER_DOWN (1 << 29)
#define EC_MKBP_FP_FINGER_UP (1 << 30)
#define EC_MKBP_FP_IMAGE_READY (1 << 31)
/*****************************************************************************/
/* Temperature sensor commands */
/* Read temperature sensor info */
#define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
struct __ec_align1 ec_params_temp_sensor_get_info {
uint8_t id;
};
struct __ec_align1 ec_response_temp_sensor_get_info {
char sensor_name[32];
uint8_t sensor_type;
};
/*****************************************************************************/
/*
* Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
* commands accidentally sent to the wrong interface. See the ACPI section
* below.
*/
/*****************************************************************************/
/* Host event commands */
/* Obsolete. New implementation should use EC_CMD_PROGRAM_HOST_EVENT instead */
/*
* Host event mask params and response structures, shared by all of the host
* event commands below.
*/
struct __ec_align4 ec_params_host_event_mask {
uint32_t mask;
};
struct __ec_align4 ec_response_host_event_mask {
uint32_t mask;
};
/* These all use ec_response_host_event_mask */
#define EC_CMD_HOST_EVENT_GET_B 0x0087
#define EC_CMD_HOST_EVENT_GET_SMI_MASK 0x0088
#define EC_CMD_HOST_EVENT_GET_SCI_MASK 0x0089
#define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
/* These all use ec_params_host_event_mask */
#define EC_CMD_HOST_EVENT_SET_SMI_MASK 0x008A
#define EC_CMD_HOST_EVENT_SET_SCI_MASK 0x008B
#define EC_CMD_HOST_EVENT_CLEAR 0x008C
#define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
#define EC_CMD_HOST_EVENT_CLEAR_B 0x008F
/*
* Unified host event programming interface - Should be used by newer versions
* of BIOS/OS to program host events and masks
*/
struct __ec_align4 ec_params_host_event {
/* Action requested by host - one of enum ec_host_event_action. */
uint8_t action;
/*
* Mask type that the host requested the action on - one of
* enum ec_host_event_mask_type.
*/
uint8_t mask_type;
/* Set to 0, ignore on read */
uint16_t reserved;
/* Value to be used in case of set operations. */
uint64_t value;
};
/*
* Response structure returned by EC_CMD_HOST_EVENT.
* Update the value on a GET request. Set to 0 on GET/CLEAR
*/
struct __ec_align4 ec_response_host_event {
/* Mask value in case of get operation */
uint64_t value;
};
enum ec_host_event_action {
/*
* params.value is ignored. Value of mask_type populated
* in response.value
*/
EC_HOST_EVENT_GET,
/* Bits in params.value are set */
EC_HOST_EVENT_SET,
/* Bits in params.value are cleared */
EC_HOST_EVENT_CLEAR,
};
enum ec_host_event_mask_type {
/* Main host event copy */
EC_HOST_EVENT_MAIN,
/* Copy B of host events */
EC_HOST_EVENT_B,
/* SCI Mask */
EC_HOST_EVENT_SCI_MASK,
/* SMI Mask */
EC_HOST_EVENT_SMI_MASK,
/* Mask of events that should be always reported in hostevents */
EC_HOST_EVENT_ALWAYS_REPORT_MASK,
/* Active wake mask */
EC_HOST_EVENT_ACTIVE_WAKE_MASK,
/* Lazy wake mask for S0ix */
EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
/* Lazy wake mask for S3 */
EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
/* Lazy wake mask for S5 */
EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
};
#define EC_CMD_HOST_EVENT 0x00A4
/*****************************************************************************/
/* Switch commands */
/* Enable/disable LCD backlight */
#define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
struct __ec_align1 ec_params_switch_enable_backlight {
uint8_t enabled;
};
/* Enable/disable WLAN/Bluetooth */
#define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
#define EC_VER_SWITCH_ENABLE_WIRELESS 1
/* Version 0 params; no response */
struct __ec_align1 ec_params_switch_enable_wireless_v0 {
uint8_t enabled;
};
/* Version 1 params */
struct __ec_align1 ec_params_switch_enable_wireless_v1 {
/* Flags to enable now */
uint8_t now_flags;
/* Which flags to copy from now_flags */
uint8_t now_mask;
/*
* Flags to leave enabled in S3, if they're on at the S0->S3
* transition. (Other flags will be disabled by the S0->S3
* transition.)
*/
uint8_t suspend_flags;
/* Which flags to copy from suspend_flags */
uint8_t suspend_mask;
};
/* Version 1 response */
struct __ec_align1 ec_response_switch_enable_wireless_v1 {
/* Flags to enable now */
uint8_t now_flags;
/* Flags to leave enabled in S3 */
uint8_t suspend_flags;
};
/*****************************************************************************/
/* GPIO commands. Only available on EC if write protect has been disabled. */
/* Set GPIO output value */
#define EC_CMD_GPIO_SET 0x0092
struct __ec_align1 ec_params_gpio_set {
char name[32];
uint8_t val;
};
/* Get GPIO value */
#define EC_CMD_GPIO_GET 0x0093
/* Version 0 of input params and response */
struct __ec_align1 ec_params_gpio_get {
char name[32];
};
struct __ec_align1 ec_response_gpio_get {
uint8_t val;
};
/* Version 1 of input params and response */
struct __ec_align1 ec_params_gpio_get_v1 {
uint8_t subcmd;
union {
struct __ec_align1 {
char name[32];
} get_value_by_name;
struct __ec_align1 {
uint8_t index;
} get_info;
};
};
struct __ec_todo_packed ec_response_gpio_get_v1 {
union {
struct __ec_align1 {
uint8_t val;
} get_value_by_name, get_count;
struct __ec_todo_unpacked {
uint8_t val;
char name[32];
uint32_t flags;
} get_info;
};
};
enum gpio_get_subcmd {
EC_GPIO_GET_BY_NAME = 0,
EC_GPIO_GET_COUNT = 1,
EC_GPIO_GET_INFO = 2,
};
/*****************************************************************************/
/* I2C commands. Only available when flash write protect is unlocked. */
/*
* CAUTION: These commands are deprecated, and are not supported anymore in EC
* builds >= 8398.0.0 (see crosbug.com/p/23570).
*
* Use EC_CMD_I2C_PASSTHRU instead.
*/
/* Read I2C bus */
#define EC_CMD_I2C_READ 0x0094
struct __ec_align_size1 ec_params_i2c_read {
uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
uint8_t read_size; /* Either 8 or 16. */
uint8_t port;
uint8_t offset;
};
struct __ec_align2 ec_response_i2c_read {
uint16_t data;
};
/* Write I2C bus */
#define EC_CMD_I2C_WRITE 0x0095
struct __ec_align_size1 ec_params_i2c_write {
uint16_t data;
uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
uint8_t write_size; /* Either 8 or 16. */
uint8_t port;
uint8_t offset;
};
/*****************************************************************************/
/* Charge state commands. Only available when flash write protect unlocked. */
/* Force charge state machine to stop charging the battery or force it to
* discharge the battery.
*/
#define EC_CMD_CHARGE_CONTROL 0x0096
#define EC_VER_CHARGE_CONTROL 1
enum ec_charge_control_mode {
CHARGE_CONTROL_NORMAL = 0,
CHARGE_CONTROL_IDLE,
CHARGE_CONTROL_DISCHARGE,
};
struct __ec_align4 ec_params_charge_control {
uint32_t mode; /* enum charge_control_mode */
};
/*****************************************************************************/
/* Console commands. Only available when flash write protect is unlocked. */
/* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
#define EC_CMD_CONSOLE_SNAPSHOT 0x0097
/*
* Read data from the saved snapshot. If the subcmd parameter is
* CONSOLE_READ_NEXT, this will return data starting from the beginning of
* the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
* end of the previous snapshot.
*
* The params are only looked at in version >= 1 of this command. Prior
* versions will just default to CONSOLE_READ_NEXT behavior.
*
* Response is null-terminated string. Empty string, if there is no more
* remaining output.
*/
#define EC_CMD_CONSOLE_READ 0x0098
enum ec_console_read_subcmd {
CONSOLE_READ_NEXT = 0,
CONSOLE_READ_RECENT
};
struct __ec_align1 ec_params_console_read_v1 {
uint8_t subcmd; /* enum ec_console_read_subcmd */
};
/*****************************************************************************/
/*
* Cut off battery power immediately or after the host has shut down.
*
* return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
* EC_RES_SUCCESS if the command was successful.
* EC_RES_ERROR if the cut off command failed.
*/
#define EC_CMD_BATTERY_CUT_OFF 0x0099
#define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN (1 << 0)
struct __ec_align1 ec_params_battery_cutoff {
uint8_t flags;
};
/*****************************************************************************/
/* USB port mux control. */
/*
* Switch USB mux or return to automatic switching.
*/
#define EC_CMD_USB_MUX 0x009A
struct __ec_align1 ec_params_usb_mux {
uint8_t mux;
};
/*****************************************************************************/
/* LDOs / FETs control. */
enum ec_ldo_state {
EC_LDO_STATE_OFF = 0, /* the LDO / FET is shut down */
EC_LDO_STATE_ON = 1, /* the LDO / FET is ON / providing power */
};
/*
* Switch on/off a LDO.
*/
#define EC_CMD_LDO_SET 0x009B
struct __ec_align1 ec_params_ldo_set {
uint8_t index;
uint8_t state;
};
/*
* Get LDO state.
*/
#define EC_CMD_LDO_GET 0x009C
struct __ec_align1 ec_params_ldo_get {
uint8_t index;
};
struct __ec_align1 ec_response_ldo_get {
uint8_t state;
};
/*****************************************************************************/
/* Power info. */
/*
* Get power info.
*/
#define EC_CMD_POWER_INFO 0x009D
struct __ec_align4 ec_response_power_info {
uint32_t usb_dev_type;
uint16_t voltage_ac;
uint16_t voltage_system;
uint16_t current_system;
uint16_t usb_current_limit;
};
/*****************************************************************************/
/* I2C passthru command */
#define EC_CMD_I2C_PASSTHRU 0x009E
/* Read data; if not present, message is a write */
#define EC_I2C_FLAG_READ (1 << 15)
/* Mask for address */
#define EC_I2C_ADDR_MASK 0x3ff
#define EC_I2C_STATUS_NAK (1 << 0) /* Transfer was not acknowledged */
#define EC_I2C_STATUS_TIMEOUT (1 << 1) /* Timeout during transfer */
/* Any error */
#define EC_I2C_STATUS_ERROR (EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
struct __ec_align2 ec_params_i2c_passthru_msg {
uint16_t addr_flags; /* I2C slave address (7 or 10 bits) and flags */
uint16_t len; /* Number of bytes to read or write */
};
struct __ec_align2 ec_params_i2c_passthru {
uint8_t port; /* I2C port number */
uint8_t num_msgs; /* Number of messages */
struct ec_params_i2c_passthru_msg msg[];
/* Data to write for all messages is concatenated here */
};
struct __ec_align1 ec_response_i2c_passthru {
uint8_t i2c_status; /* Status flags (EC_I2C_STATUS_...) */
uint8_t num_msgs; /* Number of messages processed */
uint8_t data[]; /* Data read by messages concatenated here */
};
/*****************************************************************************/
/* Power button hang detect */
#define EC_CMD_HANG_DETECT 0x009F
/* Reasons to start hang detection timer */
/* Power button pressed */
#define EC_HANG_START_ON_POWER_PRESS (1 << 0)
/* Lid closed */
#define EC_HANG_START_ON_LID_CLOSE (1 << 1)
/* Lid opened */
#define EC_HANG_START_ON_LID_OPEN (1 << 2)
/* Start of AP S3->S0 transition (booting or resuming from suspend) */
#define EC_HANG_START_ON_RESUME (1 << 3)
/* Reasons to cancel hang detection */
/* Power button released */
#define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
/* Any host command from AP received */
#define EC_HANG_STOP_ON_HOST_COMMAND (1 << 9)
/* Stop on end of AP S0->S3 transition (suspending or shutting down) */
#define EC_HANG_STOP_ON_SUSPEND (1 << 10)
/*
* If this flag is set, all the other fields are ignored, and the hang detect
* timer is started. This provides the AP a way to start the hang timer
* without reconfiguring any of the other hang detect settings. Note that
* you must previously have configured the timeouts.
*/
#define EC_HANG_START_NOW (1 << 30)
/*
* If this flag is set, all the other fields are ignored (including
* EC_HANG_START_NOW). This provides the AP a way to stop the hang timer
* without reconfiguring any of the other hang detect settings.
*/
#define EC_HANG_STOP_NOW (1 << 31)
struct __ec_align4 ec_params_hang_detect {
/* Flags; see EC_HANG_* */
uint32_t flags;
/* Timeout in msec before generating host event, if enabled */
uint16_t host_event_timeout_msec;
/* Timeout in msec before generating warm reboot, if enabled */
uint16_t warm_reboot_timeout_msec;
};
/*****************************************************************************/
/* Commands for battery charging */
/*
* This is the single catch-all host command to exchange data regarding the
* charge state machine (v2 and up).
*/
#define EC_CMD_CHARGE_STATE 0x00A0
/* Subcommands for this host command */
enum charge_state_command {
CHARGE_STATE_CMD_GET_STATE,
CHARGE_STATE_CMD_GET_PARAM,
CHARGE_STATE_CMD_SET_PARAM,
CHARGE_STATE_NUM_CMDS
};
/*
* Known param numbers are defined here. Ranges are reserved for board-specific
* params, which are handled by the particular implementations.
*/
enum charge_state_params {
CS_PARAM_CHG_VOLTAGE, /* charger voltage limit */
CS_PARAM_CHG_CURRENT, /* charger current limit */
CS_PARAM_CHG_INPUT_CURRENT, /* charger input current limit */
CS_PARAM_CHG_STATUS, /* charger-specific status */
CS_PARAM_CHG_OPTION, /* charger-specific options */
CS_PARAM_LIMIT_POWER, /*
* Check if power is limited due to
* low battery and / or a weak external
* charger. READ ONLY.
*/
/* How many so far? */
CS_NUM_BASE_PARAMS,
/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
/* Other custom param ranges go here... */
};
struct __ec_todo_packed ec_params_charge_state {
uint8_t cmd; /* enum charge_state_command */
union {
struct __ec_align1 {
/* no args */
} get_state;
struct __ec_todo_unpacked {
uint32_t param; /* enum charge_state_param */
} get_param;
struct __ec_todo_unpacked {
uint32_t param; /* param to set */
uint32_t value; /* value to set */
} set_param;
};
};
struct __ec_align4 ec_response_charge_state {
union {
struct __ec_align4 {
int ac;
int chg_voltage;
int chg_current;
int chg_input_current;
int batt_state_of_charge;
} get_state;
struct __ec_align4 {
uint32_t value;
} get_param;
struct __ec_align4 {
/* no return values */
} set_param;
};
};
/*
* Set maximum battery charging current.
*/
#define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
struct __ec_align4 ec_params_current_limit {
uint32_t limit; /* in mA */
};
/*
* Set maximum external voltage / current.
*/
#define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
/* Command v0 is used only on Spring and is obsolete + unsupported */
struct __ec_align2 ec_params_external_power_limit_v1 {
uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
};
#define EC_POWER_LIMIT_NONE 0xffff
/*
* Set maximum voltage & current of a dedicated charge port
*/
#define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
struct __ec_align2 ec_params_dedicated_charger_limit {
uint16_t current_lim; /* in mA */
uint16_t voltage_lim; /* in mV */
};
/*****************************************************************************/
/* Hibernate/Deep Sleep Commands */
/* Set the delay before going into hibernation. */
#define EC_CMD_HIBERNATION_DELAY 0x00A8
struct __ec_align4 ec_params_hibernation_delay {
/*
* Seconds to wait in G3 before hibernate. Pass in 0 to read the
* current settings without changing them.
*/
uint32_t seconds;
};
struct __ec_align4 ec_response_hibernation_delay {
/*
* The current time in seconds in which the system has been in the G3
* state. This value is reset if the EC transitions out of G3.
*/
uint32_t time_g3;
/*
* The current time remaining in seconds until the EC should hibernate.
* This value is also reset if the EC transitions out of G3.
*/
uint32_t time_remaining;
/*
* The current time in seconds that the EC should wait in G3 before
* hibernating.
*/
uint32_t hibernate_delay;
};
/* Inform the EC when entering a sleep state */
#define EC_CMD_HOST_SLEEP_EVENT 0x00A9
enum host_sleep_event {
HOST_SLEEP_EVENT_S3_SUSPEND = 1,
HOST_SLEEP_EVENT_S3_RESUME = 2,
HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
HOST_SLEEP_EVENT_S0IX_RESUME = 4
};
struct __ec_align1 ec_params_host_sleep_event {
uint8_t sleep_event;
};
/*****************************************************************************/
/* Device events */
#define EC_CMD_DEVICE_EVENT 0x00AA
enum ec_device_event {
EC_DEVICE_EVENT_TRACKPAD,
EC_DEVICE_EVENT_DSP,
EC_DEVICE_EVENT_WIFI,
};
enum ec_device_event_param {
/* Get and clear pending device events */
EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
/* Get device event mask */
EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
/* Set device event mask */
EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
};
#define EC_DEVICE_EVENT_MASK(event_code) (1UL << (event_code % 32))
struct __ec_align_size1 ec_params_device_event {
uint32_t event_mask;
uint8_t param;
};
struct __ec_align4 ec_response_device_event {
uint32_t event_mask;
};
/*****************************************************************************/
/* Smart battery pass-through */
/* Get / Set 16-bit smart battery registers */
#define EC_CMD_SB_READ_WORD 0x00B0
#define EC_CMD_SB_WRITE_WORD 0x00B1
/* Get / Set string smart battery parameters
* formatted as SMBUS "block".
*/
#define EC_CMD_SB_READ_BLOCK 0x00B2
#define EC_CMD_SB_WRITE_BLOCK 0x00B3
struct __ec_align1 ec_params_sb_rd {
uint8_t reg;
};
struct __ec_align2 ec_response_sb_rd_word {
uint16_t value;
};
struct __ec_align1 ec_params_sb_wr_word {
uint8_t reg;
uint16_t value;
};
struct __ec_align1 ec_response_sb_rd_block {
uint8_t data[32];
};
struct __ec_align1 ec_params_sb_wr_block {
uint8_t reg;
uint16_t data[32];
};
/*****************************************************************************/
/* Battery vendor parameters
*
* Get or set vendor-specific parameters in the battery. Implementations may
* differ between boards or batteries. On a set operation, the response
* contains the actual value set, which may be rounded or clipped from the
* requested value.
*/
#define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
enum ec_battery_vendor_param_mode {
BATTERY_VENDOR_PARAM_MODE_GET = 0,
BATTERY_VENDOR_PARAM_MODE_SET,
};
struct __ec_align_size1 ec_params_battery_vendor_param {
uint32_t param;
uint32_t value;
uint8_t mode;
};
struct __ec_align4 ec_response_battery_vendor_param {
uint32_t value;
};
/*****************************************************************************/
/*
* Smart Battery Firmware Update Commands
*/
#define EC_CMD_SB_FW_UPDATE 0x00B5
enum ec_sb_fw_update_subcmd {
EC_SB_FW_UPDATE_PREPARE = 0x0,
EC_SB_FW_UPDATE_INFO = 0x1, /*query sb info */
EC_SB_FW_UPDATE_BEGIN = 0x2, /*check if protected */
EC_SB_FW_UPDATE_WRITE = 0x3, /*check if protected */
EC_SB_FW_UPDATE_END = 0x4,
EC_SB_FW_UPDATE_STATUS = 0x5,
EC_SB_FW_UPDATE_PROTECT = 0x6,
EC_SB_FW_UPDATE_MAX = 0x7,
};
#define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
#define SB_FW_UPDATE_CMD_STATUS_SIZE 2
#define SB_FW_UPDATE_CMD_INFO_SIZE 8
struct __ec_align4 ec_sb_fw_update_header {
uint16_t subcmd; /* enum ec_sb_fw_update_subcmd */
uint16_t fw_id; /* firmware id */
};
struct __ec_align4 ec_params_sb_fw_update {
struct ec_sb_fw_update_header hdr;
union {
/* EC_SB_FW_UPDATE_PREPARE = 0x0 */
/* EC_SB_FW_UPDATE_INFO = 0x1 */
/* EC_SB_FW_UPDATE_BEGIN = 0x2 */
/* EC_SB_FW_UPDATE_END = 0x4 */
/* EC_SB_FW_UPDATE_STATUS = 0x5 */
/* EC_SB_FW_UPDATE_PROTECT = 0x6 */
struct __ec_align4 {
/* no args */
} dummy;
/* EC_SB_FW_UPDATE_WRITE = 0x3 */
struct __ec_align4 {
uint8_t data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
} write;
};
};
struct __ec_align1 ec_response_sb_fw_update {
union {
/* EC_SB_FW_UPDATE_INFO = 0x1 */
struct __ec_align1 {
uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
} info;
/* EC_SB_FW_UPDATE_STATUS = 0x5 */
struct __ec_align1 {
uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
} status;
};
};
/*
* Entering Verified Boot Mode Command
* Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
* Valid Modes are: normal, developer, and recovery.
*/
#define EC_CMD_ENTERING_MODE 0x00B6
struct __ec_align4 ec_params_entering_mode {
int vboot_mode;
};
#define VBOOT_MODE_NORMAL 0
#define VBOOT_MODE_DEVELOPER 1
#define VBOOT_MODE_RECOVERY 2
/*****************************************************************************/
/*
* I2C passthru protection command: Protects I2C tunnels against access on
* certain addresses (board-specific).
*/
#define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
enum ec_i2c_passthru_protect_subcmd {
EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
};
struct __ec_align1 ec_params_i2c_passthru_protect {
uint8_t subcmd;
uint8_t port; /* I2C port number */
};
struct __ec_align1 ec_response_i2c_passthru_protect {
uint8_t status; /* Status flags (0: unlocked, 1: locked) */
};
/*****************************************************************************/
/* System commands */
/*
* TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
* necessarily reboot the EC. Rename to "image" or something similar?
*/
#define EC_CMD_REBOOT_EC 0x00D2
/* Command */
enum ec_reboot_cmd {
EC_REBOOT_CANCEL = 0, /* Cancel a pending reboot */
EC_REBOOT_JUMP_RO = 1, /* Jump to RO without rebooting */
EC_REBOOT_JUMP_RW = 2, /* Jump to RW without rebooting */
/* (command 3 was jump to RW-B) */
EC_REBOOT_COLD = 4, /* Cold-reboot */
EC_REBOOT_DISABLE_JUMP = 5, /* Disable jump until next reboot */
EC_REBOOT_HIBERNATE = 6, /* Hibernate EC */
EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
};
/* Flags for ec_params_reboot_ec.reboot_flags */
#define EC_REBOOT_FLAG_RESERVED0 (1 << 0) /* Was recovery request */
#define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1) /* Reboot after AP shutdown */
#define EC_REBOOT_FLAG_SWITCH_RW_SLOT (1 << 2) /* Switch RW slot */
struct __ec_align1 ec_params_reboot_ec {
uint8_t cmd; /* enum ec_reboot_cmd */
uint8_t flags; /* See EC_REBOOT_FLAG_* */
};
/*
* Get information on last EC panic.
*
* Returns variable-length platform-dependent panic information. See panic.h
* for details.
*/
#define EC_CMD_GET_PANIC_INFO 0x00D3
/*****************************************************************************/
/*
* Special commands
*
* These do not follow the normal rules for commands. See each command for
* details.
*/
/*
* Reboot NOW
*
* This command will work even when the EC LPC interface is busy, because the
* reboot command is processed at interrupt level. Note that when the EC
* reboots, the host will reboot too, so there is no response to this command.
*
* Use EC_CMD_REBOOT_EC to reboot the EC more politely.
*/
#define EC_CMD_REBOOT 0x00D1 /* Think "die" */
/*
* Resend last response (not supported on LPC).
*
* Returns EC_RES_UNAVAILABLE if there is no response available - for example,
* there was no previous command, or the previous command's response was too
* big to save.
*/
#define EC_CMD_RESEND_RESPONSE 0x00DB
/*
* This header byte on a command indicate version 0. Any header byte less
* than this means that we are talking to an old EC which doesn't support
* versioning. In that case, we assume version 0.
*
* Header bytes greater than this indicate a later version. For example,
* EC_CMD_VERSION0 + 1 means we are using version 1.
*
* The old EC interface must not use commands 0xdc or higher.
*/
#define EC_CMD_VERSION0 0x00DC
/*****************************************************************************/
/*
* PD commands
*
* These commands are for PD MCU communication.
*/
/* EC to PD MCU exchange status command */
#define EC_CMD_PD_EXCHANGE_STATUS 0x0100
#define EC_VER_PD_EXCHANGE_STATUS 2
enum pd_charge_state {
PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
PD_CHARGE_NONE, /* No charging allowed */
PD_CHARGE_5V, /* 5V charging only */
PD_CHARGE_MAX /* Charge at max voltage */
};
/* Status of EC being sent to PD */
#define EC_STATUS_HIBERNATING (1 << 0)
struct __ec_align1 ec_params_pd_status {
uint8_t status; /* EC status */
int8_t batt_soc; /* battery state of charge */
uint8_t charge_state; /* charging state (from enum pd_charge_state) */
};
/* Status of PD being sent back to EC */
#define PD_STATUS_HOST_EVENT (1 << 0) /* Forward host event to AP */
#define PD_STATUS_IN_RW (1 << 1) /* Running RW image */
#define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */
#define PD_STATUS_TCPC_ALERT_0 (1 << 3) /* Alert active in port 0 TCPC */
#define PD_STATUS_TCPC_ALERT_1 (1 << 4) /* Alert active in port 1 TCPC */
#define PD_STATUS_TCPC_ALERT_2 (1 << 5) /* Alert active in port 2 TCPC */
#define PD_STATUS_TCPC_ALERT_3 (1 << 6) /* Alert active in port 3 TCPC */
#define PD_STATUS_EC_INT_ACTIVE (PD_STATUS_TCPC_ALERT_0 | \
PD_STATUS_TCPC_ALERT_1 | \
PD_STATUS_HOST_EVENT)
struct __ec_align_size1 ec_response_pd_status {
uint32_t curr_lim_ma; /* input current limit */
uint16_t status; /* PD MCU status */
int8_t active_charge_port; /* active charging port */
};
/* AP to PD MCU host event status command, cleared on read */
#define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
/* PD MCU host event status bits */
#define PD_EVENT_UPDATE_DEVICE (1 << 0)
#define PD_EVENT_POWER_CHANGE (1 << 1)
#define PD_EVENT_IDENTITY_RECEIVED (1 << 2)
#define PD_EVENT_DATA_SWAP (1 << 3)
struct __ec_align4 ec_response_host_event_status {
uint32_t status; /* PD MCU host event status */
};
/* Set USB type-C port role and muxes */
#define EC_CMD_USB_PD_CONTROL 0x0101
enum usb_pd_control_role {
USB_PD_CTRL_ROLE_NO_CHANGE = 0,
USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
USB_PD_CTRL_ROLE_FORCE_SINK = 3,
USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
USB_PD_CTRL_ROLE_COUNT
};
enum usb_pd_control_mux {
USB_PD_CTRL_MUX_NO_CHANGE = 0,
USB_PD_CTRL_MUX_NONE = 1,
USB_PD_CTRL_MUX_USB = 2,
USB_PD_CTRL_MUX_DP = 3,
USB_PD_CTRL_MUX_DOCK = 4,
USB_PD_CTRL_MUX_AUTO = 5,
USB_PD_CTRL_MUX_COUNT
};
enum usb_pd_control_swap {
USB_PD_CTRL_SWAP_NONE = 0,
USB_PD_CTRL_SWAP_DATA = 1,
USB_PD_CTRL_SWAP_POWER = 2,
USB_PD_CTRL_SWAP_VCONN = 3,
USB_PD_CTRL_SWAP_COUNT
};
struct __ec_align1 ec_params_usb_pd_control {
uint8_t port;
uint8_t role;
uint8_t mux;
uint8_t swap;
};
#define PD_CTRL_RESP_ENABLED_COMMS (1 << 0) /* Communication enabled */
#define PD_CTRL_RESP_ENABLED_CONNECTED (1 << 1) /* Device connected */
#define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
#define PD_CTRL_RESP_ROLE_POWER (1 << 0) /* 0=SNK/1=SRC */
#define PD_CTRL_RESP_ROLE_DATA (1 << 1) /* 0=UFP/1=DFP */
#define PD_CTRL_RESP_ROLE_VCONN (1 << 2) /* Vconn status */
#define PD_CTRL_RESP_ROLE_DR_POWER (1 << 3) /* Partner is dualrole power */
#define PD_CTRL_RESP_ROLE_DR_DATA (1 << 4) /* Partner is dualrole data */
#define PD_CTRL_RESP_ROLE_USB_COMM (1 << 5) /* Partner USB comm capable */
#define PD_CTRL_RESP_ROLE_EXT_POWERED (1 << 6) /* Partner externally powerd */
struct __ec_align1 ec_response_usb_pd_control {
uint8_t enabled;
uint8_t role;
uint8_t polarity;
uint8_t state;
};
struct __ec_align1 ec_response_usb_pd_control_v1 {
uint8_t enabled;
uint8_t role;
uint8_t polarity;
char state[32];
};
#define EC_CMD_USB_PD_PORTS 0x0102
/* Maximum number of PD ports on a device, num_ports will be <= this */
#define EC_USB_PD_MAX_PORTS 8
struct __ec_align1 ec_response_usb_pd_ports {
uint8_t num_ports;
};
#define EC_CMD_USB_PD_POWER_INFO 0x0103
#define PD_POWER_CHARGING_PORT 0xff
struct __ec_align1 ec_params_usb_pd_power_info {
uint8_t port;
};
enum usb_chg_type {
USB_CHG_TYPE_NONE,
USB_CHG_TYPE_PD,
USB_CHG_TYPE_C,
USB_CHG_TYPE_PROPRIETARY,
USB_CHG_TYPE_BC12_DCP,
USB_CHG_TYPE_BC12_CDP,
USB_CHG_TYPE_BC12_SDP,
USB_CHG_TYPE_OTHER,
USB_CHG_TYPE_VBUS,
USB_CHG_TYPE_UNKNOWN,
};
enum usb_power_roles {
USB_PD_PORT_POWER_DISCONNECTED,
USB_PD_PORT_POWER_SOURCE,
USB_PD_PORT_POWER_SINK,
USB_PD_PORT_POWER_SINK_NOT_CHARGING,
};
struct __ec_align2 usb_chg_measures {
uint16_t voltage_max;
uint16_t voltage_now;
uint16_t current_max;
uint16_t current_lim;
};
struct __ec_align4 ec_response_usb_pd_power_info {
uint8_t role;
uint8_t type;
uint8_t dualrole;
uint8_t reserved1;
struct usb_chg_measures meas;
uint32_t max_power;
};
/* Write USB-PD device FW */
#define EC_CMD_USB_PD_FW_UPDATE 0x0110
enum usb_pd_fw_update_cmds {
USB_PD_FW_REBOOT,
USB_PD_FW_FLASH_ERASE,
USB_PD_FW_FLASH_WRITE,
USB_PD_FW_ERASE_SIG,
};
struct __ec_align4 ec_params_usb_pd_fw_update {
uint16_t dev_id;
uint8_t cmd;
uint8_t port;
uint32_t size; /* Size to write in bytes */
/* Followed by data to write */
};
/* Write USB-PD Accessory RW_HASH table entry */
#define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
/* RW hash is first 20 bytes of SHA-256 of RW section */
#define PD_RW_HASH_SIZE 20
struct __ec_align1 ec_params_usb_pd_rw_hash_entry {
uint16_t dev_id;
uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
uint8_t reserved; /* For alignment of current_image
* TODO(rspangler) but it's not aligned!
* Should have been reserved[2]. */
uint32_t current_image; /* One of ec_current_image */
};
/* Read USB-PD Accessory info */
#define EC_CMD_USB_PD_DEV_INFO 0x0112
struct __ec_align1 ec_params_usb_pd_info_request {
uint8_t port;
};
/* Read USB-PD Device discovery info */
#define EC_CMD_USB_PD_DISCOVERY 0x0113
struct __ec_align_size1 ec_params_usb_pd_discovery_entry {
uint16_t vid; /* USB-IF VID */
uint16_t pid; /* USB-IF PID */
uint8_t ptype; /* product type (hub,periph,cable,ama) */
};
/* Override default charge behavior */
#define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
/* Negative port parameters have special meaning */
enum usb_pd_override_ports {
OVERRIDE_DONT_CHARGE = -2,
OVERRIDE_OFF = -1,
/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
};
struct __ec_align2 ec_params_charge_port_override {
int16_t override_port; /* Override port# */
};
/* Read (and delete) one entry of PD event log */
#define EC_CMD_PD_GET_LOG_ENTRY 0x0115
struct __ec_align4 ec_response_pd_log {
uint32_t timestamp; /* relative timestamp in milliseconds */
uint8_t type; /* event type : see PD_EVENT_xx below */
uint8_t size_port; /* [7:5] port number [4:0] payload size in bytes */
uint16_t data; /* type-defined data payload */
uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
};
/* The timestamp is the microsecond counter shifted to get about a ms. */
#define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
#define PD_LOG_SIZE_MASK 0x1f
#define PD_LOG_PORT_MASK 0xe0
#define PD_LOG_PORT_SHIFT 5
#define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
((size) & PD_LOG_SIZE_MASK))
#define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
#define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
/* PD event log : entry types */
/* PD MCU events */
#define PD_EVENT_MCU_BASE 0x00
#define PD_EVENT_MCU_CHARGE (PD_EVENT_MCU_BASE+0)
#define PD_EVENT_MCU_CONNECT (PD_EVENT_MCU_BASE+1)
/* Reserved for custom board event */
#define PD_EVENT_MCU_BOARD_CUSTOM (PD_EVENT_MCU_BASE+2)
/* PD generic accessory events */
#define PD_EVENT_ACC_BASE 0x20
#define PD_EVENT_ACC_RW_FAIL (PD_EVENT_ACC_BASE+0)
#define PD_EVENT_ACC_RW_ERASE (PD_EVENT_ACC_BASE+1)
/* PD power supply events */
#define PD_EVENT_PS_BASE 0x40
#define PD_EVENT_PS_FAULT (PD_EVENT_PS_BASE+0)
/* PD video dongles events */
#define PD_EVENT_VIDEO_BASE 0x60
#define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
#define PD_EVENT_VIDEO_CODEC (PD_EVENT_VIDEO_BASE+1)
/* Returned in the "type" field, when there is no entry available */
#define PD_EVENT_NO_ENTRY 0xff
/*
* PD_EVENT_MCU_CHARGE event definition :
* the payload is "struct usb_chg_measures"
* the data field contains the port state flags as defined below :
*/
/* Port partner is a dual role device */
#define CHARGE_FLAGS_DUAL_ROLE (1 << 15)
/* Port is the pending override port */
#define CHARGE_FLAGS_DELAYED_OVERRIDE (1 << 14)
/* Port is the override port */
#define CHARGE_FLAGS_OVERRIDE (1 << 13)
/* Charger type */
#define CHARGE_FLAGS_TYPE_SHIFT 3
#define CHARGE_FLAGS_TYPE_MASK (0xf << CHARGE_FLAGS_TYPE_SHIFT)
/* Power delivery role */
#define CHARGE_FLAGS_ROLE_MASK (7 << 0)
/*
* PD_EVENT_PS_FAULT data field flags definition :
*/
#define PS_FAULT_OCP 1
#define PS_FAULT_FAST_OCP 2
#define PS_FAULT_OVP 3
#define PS_FAULT_DISCH 4
/*
* PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
*/
struct __ec_align4 mcdp_version {
uint8_t major;
uint8_t minor;
uint16_t build;
};
struct __ec_align4 mcdp_info {
uint8_t family[2];
uint8_t chipid[2];
struct mcdp_version irom;
struct mcdp_version fw;
};
/* struct mcdp_info field decoding */
#define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
#define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
/* Get/Set USB-PD Alternate mode info */
#define EC_CMD_USB_PD_GET_AMODE 0x0116
struct __ec_align_size1 ec_params_usb_pd_get_mode_request {
uint16_t svid_idx; /* SVID index to get */
uint8_t port; /* port */
};
struct __ec_align4 ec_params_usb_pd_get_mode_response {
uint16_t svid; /* SVID */
uint16_t opos; /* Object Position */
uint32_t vdo[6]; /* Mode VDOs */
};
#define EC_CMD_USB_PD_SET_AMODE 0x0117
enum pd_mode_cmd {
PD_EXIT_MODE = 0,
PD_ENTER_MODE = 1,
/* Not a command. Do NOT remove. */
PD_MODE_CMD_COUNT,
};
struct __ec_align4 ec_params_usb_pd_set_mode_request {
uint32_t cmd; /* enum pd_mode_cmd */
uint16_t svid; /* SVID to set */
uint8_t opos; /* Object Position */
uint8_t port; /* port */
};
/* Ask the PD MCU to record a log of a requested type */
#define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
struct __ec_align1 ec_params_pd_write_log_entry {
uint8_t type; /* event type : see PD_EVENT_xx above */
uint8_t port; /* port#, or 0 for events unrelated to a given port */
};
/* Control USB-PD chip */
#define EC_CMD_PD_CONTROL 0x0119
enum ec_pd_control_cmd {
PD_SUSPEND = 0, /* Suspend the PD chip (EC: stop talking to PD) */
PD_RESUME, /* Resume the PD chip (EC: start talking to PD) */
PD_RESET, /* Force reset the PD chip */
PD_CONTROL_DISABLE /* Disable further calls to this command */
};
struct __ec_align1 ec_params_pd_control {
uint8_t chip; /* chip id (should be 0) */
uint8_t subcmd;
};
/* Get info about USB-C SS muxes */
#define EC_CMD_USB_PD_MUX_INFO 0x011A
struct __ec_align1 ec_params_usb_pd_mux_info {
uint8_t port; /* USB-C port number */
};
/* Flags representing mux state */
#define USB_PD_MUX_USB_ENABLED (1 << 0)
#define USB_PD_MUX_DP_ENABLED (1 << 1)
#define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
#define USB_PD_MUX_HPD_IRQ (1 << 3)
struct __ec_align1 ec_response_usb_pd_mux_info {
uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
};
#define EC_CMD_PD_CHIP_INFO 0x011B
struct __ec_align1 ec_params_pd_chip_info {
uint8_t port; /* USB-C port number */
uint8_t renew; /* Force renewal */
};
struct __ec_align2 ec_response_pd_chip_info {
uint16_t vendor_id;
uint16_t product_id;
uint16_t device_id;
union {
uint8_t fw_version_string[8];
uint64_t fw_version_number;
};
};
/* Run RW signature verification and get status */
#define EC_CMD_RWSIG_CHECK_STATUS 0x011C
struct __ec_align4 ec_response_rwsig_check_status {
uint32_t status;
};
/* For controlling RWSIG task */
#define EC_CMD_RWSIG_ACTION 0x011D
enum rwsig_action {
RWSIG_ACTION_ABORT = 0, /* Abort RWSIG and prevent jumping */
RWSIG_ACTION_CONTINUE = 1, /* Jump to RW immediately */
};
struct __ec_align4 ec_params_rwsig_action {
uint32_t action;
};
/* Run verification on a slot */
#define EC_CMD_EFS_VERIFY 0x011E
struct __ec_align1 ec_params_efs_verify {
uint8_t region; /* enum ec_flash_region */
};
/*
* Retrieve info from Cros Board Info store. Response is based on the data
* type. Integers return a uint32. Strings return a string, using the response
* size to determine how big it is.
*/
#define EC_CMD_GET_CROS_BOARD_INFO 0x011F
/*
* Write info into Cros Board Info on EEPROM. Write fails if the board has
* hardware write-protect enabled.
*/
#define EC_CMD_SET_CROS_BOARD_INFO 0x0120
enum cbi_data_tag {
CBI_TAG_BOARD_VERSION = 0, /* uint16_t or uint8_t[] = {minor,major} */
CBI_TAG_OEM_ID = 1, /* uint8_t */
CBI_TAG_SKU_ID = 2, /* uint8_t */
CBI_TAG_COUNT,
};
/*
* Flags to control read operation
*
* RELOAD: Invalidate cache and read data from EEPROM. Useful to verify
* write was successful without reboot.
*/
#define CBI_GET_RELOAD (1 << 0)
struct __ec_align4 ec_params_get_cbi {
uint32_t type; /* enum cbi_data_tag */
uint32_t flag; /* CBI_GET_* */
};
/*
* Flags to control write behavior.
*
* NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
* useful when writing multiple fields in a row.
* INIT: Needs to be set when creating a new CBI from scratch. All fields
* will be initialized to zero first.
*/
#define CBI_SET_NO_SYNC (1 << 0)
#define CBI_SET_INIT (1 << 1)
struct __ec_align1 ec_params_set_cbi {
uint32_t tag; /* enum cbi_data_tag */
uint32_t flag; /* CBI_SET_* */
uint32_t size; /* Data size */
uint8_t data[]; /* For string and raw data */
};
/*****************************************************************************/
/* The command range 0x200-0x2FF is reserved for Rotor. */
/*****************************************************************************/
/*
* Reserve a range of host commands for the CR51 firmware.
*/
#define EC_CMD_CR51_BASE 0x0300
#define EC_CMD_CR51_LAST 0x03FF
/*****************************************************************************/
/* Fingerprint MCU commands: range 0x0400-0x040x */
/* Fingerprint SPI sensor passthru command: prototyping ONLY */
#define EC_CMD_FP_PASSTHRU 0x0400
#define EC_FP_FLAG_NOT_COMPLETE 0x1
struct __ec_align2 ec_params_fp_passthru {
uint16_t len; /* Number of bytes to write then read */
uint16_t flags; /* EC_FP_FLAG_xxx */
uint8_t data[]; /* Data to send */
};
/* Fingerprint sensor configuration command: prototyping ONLY */
#define EC_CMD_FP_SENSOR_CONFIG 0x0401
#define EC_FP_SENSOR_CONFIG_MAX_REGS 16
struct __ec_align2 ec_params_fp_sensor_config {
uint8_t count; /* Number of setup registers */
/*
* the value to send to each of the 'count' setup registers
* is stored in the 'data' array for 'len' bytes just after
* the previous one.
*/
uint8_t len[EC_FP_SENSOR_CONFIG_MAX_REGS];
uint8_t data[];
};
/* Configure the Fingerprint MCU behavior */
#define EC_CMD_FP_MODE 0x0402
/* Put the sensor in its lowest power mode */
#define FP_MODE_DEEPSLEEP (1<<0)
/* Wait to see a finger on the sensor */
#define FP_MODE_FINGER_DOWN (1<<1)
/* Poll until the finger has left the sensor */
#define FP_MODE_FINGER_UP (1<<2)
/* Capture the current finger image */
#define FP_MODE_CAPTURE (1<<3)
/* special value: don't change anything just read back current mode */
#define FP_MODE_DONT_CHANGE (1<<31)
struct __ec_align4 ec_params_fp_mode {
uint32_t mode; /* as defined by FP_MODE_ constants */
/* TBD */
};
struct __ec_align4 ec_response_fp_mode {
uint32_t mode; /* as defined by FP_MODE_ constants */
/* TBD */
};
/* Retrieve Fingerprint sensor information */
#define EC_CMD_FP_INFO 0x0403
struct __ec_align2 ec_response_fp_info {
/* Sensor identification */
uint32_t vendor_id;
uint32_t product_id;
uint32_t model_id;
uint32_t version;
/* Image frame characteristics */
uint32_t frame_size;
uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
uint16_t width;
uint16_t height;
uint16_t bpp;
};
/* Get the last captured finger frame: TODO: will be AES-encrypted */
#define EC_CMD_FP_FRAME 0x0404
struct __ec_align4 ec_params_fp_frame {
uint32_t offset;
uint32_t size;
};
/*****************************************************************************/
/* Touchpad MCU commands: range 0x0500-0x05FF */
/* Perform touchpad self test */
#define EC_CMD_TP_SELF_TEST 0x0500
/* Get number of frame types, and the size of each type */
#define EC_CMD_TP_FRAME_INFO 0x0501
struct __ec_align4 ec_response_tp_frame_info {
uint32_t n_frames;
uint32_t frame_sizes[0];
};
/* Create a snapshot of current frame readings */
#define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
/* Read the frame */
#define EC_CMD_TP_FRAME_GET 0x0503
struct __ec_align4 ec_params_tp_frame_get {
uint32_t frame_index;
uint32_t offset;
uint32_t size;
};
/*****************************************************************************/
/*
* Reserve a range of host commands for board-specific, experimental, or
* special purpose features. These can be (re)used without updating this file.
*
* CAUTION: Don't go nuts with this. Shipping products should document ALL
* their EC commands for easier development, testing, debugging, and support.
*
* All commands MUST be #defined to be 4-digit UPPER CASE hex values
* (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
*
* In your experimental code, you may want to do something like this:
*
* #define EC_CMD_MAGIC_FOO 0x0000
* #define EC_CMD_MAGIC_BAR 0x0001
* #define EC_CMD_MAGIC_HEY 0x0002
*
* DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
* EC_VER_MASK(0);
*
* DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
* EC_VER_MASK(0);
*
* DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
* EC_VER_MASK(0);
*/
#define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
#define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
/*
* Given the private host command offset, calculate the true private host
* command value.
*/
#define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
(EC_CMD_BOARD_SPECIFIC_BASE + (command))
/*****************************************************************************/
/*
* Passthru commands
*
* Some platforms have sub-processors chained to each other. For example.
*
* AP <--> EC <--> PD MCU
*
* The top 2 bits of the command number are used to indicate which device the
* command is intended for. Device 0 is always the device receiving the
* command; other device mapping is board-specific.
*
* When a device receives a command to be passed to a sub-processor, it passes
* it on with the device number set back to 0. This allows the sub-processor
* to remain blissfully unaware of whether the command originated on the next
* device up the chain, or was passed through from the AP.
*
* In the above example, if the AP wants to send command 0x0002 to the PD MCU,
* AP sends command 0x4002 to the EC
* EC sends command 0x0002 to the PD MCU
* EC forwards PD MCU response back to the AP
*/
/* Offset and max command number for sub-device n */
#define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
#define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
/*****************************************************************************/
/*
* Deprecated constants. These constants have been renamed for clarity. The
* meaning and size has not changed. Programs that use the old names should
* switch to the new names soon, as the old names may not be carried forward
* forever.
*/
#define EC_HOST_PARAM_SIZE EC_PROTO2_MAX_PARAM_SIZE
#define EC_LPC_ADDR_OLD_PARAM EC_HOST_CMD_REGION1
#define EC_OLD_PARAM_SIZE EC_HOST_CMD_REGION_SIZE
#endif /* !__ACPI__ && !__KERNEL__ */
#endif /* __CROS_EC_COMMANDS_H */