u-boot/common/image.c
Kumar Gala e822d7fc4d [new uImage] Use lmb for bootm allocations
Convert generic ramdisk_high(), get_boot_cmdline(), get_boot_kbd()
functions over to using lmb for allocation of the ramdisk, command line
and kernel bd info.

Convert PPC specific fdt_relocate() to use lmb for allocation of the device
tree.

Provided a weak function that board code can call to do additional
lmb reserves if needed.

Also introduce the concept of bootmap_base to specify the offset in
physical memory that the bootmap is located at.  This is used for
allocations of the cmdline, kernel bd, and device tree as they should
be contained within bootmap_base and bootmap_base + CFG_BOOTMAPSZ.

Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
2008-02-29 13:15:56 +01:00

943 lines
25 KiB
C

/*
* (C) Copyright 2008 Semihalf
*
* (C) Copyright 2000-2006
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#define DEBUG
#ifndef USE_HOSTCC
#include <common.h>
#include <watchdog.h>
#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif
#ifdef CONFIG_HAS_DATAFLASH
#include <dataflash.h>
#endif
#ifdef CONFIG_LOGBUFFER
#include <logbuff.h>
#endif
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE)
#include <rtc.h>
#endif
#if defined(CONFIG_FIT)
#include <fdt.h>
#include <libfdt.h>
#include <fdt_support.h>
#endif
#ifdef CONFIG_CMD_BDI
extern int do_bdinfo(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
#endif
DECLARE_GLOBAL_DATA_PTR;
static image_header_t* image_get_ramdisk (cmd_tbl_t *cmdtp, int flag,
int argc, char *argv[],
ulong rd_addr, uint8_t arch, int verify);
#else
#include "mkimage.h"
#endif /* USE_HOSTCC*/
#include <image.h>
unsigned long crc32 (unsigned long, const unsigned char *, unsigned int);
int image_check_hcrc (image_header_t *hdr)
{
ulong hcrc;
ulong len = image_get_header_size ();
image_header_t header;
/* Copy header so we can blank CRC field for re-calculation */
memmove (&header, (char *)hdr, image_get_header_size ());
image_set_hcrc (&header, 0);
hcrc = crc32 (0, (unsigned char *)&header, len);
return (hcrc == image_get_hcrc (hdr));
}
int image_check_dcrc (image_header_t *hdr)
{
ulong data = image_get_data (hdr);
ulong len = image_get_data_size (hdr);
ulong dcrc = crc32 (0, (unsigned char *)data, len);
return (dcrc == image_get_dcrc (hdr));
}
#ifndef USE_HOSTCC
int image_check_dcrc_wd (image_header_t *hdr, ulong chunksz)
{
ulong dcrc = 0;
ulong len = image_get_data_size (hdr);
ulong data = image_get_data (hdr);
#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
ulong cdata = data;
ulong edata = cdata + len;
while (cdata < edata) {
ulong chunk = edata - cdata;
if (chunk > chunksz)
chunk = chunksz;
dcrc = crc32 (dcrc, (unsigned char *)cdata, chunk);
cdata += chunk;
WATCHDOG_RESET ();
}
#else
dcrc = crc32 (0, (unsigned char *)data, len);
#endif
return (dcrc == image_get_dcrc (hdr));
}
int getenv_verify (void)
{
char *s = getenv ("verify");
return (s && (*s == 'n')) ? 0 : 1;
}
int getenv_autostart (void)
{
char *s = getenv ("autostart");
return (s && (*s == 'n')) ? 0 : 1;
}
void memmove_wd (void *to, void *from, size_t len, ulong chunksz)
{
#if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
while (len > 0) {
size_t tail = (len > chunksz) ? chunksz : len;
WATCHDOG_RESET ();
memmove (to, from, tail);
to += tail;
from += tail;
len -= tail;
}
#else /* !(CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG) */
memmove (to, from, len);
#endif /* CONFIG_HW_WATCHDOG || CONFIG_WATCHDOG */
}
#endif /* USE_HOSTCC */
/**
* image_multi_count - get component (sub-image) count
* @hdr: pointer to the header of the multi component image
*
* image_multi_count() returns number of components in a multi
* component image.
*
* Note: no checking of the image type is done, caller must pass
* a valid multi component image.
*
* returns:
* number of components
*/
ulong image_multi_count (image_header_t *hdr)
{
ulong i, count = 0;
ulong *size;
/* get start of the image payload, which in case of multi
* component images that points to a table of component sizes */
size = (ulong *)image_get_data (hdr);
/* count non empty slots */
for (i = 0; size[i]; ++i)
count++;
return count;
}
/**
* image_multi_getimg - get component data address and size
* @hdr: pointer to the header of the multi component image
* @idx: index of the requested component
* @data: pointer to a ulong variable, will hold component data address
* @len: pointer to a ulong variable, will hold component size
*
* image_multi_getimg() returns size and data address for the requested
* component in a multi component image.
*
* Note: no checking of the image type is done, caller must pass
* a valid multi component image.
*
* returns:
* data address and size of the component, if idx is valid
* 0 in data and len, if idx is out of range
*/
void image_multi_getimg (image_header_t *hdr, ulong idx,
ulong *data, ulong *len)
{
int i;
ulong *size;
ulong offset, tail, count, img_data;
/* get number of component */
count = image_multi_count (hdr);
/* get start of the image payload, which in case of multi
* component images that points to a table of component sizes */
size = (ulong *)image_get_data (hdr);
/* get address of the proper component data start, which means
* skipping sizes table (add 1 for last, null entry) */
img_data = image_get_data (hdr) + (count + 1) * sizeof (ulong);
if (idx < count) {
*len = size[idx];
offset = 0;
tail = 0;
/* go over all indices preceding requested component idx */
for (i = 0; i < idx; i++) {
/* add up i-th component size */
offset += size[i];
/* add up alignment for i-th component */
tail += (4 - size[i] % 4);
}
/* calculate idx-th component data address */
*data = img_data + offset + tail;
} else {
*len = 0;
*data = 0;
}
}
#ifndef USE_HOSTCC
const char* image_get_os_name (uint8_t os)
{
const char *name;
switch (os) {
case IH_OS_INVALID: name = "Invalid OS"; break;
case IH_OS_NETBSD: name = "NetBSD"; break;
case IH_OS_LINUX: name = "Linux"; break;
case IH_OS_VXWORKS: name = "VxWorks"; break;
case IH_OS_QNX: name = "QNX"; break;
case IH_OS_U_BOOT: name = "U-Boot"; break;
case IH_OS_RTEMS: name = "RTEMS"; break;
#ifdef CONFIG_ARTOS
case IH_OS_ARTOS: name = "ARTOS"; break;
#endif
#ifdef CONFIG_LYNXKDI
case IH_OS_LYNXOS: name = "LynxOS"; break;
#endif
default: name = "Unknown OS"; break;
}
return name;
}
const char* image_get_arch_name (uint8_t arch)
{
const char *name;
switch (arch) {
case IH_ARCH_INVALID: name = "Invalid Architecture"; break;
case IH_ARCH_ALPHA: name = "Alpha"; break;
case IH_ARCH_ARM: name = "ARM"; break;
case IH_ARCH_AVR32: name = "AVR32"; break;
case IH_ARCH_BLACKFIN: name = "Blackfin"; break;
case IH_ARCH_I386: name = "Intel x86"; break;
case IH_ARCH_IA64: name = "IA64"; break;
case IH_ARCH_M68K: name = "M68K"; break;
case IH_ARCH_MICROBLAZE:name = "Microblaze"; break;
case IH_ARCH_MIPS64: name = "MIPS 64 Bit"; break;
case IH_ARCH_MIPS: name = "MIPS"; break;
case IH_ARCH_NIOS2: name = "Nios-II"; break;
case IH_ARCH_NIOS: name = "Nios"; break;
case IH_ARCH_PPC: name = "PowerPC"; break;
case IH_ARCH_S390: name = "IBM S390"; break;
case IH_ARCH_SH: name = "SuperH"; break;
case IH_ARCH_SPARC64: name = "SPARC 64 Bit"; break;
case IH_ARCH_SPARC: name = "SPARC"; break;
default: name = "Unknown Architecture"; break;
}
return name;
}
const char* image_get_type_name (uint8_t type)
{
const char *name;
switch (type) {
case IH_TYPE_INVALID: name = "Invalid Image"; break;
case IH_TYPE_STANDALONE:name = "Standalone Program"; break;
case IH_TYPE_KERNEL: name = "Kernel Image"; break;
case IH_TYPE_RAMDISK: name = "RAMDisk Image"; break;
case IH_TYPE_MULTI: name = "Multi-File Image"; break;
case IH_TYPE_FIRMWARE: name = "Firmware"; break;
case IH_TYPE_SCRIPT: name = "Script"; break;
case IH_TYPE_FLATDT: name = "Flat Device Tree"; break;
default: name = "Unknown Image"; break;
}
return name;
}
const char* image_get_comp_name (uint8_t comp)
{
const char *name;
switch (comp) {
case IH_COMP_NONE: name = "uncompressed"; break;
case IH_COMP_GZIP: name = "gzip compressed"; break;
case IH_COMP_BZIP2: name = "bzip2 compressed"; break;
default: name = "unknown compression"; break;
}
return name;
}
static void image_print_type (image_header_t *hdr)
{
const char *os, *arch, *type, *comp;
os = image_get_os_name (image_get_os (hdr));
arch = image_get_arch_name (image_get_arch (hdr));
type = image_get_type_name (image_get_type (hdr));
comp = image_get_comp_name (image_get_comp (hdr));
printf ("%s %s %s (%s)", arch, os, type, comp);
}
void image_print_contents (image_header_t *hdr)
{
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE)
time_t timestamp = (time_t)image_get_time (hdr);
struct rtc_time tm;
#endif
printf (" Image Name: %.*s\n", IH_NMLEN, image_get_name (hdr));
#if defined(CONFIG_TIMESTAMP) || defined(CONFIG_CMD_DATE)
to_tm (timestamp, &tm);
printf (" Created: %4d-%02d-%02d %2d:%02d:%02d UTC\n",
tm.tm_year, tm.tm_mon, tm.tm_mday,
tm.tm_hour, tm.tm_min, tm.tm_sec);
#endif
puts (" Image Type: ");
image_print_type (hdr);
printf ("\n Data Size: %d Bytes = ", image_get_data_size (hdr));
print_size (image_get_data_size (hdr), "\n");
printf (" Load Address: %08x\n"
" Entry Point: %08x\n",
image_get_load (hdr), image_get_ep (hdr));
if (image_check_type (hdr, IH_TYPE_MULTI)) {
int i;
ulong data, len;
ulong count = image_multi_count (hdr);
puts (" Contents:\n");
for (i = 0; i < count; i++) {
image_multi_getimg (hdr, i, &data, &len);
printf (" Image %d: %8ld Bytes = ", i, len);
print_size (len, "\n");
}
}
}
/**
* gen_image_get_format - get image format type
* @img_addr: image start address
*
* gen_image_get_format() checks whether provided address points to a valid
* legacy or FIT image.
*
* New uImage format and FDT blob are based on a libfdt. FDT blob
* may be passed directly or embedded in a FIT image. In both situations
* gen_image_get_format() must be able to dectect libfdt header.
*
* returns:
* image format type or IMAGE_FORMAT_INVALID if no image is present
*/
int gen_image_get_format (void *img_addr)
{
ulong format = IMAGE_FORMAT_INVALID;
image_header_t *hdr;
#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
char *fit_hdr;
#endif
hdr = (image_header_t *)img_addr;
if (image_check_magic(hdr))
format = IMAGE_FORMAT_LEGACY;
#if defined(CONFIG_FIT) || defined(CONFIG_OF_LIBFDT)
else {
fit_hdr = (char *)img_addr;
if (fdt_check_header (fit_hdr) == 0)
format = IMAGE_FORMAT_FIT;
}
#endif
return format;
}
/**
* gen_get_image - get image from special storage (if necessary)
* @img_addr: image start address
*
* gen_get_image() checks if provided image start adddress is located
* in a dataflash storage. If so, image is moved to a system RAM memory.
*
* returns:
* image start address after possible relocation from special storage
*/
ulong gen_get_image (ulong img_addr)
{
ulong ram_addr = img_addr;
#ifdef CONFIG_HAS_DATAFLASH
ulong h_size, d_size;
if (addr_dataflash (img_addr)){
/* ger RAM address */
ram_addr = CFG_LOAD_ADDR;
/* get header size */
h_size = image_get_header_size ();
#if defined(CONFIG_FIT)
if (sizeof(struct fdt_header) > h_size)
h_size = sizeof(struct fdt_header);
#endif
/* read in header */
debug (" Reading image header from dataflash address "
"%08lx to RAM address %08lx\n", img_addr, ram_addr);
read_dataflash (img_addr, h_size, (char *)ram_addr);
/* get data size */
switch (gen_image_get_format ((void *)ram_addr)) {
case IMAGE_FORMAT_LEGACY:
d_size = image_get_data_size ((image_header_t *)ram_addr);
debug (" Legacy format image found at 0x%08lx, size 0x%08lx\n",
ram_addr, d_size);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
d_size = fdt_totalsize((void *)ram_addr) - h_size;
debug (" FIT/FDT format image found at 0x%08lx, size 0x%08lx\n",
ram_addr, d_size);
break;
#endif
default:
printf (" No valid image found at 0x%08lx\n", img_addr);
return ram_addr;
}
/* read in image data */
debug (" Reading image remaining data from dataflash address "
"%08lx to RAM address %08lx\n", img_addr + h_size,
ram_addr + h_size);
read_dataflash (img_addr + h_size, d_size,
(char *)(ram_addr + h_size));
}
#endif /* CONFIG_HAS_DATAFLASH */
return ram_addr;
}
/**
* image_get_ramdisk - get and verify ramdisk image
* @cmdtp: command table pointer
* @flag: command flag
* @argc: command argument count
* @argv: command argument list
* @rd_addr: ramdisk image start address
* @arch: expected ramdisk architecture
* @verify: checksum verification flag
*
* image_get_ramdisk() returns a pointer to the verified ramdisk image
* header. Routine receives image start address and expected architecture
* flag. Verification done covers data and header integrity and os/type/arch
* fields checking.
*
* If dataflash support is enabled routine checks for dataflash addresses
* and handles required dataflash reads.
*
* returns:
* pointer to a ramdisk image header, if image was found and valid
* otherwise, return NULL
*/
static image_header_t* image_get_ramdisk (cmd_tbl_t *cmdtp, int flag,
int argc, char *argv[],
ulong rd_addr, uint8_t arch, int verify)
{
image_header_t *rd_hdr;
show_boot_progress (9);
rd_hdr = (image_header_t *)rd_addr;
if (!image_check_magic (rd_hdr)) {
puts ("Bad Magic Number\n");
show_boot_progress (-10);
return NULL;
}
if (!image_check_hcrc (rd_hdr)) {
puts ("Bad Header Checksum\n");
show_boot_progress (-11);
return NULL;
}
show_boot_progress (10);
image_print_contents (rd_hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc_wd (rd_hdr, CHUNKSZ)) {
puts ("Bad Data CRC\n");
show_boot_progress (-12);
return NULL;
}
puts("OK\n");
}
show_boot_progress (11);
if (!image_check_os (rd_hdr, IH_OS_LINUX) ||
!image_check_arch (rd_hdr, arch) ||
!image_check_type (rd_hdr, IH_TYPE_RAMDISK)) {
printf ("No Linux %s Ramdisk Image\n",
image_get_arch_name(arch));
show_boot_progress (-13);
return NULL;
}
return rd_hdr;
}
/**
* get_ramdisk - main ramdisk handling routine
* @cmdtp: command table pointer
* @flag: command flag
* @argc: command argument count
* @argv: command argument list
* @images: pointer to the bootm images structure
* @arch: expected ramdisk architecture
* @rd_start: pointer to a ulong variable, will hold ramdisk start address
* @rd_end: pointer to a ulong variable, will hold ramdisk end
*
* get_ramdisk() is responsible for finding a valid ramdisk image.
* Curently supported are the following ramdisk sources:
* - multicomponent kernel/ramdisk image,
* - commandline provided address of decicated ramdisk image.
*
* returns:
* rd_start and rd_end are set to ramdisk start/end addresses if
* ramdisk image is found and valid
* rd_start and rd_end are set to 0 if no ramdisk exists
* return 1 if ramdisk image is found but corrupted
*/
int get_ramdisk (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[],
bootm_headers_t *images, uint8_t arch,
ulong *rd_start, ulong *rd_end)
{
ulong rd_addr, rd_load;
ulong rd_data, rd_len;
image_header_t *rd_hdr;
#if defined(CONFIG_FIT)
void *fit_hdr;
const char *fit_uname_config = NULL;
const char *fit_uname_ramdisk = NULL;
ulong default_addr;
#endif
/*
* Look for a '-' which indicates to ignore the
* ramdisk argument
*/
if ((argc >= 3) && (strcmp(argv[2], "-") == 0)) {
debug ("## Skipping init Ramdisk\n");
rd_len = rd_data = 0;
} else if (argc >= 3) {
#if defined(CONFIG_FIT)
/*
* If the init ramdisk comes from the FIT image and the FIT image
* address is omitted in the command line argument, try to use
* os FIT image address or default load address.
*/
if (images->fit_uname_os)
default_addr = (ulong)images->fit_hdr_os;
else
default_addr = load_addr;
if (fit_parse_conf (argv[2], default_addr,
&rd_addr, &fit_uname_config)) {
debug ("* ramdisk: config '%s' from image at 0x%08lx\n",
fit_uname_config, rd_addr);
} else if (fit_parse_subimage (argv[2], default_addr,
&rd_addr, &fit_uname_ramdisk)) {
debug ("* ramdisk: subimage '%s' from image at 0x%08lx\n",
fit_uname_ramdisk, rd_addr);
} else
#endif
{
rd_addr = simple_strtoul(argv[2], NULL, 16);
debug ("* ramdisk: cmdline image address = 0x%08lx\n",
rd_addr);
}
/* copy from dataflash if needed */
printf ("## Loading init Ramdisk Image at %08lx ...\n",
rd_addr);
rd_addr = gen_get_image (rd_addr);
/*
* Check if there is an initrd image at the
* address provided in the second bootm argument
* check image type, for FIT images get FIT node.
*/
switch (gen_image_get_format ((void *)rd_addr)) {
case IMAGE_FORMAT_LEGACY:
debug ("* ramdisk: legacy format image\n");
rd_hdr = image_get_ramdisk (cmdtp, flag, argc, argv,
rd_addr, arch, images->verify);
if (rd_hdr == NULL) {
*rd_start = 0;
*rd_end = 0;
return 1;
}
rd_data = image_get_data (rd_hdr);
rd_len = image_get_data_size (rd_hdr);
rd_load = image_get_load (rd_hdr);
break;
#if defined(CONFIG_FIT)
case IMAGE_FORMAT_FIT:
fit_hdr = (void *)rd_addr;
debug ("* ramdisk: FIT format image\n");
fit_unsupported_reset ("ramdisk");
return 1;
#endif
default:
printf ("Wrong Image Format for %s command\n",
cmdtp->name);
rd_data = rd_len = 0;
}
#if defined(CONFIG_B2) || defined(CONFIG_EVB4510) || defined(CONFIG_ARMADILLO)
/*
* We need to copy the ramdisk to SRAM to let Linux boot
*/
if (rd_data) {
memmove ((void *)rd_load, (uchar *)rd_data, rd_len);
rd_data = rd_load;
}
#endif /* CONFIG_B2 || CONFIG_EVB4510 || CONFIG_ARMADILLO */
} else if (images->legacy_hdr_valid &&
image_check_type (images->legacy_hdr_os, IH_TYPE_MULTI)) {
/*
* Now check if we have a legacy mult-component image,
* get second entry data start address and len.
*/
show_boot_progress (13);
printf ("## Loading init Ramdisk from multi component "
"Image at %08lx ...\n",
(ulong)images->legacy_hdr_os);
image_multi_getimg (images->legacy_hdr_os, 1, &rd_data, &rd_len);
} else {
/*
* no initrd image
*/
show_boot_progress (14);
rd_len = rd_data = 0;
}
if (!rd_data) {
debug ("## No init Ramdisk\n");
*rd_start = 0;
*rd_end = 0;
} else {
*rd_start = rd_data;
*rd_end = rd_data + rd_len;
}
debug (" ramdisk start = 0x%08lx, ramdisk end = 0x%08lx\n",
*rd_start, *rd_end);
return 0;
}
#if defined(CONFIG_PPC) || defined(CONFIG_M68K)
/**
* ramdisk_high - relocate init ramdisk
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @rd_data: ramdisk data start address
* @rd_len: ramdisk data length
* @initrd_start: pointer to a ulong variable, will hold final init ramdisk
* start address (after possible relocation)
* @initrd_end: pointer to a ulong variable, will hold final init ramdisk
* end address (after possible relocation)
*
* ramdisk_high() takes a relocation hint from "initrd_high" environement
* variable and if requested ramdisk data is moved to a specified location.
*
* returns:
* - initrd_start and initrd_end are set to final (after relocation) ramdisk
* start/end addresses if ramdisk image start and len were provided
* otherwise set initrd_start and initrd_end set to zeros
* - returns:
* 0 - success
* -1 - failure
*/
int ramdisk_high (struct lmb *lmb, ulong rd_data, ulong rd_len,
ulong *initrd_start, ulong *initrd_end)
{
char *s;
ulong initrd_high;
int initrd_copy_to_ram = 1;
if ((s = getenv ("initrd_high")) != NULL) {
/* a value of "no" or a similar string will act like 0,
* turning the "load high" feature off. This is intentional.
*/
initrd_high = simple_strtoul (s, NULL, 16);
if (initrd_high == ~0)
initrd_copy_to_ram = 0;
} else {
/* not set, no restrictions to load high */
initrd_high = ~0;
}
debug ("## initrd_high = 0x%08lx, copy_to_ram = %d\n",
initrd_high, initrd_copy_to_ram);
if (rd_data) {
if (!initrd_copy_to_ram) { /* zero-copy ramdisk support */
debug (" in-place initrd\n");
*initrd_start = rd_data;
*initrd_end = rd_data + rd_len;
lmb_reserve(lmb, rd_data, rd_len);
} else {
if (initrd_high)
*initrd_start = lmb_alloc_base(lmb, rd_len, 0x1000, initrd_high);
else
*initrd_start = lmb_alloc(lmb, rd_len, 0x1000);
if (*initrd_start == 0) {
puts("ramdisk - allocation error\n");
goto error;
}
show_boot_progress (12);
*initrd_end = *initrd_start + rd_len;
printf (" Loading Ramdisk to %08lx, end %08lx ... ",
*initrd_start, *initrd_end);
memmove_wd((void *)*initrd_start,
(void *)rd_data, rd_len, CHUNKSZ);
puts ("OK\n");
}
} else {
*initrd_start = 0;
*initrd_end = 0;
}
debug (" ramdisk load start = 0x%08lx, ramdisk load end = 0x%08lx\n",
*initrd_start, *initrd_end);
return 0;
error:
return -1;
}
/**
* get_boot_cmdline - allocate and initialize kernel cmdline
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @cmd_start: pointer to a ulong variable, will hold cmdline start
* @cmd_end: pointer to a ulong variable, will hold cmdline end
* @bootmap_base: ulong variable, holds offset in physical memory to
* base of bootmap
*
* get_boot_cmdline() allocates space for kernel command line below
* BOOTMAPSZ + bootmap_base address. If "bootargs" U-boot environemnt
* variable is present its contents is copied to allocated kernel
* command line.
*
* returns:
* 0 - success
* -1 - failure
*/
int get_boot_cmdline (struct lmb *lmb, ulong *cmd_start, ulong *cmd_end,
ulong bootmap_base)
{
char *cmdline;
char *s;
cmdline = (char *)lmb_alloc_base(lmb, CFG_BARGSIZE, 0xf,
CFG_BOOTMAPSZ + bootmap_base);
if (cmdline == NULL)
return -1;
if ((s = getenv("bootargs")) == NULL)
s = "";
strcpy(cmdline, s);
*cmd_start = (ulong) & cmdline[0];
*cmd_end = *cmd_start + strlen(cmdline);
debug ("## cmdline at 0x%08lx ... 0x%08lx\n", *cmd_start, *cmd_end);
return 0;
}
/**
* get_boot_kbd - allocate and initialize kernel copy of board info
* @lmb: pointer to lmb handle, will be used for memory mgmt
* @kbd: double pointer to board info data
* @bootmap_base: ulong variable, holds offset in physical memory to
* base of bootmap
*
* get_boot_kbd() allocates space for kernel copy of board info data below
* BOOTMAPSZ + bootmap_base address and kernel board info is initialized with
* the current u-boot board info data.
*
* returns:
* 0 - success
* -1 - failure
*/
int get_boot_kbd (struct lmb *lmb, bd_t **kbd, ulong bootmap_base)
{
*kbd = (bd_t *)lmb_alloc_base(lmb, sizeof(bd_t), 0xf,
CFG_BOOTMAPSZ + bootmap_base);
if (*kbd == NULL)
return -1;
**kbd = *(gd->bd);
debug ("## kernel board info at 0x%08lx\n", (ulong)*kbd);
#if defined(DEBUG) && defined(CONFIG_CMD_BDI)
do_bdinfo(NULL, 0, 0, NULL);
#endif
return 0;
}
#endif /* CONFIG_PPC || CONFIG_M68K */
#if defined(CONFIG_FIT)
/*****************************************************************************/
/* New uImage format routines */
/*****************************************************************************/
static int fit_parse_spec (const char *spec, char sepc, ulong addr_curr,
ulong *addr, const char **name)
{
const char *sep;
*addr = addr_curr;
*name = NULL;
sep = strchr (spec, sepc);
if (sep) {
if (sep - spec > 0)
*addr = simple_strtoul (spec, NULL, 16);
*name = sep + 1;
return 1;
}
return 0;
}
/**
* fit_parse_conf - parse FIT configuration spec
* @spec: input string, containing configuration spec
* @add_curr: current image address (to be used as a possible default)
* @addr: pointer to a ulong variable, will hold FIT image address of a given
* configuration
* @conf_name double pointer to a char, will hold pointer to a configuration
* unit name
*
* fit_parse_conf() expects configuration spec in the for of [<addr>]#<conf>,
* where <addr> is a FIT image address that contains configuration
* with a <conf> unit name.
*
* Address part is optional, and if omitted default add_curr will
* be used instead.
*
* returns:
* 1 if spec is a valid configuration string,
* addr and conf_name are set accordingly
* 0 otherwise
*/
inline int fit_parse_conf (const char *spec, ulong addr_curr,
ulong *addr, const char **conf_name)
{
return fit_parse_spec (spec, '#', addr_curr, addr, conf_name);
}
/**
* fit_parse_subimage - parse FIT subimage spec
* @spec: input string, containing subimage spec
* @add_curr: current image address (to be used as a possible default)
* @addr: pointer to a ulong variable, will hold FIT image address of a given
* subimage
* @image_name: double pointer to a char, will hold pointer to a subimage name
*
* fit_parse_subimage() expects subimage spec in the for of
* [<addr>]:<subimage>, where <addr> is a FIT image address that contains
* subimage with a <subimg> unit name.
*
* Address part is optional, and if omitted default add_curr will
* be used instead.
*
* returns:
* 1 if spec is a valid subimage string,
* addr and image_name are set accordingly
* 0 otherwise
*/
inline int fit_parse_subimage (const char *spec, ulong addr_curr,
ulong *addr, const char **image_name)
{
return fit_parse_spec (spec, ':', addr_curr, addr, image_name);
}
#endif /* CONFIG_FIT */
#endif /* USE_HOSTCC */