u-boot/drivers/net/phy/mv88e61xx.c
Tim Harvey 69280961d7 net: mv88e61xx: fix autonegotiation on ports
phy_reset should be called before autoneg is setup

The only boards using MV88E61XX_SWITCH are:
 - alliedtelesis/SBx81LIFKW
 - alliedtelesis/SBx81LIFXCAT
 - gateworks/gw_ventana

Cc: Chris Packham <chris.packham@alliedtelesis.co.nz>
Signed-off-by: Tim Harvey <tharvey@gateworks.com>
Reviewed-by: Chris Packham <chris.packham@alliedtelesis.co.nz>
2019-02-15 13:01:28 +01:00

1085 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2015
* Elecsys Corporation <www.elecsyscorp.com>
* Kevin Smith <kevin.smith@elecsyscorp.com>
*
* Original driver:
* (C) Copyright 2009
* Marvell Semiconductor <www.marvell.com>
* Prafulla Wadaskar <prafulla@marvell.com>
*/
/*
* PHY driver for mv88e61xx ethernet switches.
*
* This driver configures the mv88e61xx for basic use as a PHY. The switch
* supports a VLAN configuration that determines how traffic will be routed
* between the ports. This driver uses a simple configuration that routes
* traffic from each PHY port only to the CPU port, and from the CPU port to
* any PHY port.
*
* The configuration determines which PHY ports to activate using the
* CONFIG_MV88E61XX_PHY_PORTS bitmask. Setting bit 0 will activate port 0, bit
* 1 activates port 1, etc. Do not set the bit for the port the CPU is
* connected to unless it is connected over a PHY interface (not MII).
*
* This driver was written for and tested on the mv88e6176 with an SGMII
* connection. Other configurations should be supported, but some additions or
* changes may be required.
*/
#include <common.h>
#include <bitfield.h>
#include <errno.h>
#include <malloc.h>
#include <miiphy.h>
#include <netdev.h>
#define PHY_AUTONEGOTIATE_TIMEOUT 5000
#define PORT_COUNT 11
#define PORT_MASK ((1 << PORT_COUNT) - 1)
/* Device addresses */
#define DEVADDR_PHY(p) (p)
#define DEVADDR_PORT(p) (0x10 + (p))
#define DEVADDR_SERDES 0x0F
#define DEVADDR_GLOBAL_1 0x1B
#define DEVADDR_GLOBAL_2 0x1C
/* SMI indirection registers for multichip addressing mode */
#define SMI_CMD_REG 0x00
#define SMI_DATA_REG 0x01
/* Global registers */
#define GLOBAL1_STATUS 0x00
#define GLOBAL1_CTRL 0x04
#define GLOBAL1_MON_CTRL 0x1A
/* Global 2 registers */
#define GLOBAL2_REG_PHY_CMD 0x18
#define GLOBAL2_REG_PHY_DATA 0x19
/* Port registers */
#define PORT_REG_STATUS 0x00
#define PORT_REG_PHYS_CTRL 0x01
#define PORT_REG_SWITCH_ID 0x03
#define PORT_REG_CTRL 0x04
#define PORT_REG_VLAN_MAP 0x06
#define PORT_REG_VLAN_ID 0x07
/* Phy registers */
#define PHY_REG_CTRL1 0x10
#define PHY_REG_STATUS1 0x11
#define PHY_REG_PAGE 0x16
/* Serdes registers */
#define SERDES_REG_CTRL_1 0x10
/* Phy page numbers */
#define PHY_PAGE_COPPER 0
#define PHY_PAGE_SERDES 1
/* Register fields */
#define GLOBAL1_CTRL_SWRESET BIT(15)
#define GLOBAL1_MON_CTRL_CPUDEST_SHIFT 4
#define GLOBAL1_MON_CTRL_CPUDEST_WIDTH 4
#define PORT_REG_STATUS_LINK BIT(11)
#define PORT_REG_STATUS_DUPLEX BIT(10)
#define PORT_REG_STATUS_SPEED_SHIFT 8
#define PORT_REG_STATUS_SPEED_WIDTH 2
#define PORT_REG_STATUS_SPEED_10 0
#define PORT_REG_STATUS_SPEED_100 1
#define PORT_REG_STATUS_SPEED_1000 2
#define PORT_REG_STATUS_CMODE_MASK 0xF
#define PORT_REG_STATUS_CMODE_100BASE_X 0x8
#define PORT_REG_STATUS_CMODE_1000BASE_X 0x9
#define PORT_REG_STATUS_CMODE_SGMII 0xa
#define PORT_REG_PHYS_CTRL_PCS_AN_EN BIT(10)
#define PORT_REG_PHYS_CTRL_PCS_AN_RST BIT(9)
#define PORT_REG_PHYS_CTRL_FC_VALUE BIT(7)
#define PORT_REG_PHYS_CTRL_FC_FORCE BIT(6)
#define PORT_REG_PHYS_CTRL_LINK_VALUE BIT(5)
#define PORT_REG_PHYS_CTRL_LINK_FORCE BIT(4)
#define PORT_REG_PHYS_CTRL_DUPLEX_VALUE BIT(3)
#define PORT_REG_PHYS_CTRL_DUPLEX_FORCE BIT(2)
#define PORT_REG_PHYS_CTRL_SPD1000 BIT(1)
#define PORT_REG_PHYS_CTRL_SPD_MASK (BIT(1) | BIT(0))
#define PORT_REG_CTRL_PSTATE_SHIFT 0
#define PORT_REG_CTRL_PSTATE_WIDTH 2
#define PORT_REG_VLAN_ID_DEF_VID_SHIFT 0
#define PORT_REG_VLAN_ID_DEF_VID_WIDTH 12
#define PORT_REG_VLAN_MAP_TABLE_SHIFT 0
#define PORT_REG_VLAN_MAP_TABLE_WIDTH 11
#define SERDES_REG_CTRL_1_FORCE_LINK BIT(10)
#define PHY_REG_CTRL1_ENERGY_DET_SHIFT 8
#define PHY_REG_CTRL1_ENERGY_DET_WIDTH 2
/* Field values */
#define PORT_REG_CTRL_PSTATE_DISABLED 0
#define PORT_REG_CTRL_PSTATE_FORWARD 3
#define PHY_REG_CTRL1_ENERGY_DET_OFF 0
#define PHY_REG_CTRL1_ENERGY_DET_SENSE_ONLY 2
#define PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT 3
/* PHY Status Register */
#define PHY_REG_STATUS1_SPEED 0xc000
#define PHY_REG_STATUS1_GBIT 0x8000
#define PHY_REG_STATUS1_100 0x4000
#define PHY_REG_STATUS1_DUPLEX 0x2000
#define PHY_REG_STATUS1_SPDDONE 0x0800
#define PHY_REG_STATUS1_LINK 0x0400
#define PHY_REG_STATUS1_ENERGY 0x0010
/*
* Macros for building commands for indirect addressing modes. These are valid
* for both the indirect multichip addressing mode and the PHY indirection
* required for the writes to any PHY register.
*/
#define SMI_BUSY BIT(15)
#define SMI_CMD_CLAUSE_22 BIT(12)
#define SMI_CMD_CLAUSE_22_OP_READ (2 << 10)
#define SMI_CMD_CLAUSE_22_OP_WRITE (1 << 10)
#define SMI_CMD_READ (SMI_BUSY | SMI_CMD_CLAUSE_22 | \
SMI_CMD_CLAUSE_22_OP_READ)
#define SMI_CMD_WRITE (SMI_BUSY | SMI_CMD_CLAUSE_22 | \
SMI_CMD_CLAUSE_22_OP_WRITE)
#define SMI_CMD_ADDR_SHIFT 5
#define SMI_CMD_ADDR_WIDTH 5
#define SMI_CMD_REG_SHIFT 0
#define SMI_CMD_REG_WIDTH 5
/* Check for required macros */
#ifndef CONFIG_MV88E61XX_PHY_PORTS
#error Define CONFIG_MV88E61XX_PHY_PORTS to indicate which physical ports \
to activate
#endif
#ifndef CONFIG_MV88E61XX_CPU_PORT
#error Define CONFIG_MV88E61XX_CPU_PORT to the port the CPU is attached to
#endif
/*
* These are ports without PHYs that may be wired directly
* to other serdes interfaces
*/
#ifndef CONFIG_MV88E61XX_FIXED_PORTS
#define CONFIG_MV88E61XX_FIXED_PORTS 0
#endif
/* ID register values for different switch models */
#define PORT_SWITCH_ID_6096 0x0980
#define PORT_SWITCH_ID_6097 0x0990
#define PORT_SWITCH_ID_6172 0x1720
#define PORT_SWITCH_ID_6176 0x1760
#define PORT_SWITCH_ID_6240 0x2400
#define PORT_SWITCH_ID_6352 0x3520
struct mv88e61xx_phy_priv {
struct mii_dev *mdio_bus;
int smi_addr;
int id;
};
static inline int smi_cmd(int cmd, int addr, int reg)
{
cmd = bitfield_replace(cmd, SMI_CMD_ADDR_SHIFT, SMI_CMD_ADDR_WIDTH,
addr);
cmd = bitfield_replace(cmd, SMI_CMD_REG_SHIFT, SMI_CMD_REG_WIDTH, reg);
return cmd;
}
static inline int smi_cmd_read(int addr, int reg)
{
return smi_cmd(SMI_CMD_READ, addr, reg);
}
static inline int smi_cmd_write(int addr, int reg)
{
return smi_cmd(SMI_CMD_WRITE, addr, reg);
}
__weak int mv88e61xx_hw_reset(struct phy_device *phydev)
{
return 0;
}
/* Wait for the current SMI indirect command to complete */
static int mv88e61xx_smi_wait(struct mii_dev *bus, int smi_addr)
{
int val;
u32 timeout = 100;
do {
val = bus->read(bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG);
if (val >= 0 && (val & SMI_BUSY) == 0)
return 0;
mdelay(1);
} while (--timeout);
puts("SMI busy timeout\n");
return -ETIMEDOUT;
}
/*
* The mv88e61xx has three types of addresses: the smi bus address, the device
* address, and the register address. The smi bus address distinguishes it on
* the smi bus from other PHYs or switches. The device address determines
* which on-chip register set you are reading/writing (the various PHYs, their
* associated ports, or global configuration registers). The register address
* is the offset of the register you are reading/writing.
*
* When the mv88e61xx is hardware configured to have address zero, it behaves in
* single-chip addressing mode, where it responds to all SMI addresses, using
* the smi address as its device address. This obviously only works when this
* is the only chip on the SMI bus. This allows the driver to access device
* registers without using indirection. When the chip is configured to a
* non-zero address, it only responds to that SMI address and requires indirect
* writes to access the different device addresses.
*/
static int mv88e61xx_reg_read(struct phy_device *phydev, int dev, int reg)
{
struct mv88e61xx_phy_priv *priv = phydev->priv;
struct mii_dev *mdio_bus = priv->mdio_bus;
int smi_addr = priv->smi_addr;
int res;
/* In single-chip mode, the device can be addressed directly */
if (smi_addr == 0)
return mdio_bus->read(mdio_bus, dev, MDIO_DEVAD_NONE, reg);
/* Wait for the bus to become free */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
/* Issue the read command */
res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
smi_cmd_read(dev, reg));
if (res < 0)
return res;
/* Wait for the read command to complete */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
/* Read the data */
res = mdio_bus->read(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_DATA_REG);
if (res < 0)
return res;
return bitfield_extract(res, 0, 16);
}
/* See the comment above mv88e61xx_reg_read */
static int mv88e61xx_reg_write(struct phy_device *phydev, int dev, int reg,
u16 val)
{
struct mv88e61xx_phy_priv *priv = phydev->priv;
struct mii_dev *mdio_bus = priv->mdio_bus;
int smi_addr = priv->smi_addr;
int res;
/* In single-chip mode, the device can be addressed directly */
if (smi_addr == 0) {
return mdio_bus->write(mdio_bus, dev, MDIO_DEVAD_NONE, reg,
val);
}
/* Wait for the bus to become free */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
/* Set the data to write */
res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE,
SMI_DATA_REG, val);
if (res < 0)
return res;
/* Issue the write command */
res = mdio_bus->write(mdio_bus, smi_addr, MDIO_DEVAD_NONE, SMI_CMD_REG,
smi_cmd_write(dev, reg));
if (res < 0)
return res;
/* Wait for the write command to complete */
res = mv88e61xx_smi_wait(mdio_bus, smi_addr);
if (res < 0)
return res;
return 0;
}
static int mv88e61xx_phy_wait(struct phy_device *phydev)
{
int val;
u32 timeout = 100;
do {
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_CMD);
if (val >= 0 && (val & SMI_BUSY) == 0)
return 0;
mdelay(1);
} while (--timeout);
return -ETIMEDOUT;
}
static int mv88e61xx_phy_read_indirect(struct mii_dev *smi_wrapper, int dev,
int devad, int reg)
{
struct phy_device *phydev;
int res;
phydev = (struct phy_device *)smi_wrapper->priv;
/* Issue command to read */
res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_CMD,
smi_cmd_read(dev, reg));
/* Wait for data to be read */
res = mv88e61xx_phy_wait(phydev);
if (res < 0)
return res;
/* Read retrieved data */
return mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_DATA);
}
static int mv88e61xx_phy_write_indirect(struct mii_dev *smi_wrapper, int dev,
int devad, int reg, u16 data)
{
struct phy_device *phydev;
int res;
phydev = (struct phy_device *)smi_wrapper->priv;
/* Set the data to write */
res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_DATA, data);
if (res < 0)
return res;
/* Issue the write command */
res = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_2,
GLOBAL2_REG_PHY_CMD,
smi_cmd_write(dev, reg));
if (res < 0)
return res;
/* Wait for command to complete */
return mv88e61xx_phy_wait(phydev);
}
/* Wrapper function to make calls to phy_read_indirect simpler */
static int mv88e61xx_phy_read(struct phy_device *phydev, int phy, int reg)
{
return mv88e61xx_phy_read_indirect(phydev->bus, DEVADDR_PHY(phy),
MDIO_DEVAD_NONE, reg);
}
/* Wrapper function to make calls to phy_read_indirect simpler */
static int mv88e61xx_phy_write(struct phy_device *phydev, int phy,
int reg, u16 val)
{
return mv88e61xx_phy_write_indirect(phydev->bus, DEVADDR_PHY(phy),
MDIO_DEVAD_NONE, reg, val);
}
static int mv88e61xx_port_read(struct phy_device *phydev, u8 port, u8 reg)
{
return mv88e61xx_reg_read(phydev, DEVADDR_PORT(port), reg);
}
static int mv88e61xx_port_write(struct phy_device *phydev, u8 port, u8 reg,
u16 val)
{
return mv88e61xx_reg_write(phydev, DEVADDR_PORT(port), reg, val);
}
static int mv88e61xx_set_page(struct phy_device *phydev, u8 phy, u8 page)
{
return mv88e61xx_phy_write(phydev, phy, PHY_REG_PAGE, page);
}
static int mv88e61xx_get_switch_id(struct phy_device *phydev)
{
int res;
res = mv88e61xx_port_read(phydev, 0, PORT_REG_SWITCH_ID);
if (res < 0)
return res;
return res & 0xfff0;
}
static bool mv88e61xx_6352_family(struct phy_device *phydev)
{
struct mv88e61xx_phy_priv *priv = phydev->priv;
switch (priv->id) {
case PORT_SWITCH_ID_6172:
case PORT_SWITCH_ID_6176:
case PORT_SWITCH_ID_6240:
case PORT_SWITCH_ID_6352:
return true;
}
return false;
}
static int mv88e61xx_get_cmode(struct phy_device *phydev, u8 port)
{
int res;
res = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
if (res < 0)
return res;
return res & PORT_REG_STATUS_CMODE_MASK;
}
static int mv88e61xx_parse_status(struct phy_device *phydev)
{
unsigned int speed;
unsigned int mii_reg;
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE, PHY_REG_STATUS1);
if ((mii_reg & PHY_REG_STATUS1_LINK) &&
!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
int i = 0;
puts("Waiting for PHY realtime link");
while (!(mii_reg & PHY_REG_STATUS1_SPDDONE)) {
/* Timeout reached ? */
if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
puts(" TIMEOUT !\n");
phydev->link = 0;
break;
}
if ((i++ % 1000) == 0)
putc('.');
udelay(1000);
mii_reg = phy_read(phydev, MDIO_DEVAD_NONE,
PHY_REG_STATUS1);
}
puts(" done\n");
udelay(500000); /* another 500 ms (results in faster booting) */
} else {
if (mii_reg & PHY_REG_STATUS1_LINK)
phydev->link = 1;
else
phydev->link = 0;
}
if (mii_reg & PHY_REG_STATUS1_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
speed = mii_reg & PHY_REG_STATUS1_SPEED;
switch (speed) {
case PHY_REG_STATUS1_GBIT:
phydev->speed = SPEED_1000;
break;
case PHY_REG_STATUS1_100:
phydev->speed = SPEED_100;
break;
default:
phydev->speed = SPEED_10;
break;
}
return 0;
}
static int mv88e61xx_switch_reset(struct phy_device *phydev)
{
int time;
int val;
u8 port;
/* Disable all ports */
for (port = 0; port < PORT_COUNT; port++) {
val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
PORT_REG_CTRL_PSTATE_WIDTH,
PORT_REG_CTRL_PSTATE_DISABLED);
val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
if (val < 0)
return val;
}
/* Wait 2 ms for queues to drain */
udelay(2000);
/* Reset switch */
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_CTRL);
if (val < 0)
return val;
val |= GLOBAL1_CTRL_SWRESET;
val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
GLOBAL1_CTRL, val);
if (val < 0)
return val;
/* Wait up to 1 second for switch reset complete */
for (time = 1000; time; time--) {
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1,
GLOBAL1_CTRL);
if (val >= 0 && ((val & GLOBAL1_CTRL_SWRESET) == 0))
break;
udelay(1000);
}
if (!time)
return -ETIMEDOUT;
return 0;
}
static int mv88e61xx_serdes_init(struct phy_device *phydev)
{
int val;
val = mv88e61xx_set_page(phydev, DEVADDR_SERDES, PHY_PAGE_SERDES);
if (val < 0)
return val;
/* Power up serdes module */
val = mv88e61xx_phy_read(phydev, DEVADDR_SERDES, MII_BMCR);
if (val < 0)
return val;
val &= ~(BMCR_PDOWN);
val = mv88e61xx_phy_write(phydev, DEVADDR_SERDES, MII_BMCR, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_port_enable(struct phy_device *phydev, u8 port)
{
int val;
val = mv88e61xx_port_read(phydev, port, PORT_REG_CTRL);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_CTRL_PSTATE_SHIFT,
PORT_REG_CTRL_PSTATE_WIDTH,
PORT_REG_CTRL_PSTATE_FORWARD);
val = mv88e61xx_port_write(phydev, port, PORT_REG_CTRL, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_port_set_vlan(struct phy_device *phydev, u8 port,
u16 mask)
{
int val;
/* Set VID to port number plus one */
val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_ID);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_VLAN_ID_DEF_VID_SHIFT,
PORT_REG_VLAN_ID_DEF_VID_WIDTH,
port + 1);
val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_ID, val);
if (val < 0)
return val;
/* Set VID mask */
val = mv88e61xx_port_read(phydev, port, PORT_REG_VLAN_MAP);
if (val < 0)
return val;
val = bitfield_replace(val, PORT_REG_VLAN_MAP_TABLE_SHIFT,
PORT_REG_VLAN_MAP_TABLE_WIDTH,
mask);
val = mv88e61xx_port_write(phydev, port, PORT_REG_VLAN_MAP, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_read_port_config(struct phy_device *phydev, u8 port)
{
int res;
int val;
bool forced = false;
val = mv88e61xx_port_read(phydev, port, PORT_REG_STATUS);
if (val < 0)
return val;
if (!(val & PORT_REG_STATUS_LINK)) {
/* Temporarily force link to read port configuration */
u32 timeout = 100;
forced = true;
val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
if (val < 0)
return val;
val |= (PORT_REG_PHYS_CTRL_LINK_FORCE |
PORT_REG_PHYS_CTRL_LINK_VALUE);
val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
val);
if (val < 0)
return val;
/* Wait for status register to reflect forced link */
do {
val = mv88e61xx_port_read(phydev, port,
PORT_REG_STATUS);
if (val < 0) {
res = -EIO;
goto unforce;
}
if (val & PORT_REG_STATUS_LINK)
break;
} while (--timeout);
if (timeout == 0) {
res = -ETIMEDOUT;
goto unforce;
}
}
if (val & PORT_REG_STATUS_DUPLEX)
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
val = bitfield_extract(val, PORT_REG_STATUS_SPEED_SHIFT,
PORT_REG_STATUS_SPEED_WIDTH);
switch (val) {
case PORT_REG_STATUS_SPEED_1000:
phydev->speed = SPEED_1000;
break;
case PORT_REG_STATUS_SPEED_100:
phydev->speed = SPEED_100;
break;
default:
phydev->speed = SPEED_10;
break;
}
res = 0;
unforce:
if (forced) {
val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
if (val < 0)
return val;
val &= ~(PORT_REG_PHYS_CTRL_LINK_FORCE |
PORT_REG_PHYS_CTRL_LINK_VALUE);
val = mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
val);
if (val < 0)
return val;
}
return res;
}
static int mv88e61xx_fixed_port_setup(struct phy_device *phydev, u8 port)
{
int val;
val = mv88e61xx_port_read(phydev, port, PORT_REG_PHYS_CTRL);
if (val < 0)
return val;
val &= ~(PORT_REG_PHYS_CTRL_SPD_MASK |
PORT_REG_PHYS_CTRL_FC_VALUE);
val |= PORT_REG_PHYS_CTRL_PCS_AN_EN |
PORT_REG_PHYS_CTRL_PCS_AN_RST |
PORT_REG_PHYS_CTRL_FC_FORCE |
PORT_REG_PHYS_CTRL_DUPLEX_VALUE |
PORT_REG_PHYS_CTRL_DUPLEX_FORCE |
PORT_REG_PHYS_CTRL_SPD1000;
if (port == CONFIG_MV88E61XX_CPU_PORT)
val |= PORT_REG_PHYS_CTRL_LINK_VALUE |
PORT_REG_PHYS_CTRL_LINK_FORCE;
return mv88e61xx_port_write(phydev, port, PORT_REG_PHYS_CTRL,
val);
}
static int mv88e61xx_set_cpu_port(struct phy_device *phydev)
{
int val;
/* Set CPUDest */
val = mv88e61xx_reg_read(phydev, DEVADDR_GLOBAL_1, GLOBAL1_MON_CTRL);
if (val < 0)
return val;
val = bitfield_replace(val, GLOBAL1_MON_CTRL_CPUDEST_SHIFT,
GLOBAL1_MON_CTRL_CPUDEST_WIDTH,
CONFIG_MV88E61XX_CPU_PORT);
val = mv88e61xx_reg_write(phydev, DEVADDR_GLOBAL_1,
GLOBAL1_MON_CTRL, val);
if (val < 0)
return val;
/* Allow CPU to route to any port */
val = PORT_MASK & ~(1 << CONFIG_MV88E61XX_CPU_PORT);
val = mv88e61xx_port_set_vlan(phydev, CONFIG_MV88E61XX_CPU_PORT, val);
if (val < 0)
return val;
/* Enable CPU port */
val = mv88e61xx_port_enable(phydev, CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
val = mv88e61xx_read_port_config(phydev, CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
/* If CPU is connected to serdes, initialize serdes */
if (mv88e61xx_6352_family(phydev)) {
val = mv88e61xx_get_cmode(phydev, CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
if (val == PORT_REG_STATUS_CMODE_100BASE_X ||
val == PORT_REG_STATUS_CMODE_1000BASE_X ||
val == PORT_REG_STATUS_CMODE_SGMII) {
val = mv88e61xx_serdes_init(phydev);
if (val < 0)
return val;
}
} else {
val = mv88e61xx_fixed_port_setup(phydev,
CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
}
return 0;
}
static int mv88e61xx_switch_init(struct phy_device *phydev)
{
static int init;
int res;
if (init)
return 0;
res = mv88e61xx_switch_reset(phydev);
if (res < 0)
return res;
res = mv88e61xx_set_cpu_port(phydev);
if (res < 0)
return res;
init = 1;
return 0;
}
static int mv88e61xx_phy_enable(struct phy_device *phydev, u8 phy)
{
int val;
val = mv88e61xx_phy_read(phydev, phy, MII_BMCR);
if (val < 0)
return val;
val &= ~(BMCR_PDOWN);
val = mv88e61xx_phy_write(phydev, phy, MII_BMCR, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_phy_setup(struct phy_device *phydev, u8 phy)
{
int val;
/*
* Enable energy-detect sensing on PHY, used to determine when a PHY
* port is physically connected
*/
val = mv88e61xx_phy_read(phydev, phy, PHY_REG_CTRL1);
if (val < 0)
return val;
val = bitfield_replace(val, PHY_REG_CTRL1_ENERGY_DET_SHIFT,
PHY_REG_CTRL1_ENERGY_DET_WIDTH,
PHY_REG_CTRL1_ENERGY_DET_SENSE_XMIT);
val = mv88e61xx_phy_write(phydev, phy, PHY_REG_CTRL1, val);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_phy_config_port(struct phy_device *phydev, u8 phy)
{
int val;
val = mv88e61xx_port_enable(phydev, phy);
if (val < 0)
return val;
val = mv88e61xx_port_set_vlan(phydev, phy,
1 << CONFIG_MV88E61XX_CPU_PORT);
if (val < 0)
return val;
return 0;
}
static int mv88e61xx_probe(struct phy_device *phydev)
{
struct mii_dev *smi_wrapper;
struct mv88e61xx_phy_priv *priv;
int res;
res = mv88e61xx_hw_reset(phydev);
if (res < 0)
return res;
priv = malloc(sizeof(*priv));
if (!priv)
return -ENOMEM;
memset(priv, 0, sizeof(*priv));
/*
* This device requires indirect reads/writes to the PHY registers
* which the generic PHY code can't handle. Make a wrapper MII device
* to handle reads/writes
*/
smi_wrapper = mdio_alloc();
if (!smi_wrapper) {
free(priv);
return -ENOMEM;
}
/*
* Store the mdio bus in the private data, as we are going to replace
* the bus with the wrapper bus
*/
priv->mdio_bus = phydev->bus;
/*
* Store the smi bus address in private data. This lets us use the
* phydev addr field for device address instead, as the genphy code
* expects.
*/
priv->smi_addr = phydev->addr;
/*
* Store the phy_device in the wrapper mii device. This lets us get it
* back when genphy functions call phy_read/phy_write.
*/
smi_wrapper->priv = phydev;
strncpy(smi_wrapper->name, "indirect mii", sizeof(smi_wrapper->name));
smi_wrapper->read = mv88e61xx_phy_read_indirect;
smi_wrapper->write = mv88e61xx_phy_write_indirect;
/* Replace the bus with the wrapper device */
phydev->bus = smi_wrapper;
phydev->priv = priv;
priv->id = mv88e61xx_get_switch_id(phydev);
return 0;
}
static int mv88e61xx_phy_config(struct phy_device *phydev)
{
int res;
int i;
int ret = -1;
res = mv88e61xx_switch_init(phydev);
if (res < 0)
return res;
for (i = 0; i < PORT_COUNT; i++) {
if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
phydev->addr = i;
res = mv88e61xx_phy_enable(phydev, i);
if (res < 0) {
printf("Error enabling PHY %i\n", i);
continue;
}
res = mv88e61xx_phy_setup(phydev, i);
if (res < 0) {
printf("Error setting up PHY %i\n", i);
continue;
}
res = mv88e61xx_phy_config_port(phydev, i);
if (res < 0) {
printf("Error configuring PHY %i\n", i);
continue;
}
res = phy_reset(phydev);
if (res < 0) {
printf("Error resetting PHY %i\n", i);
continue;
}
res = genphy_config_aneg(phydev);
if (res < 0) {
printf("Error setting PHY %i autoneg\n", i);
continue;
}
/* Return success if any PHY succeeds */
ret = 0;
} else if ((1 << i) & CONFIG_MV88E61XX_FIXED_PORTS) {
res = mv88e61xx_fixed_port_setup(phydev, i);
if (res < 0) {
printf("Error configuring port %i\n", i);
continue;
}
}
}
return ret;
}
static int mv88e61xx_phy_is_connected(struct phy_device *phydev)
{
int val;
val = mv88e61xx_phy_read(phydev, phydev->addr, PHY_REG_STATUS1);
if (val < 0)
return 0;
/*
* After reset, the energy detect signal remains high for a few seconds
* regardless of whether a cable is connected. This function will
* return false positives during this time.
*/
return (val & PHY_REG_STATUS1_ENERGY) == 0;
}
static int mv88e61xx_phy_startup(struct phy_device *phydev)
{
int i;
int link = 0;
int res;
int speed = phydev->speed;
int duplex = phydev->duplex;
for (i = 0; i < PORT_COUNT; i++) {
if ((1 << i) & CONFIG_MV88E61XX_PHY_PORTS) {
phydev->addr = i;
if (!mv88e61xx_phy_is_connected(phydev))
continue;
res = genphy_update_link(phydev);
if (res < 0)
continue;
res = mv88e61xx_parse_status(phydev);
if (res < 0)
continue;
link = (link || phydev->link);
}
}
phydev->link = link;
/* Restore CPU interface speed and duplex after it was changed for
* other ports */
phydev->speed = speed;
phydev->duplex = duplex;
return 0;
}
static struct phy_driver mv88e61xx_driver = {
.name = "Marvell MV88E61xx",
.uid = 0x01410eb1,
.mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.probe = mv88e61xx_probe,
.config = mv88e61xx_phy_config,
.startup = mv88e61xx_phy_startup,
.shutdown = &genphy_shutdown,
};
static struct phy_driver mv88e609x_driver = {
.name = "Marvell MV88E609x",
.uid = 0x1410c89,
.mask = 0xfffffff0,
.features = PHY_GBIT_FEATURES,
.probe = mv88e61xx_probe,
.config = mv88e61xx_phy_config,
.startup = mv88e61xx_phy_startup,
.shutdown = &genphy_shutdown,
};
int phy_mv88e61xx_init(void)
{
phy_register(&mv88e61xx_driver);
phy_register(&mv88e609x_driver);
return 0;
}
/*
* Overload weak get_phy_id definition since we need non-standard functions
* to read PHY registers
*/
int get_phy_id(struct mii_dev *bus, int smi_addr, int devad, u32 *phy_id)
{
struct phy_device temp_phy;
struct mv88e61xx_phy_priv temp_priv;
struct mii_dev temp_mii;
int val;
/*
* Buid temporary data structures that the chip reading code needs to
* read the ID
*/
temp_priv.mdio_bus = bus;
temp_priv.smi_addr = smi_addr;
temp_phy.priv = &temp_priv;
temp_mii.priv = &temp_phy;
val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID1);
if (val < 0)
return -EIO;
*phy_id = val << 16;
val = mv88e61xx_phy_read_indirect(&temp_mii, 0, devad, MII_PHYSID2);
if (val < 0)
return -EIO;
*phy_id |= (val & 0xffff);
return 0;
}