u-boot/drivers/i2c/mvtwsi.c
mario.six@gdsys.cc dfc3958cd3 i2c: mvtwsi: Streamline code and add documentation
Convert groups of logically connected preprocessor defines into proper
enums, one macro into an inline function, and add documentation
to/extend existing documentation of these items.

Signed-off-by: Mario Six <mario.six@gdsys.cc>
Reviewed-by: Stefan Roese <sr@denx.de>
2016-07-26 10:19:16 +02:00

534 lines
15 KiB
C

/*
* Driver for the TWSI (i2c) controller found on the Marvell
* orion5x and kirkwood SoC families.
*
* Author: Albert Aribaud <albert.u.boot@aribaud.net>
* Copyright (c) 2010 Albert Aribaud.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <i2c.h>
#include <asm/errno.h>
#include <asm/io.h>
/*
* include a file that will provide CONFIG_I2C_MVTWSI_BASE*
* and possibly other settings
*/
#if defined(CONFIG_ORION5X)
#include <asm/arch/orion5x.h>
#elif (defined(CONFIG_KIRKWOOD) || defined(CONFIG_ARCH_MVEBU))
#include <asm/arch/soc.h>
#elif defined(CONFIG_SUNXI)
#include <asm/arch/i2c.h>
#else
#error Driver mvtwsi not supported by SoC or board
#endif
/*
* TWSI register structure
*/
#ifdef CONFIG_SUNXI
struct mvtwsi_registers {
u32 slave_address;
u32 xtnd_slave_addr;
u32 data;
u32 control;
u32 status;
u32 baudrate;
u32 soft_reset;
};
#else
struct mvtwsi_registers {
u32 slave_address;
u32 data;
u32 control;
union {
u32 status; /* when reading */
u32 baudrate; /* when writing */
};
u32 xtnd_slave_addr;
u32 reserved[2];
u32 soft_reset;
};
#endif
/*
* enum mvtwsi_ctrl_register_fields - Bit masks for flags in the control
* register
*/
enum mvtwsi_ctrl_register_fields {
/* Acknowledge bit */
MVTWSI_CONTROL_ACK = 0x00000004,
/* Interrupt flag */
MVTWSI_CONTROL_IFLG = 0x00000008,
/* Stop bit */
MVTWSI_CONTROL_STOP = 0x00000010,
/* Start bit */
MVTWSI_CONTROL_START = 0x00000020,
/* I2C enable */
MVTWSI_CONTROL_TWSIEN = 0x00000040,
/* Interrupt enable */
MVTWSI_CONTROL_INTEN = 0x00000080,
};
/*
* On sun6i and newer IFLG is a write-clear bit which is cleared by writing 1,
* on other platforms it is a normal r/w bit which is cleared by writing 0.
*/
#ifdef CONFIG_SUNXI_GEN_SUN6I
#define MVTWSI_CONTROL_CLEAR_IFLG 0x00000008
#else
#define MVTWSI_CONTROL_CLEAR_IFLG 0x00000000
#endif
/*
* enum mvstwsi_status_values - Possible values of I2C controller's status
* register
*
* Only those statuses expected in normal master operation on
* non-10-bit-address devices are specified.
*
* Every status that's unexpected during normal operation (bus errors,
* arbitration losses, missing ACKs...) is passed back to the caller as an error
* code.
*/
enum mvstwsi_status_values {
/* START condition transmitted */
MVTWSI_STATUS_START = 0x08,
/* Repeated START condition transmitted */
MVTWSI_STATUS_REPEATED_START = 0x10,
/* Address + write bit transmitted, ACK received */
MVTWSI_STATUS_ADDR_W_ACK = 0x18,
/* Data transmitted, ACK received */
MVTWSI_STATUS_DATA_W_ACK = 0x28,
/* Address + read bit transmitted, ACK received */
MVTWSI_STATUS_ADDR_R_ACK = 0x40,
/* Address + read bit transmitted, ACK not received */
MVTWSI_STATUS_ADDR_R_NAK = 0x48,
/* Data received, ACK transmitted */
MVTWSI_STATUS_DATA_R_ACK = 0x50,
/* Data received, ACK not transmitted */
MVTWSI_STATUS_DATA_R_NAK = 0x58,
/* No relevant status */
MVTWSI_STATUS_IDLE = 0xF8,
};
/*
* MVTWSI controller base
*/
static struct mvtwsi_registers *twsi_get_base(struct i2c_adapter *adap)
{
switch (adap->hwadapnr) {
#ifdef CONFIG_I2C_MVTWSI_BASE0
case 0:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE0;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE1
case 1:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE1;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE2
case 2:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE2;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE3
case 3:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE3;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE4
case 4:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE4;
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE5
case 5:
return (struct mvtwsi_registers *)CONFIG_I2C_MVTWSI_BASE5;
#endif
default:
printf("Missing mvtwsi controller %d base\n", adap->hwadapnr);
break;
}
return NULL;
}
/*
* enum mvtwsi_error_class - types of I2C errors
*/
enum mvtwsi_error_class {
/* The controller returned a different status than expected */
MVTWSI_ERROR_WRONG_STATUS = 0x01,
/* The controller timed out */
MVTWSI_ERROR_TIMEOUT = 0x02,
};
/*
* mvtwsi_error() - Build I2C return code from error information
*
* For debugging purposes, this function packs some information of an occurred
* error into a return code. These error codes are returned from I2C API
* functions (i2c_{read,write}, dm_i2c_{read,write}, etc.).
*
* @ec: The error class of the error (enum mvtwsi_error_class).
* @lc: The last value of the control register.
* @ls: The last value of the status register.
* @es: The expected value of the status register.
* @return The generated error code.
*/
inline uint mvtwsi_error(uint ec, uint lc, uint ls, uint es)
{
return ((ec << 24) & 0xFF000000)
| ((lc << 16) & 0x00FF0000)
| ((ls << 8) & 0x0000FF00)
| (es & 0xFF);
}
/*
* Wait for IFLG to raise, or return 'timeout'; then if status is as expected,
* return 0 (ok) or return 'wrong status'.
*/
static int twsi_wait(struct i2c_adapter *adap, int expected_status)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
int control, status;
int timeout = 1000;
do {
control = readl(&twsi->control);
if (control & MVTWSI_CONTROL_IFLG) {
status = readl(&twsi->status);
if (status == expected_status)
return 0;
else
return mvtwsi_error(
MVTWSI_ERROR_WRONG_STATUS,
control, status, expected_status);
}
udelay(10); /* one clock cycle at 100 kHz */
} while (timeout--);
status = readl(&twsi->status);
return mvtwsi_error(MVTWSI_ERROR_TIMEOUT, control, status,
expected_status);
}
/*
* Assert the START condition, either in a single I2C transaction
* or inside back-to-back ones (repeated starts).
*/
static int twsi_start(struct i2c_adapter *adap, int expected_status, u8 *flags)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
/* globally set TWSIEN in case it was not */
*flags |= MVTWSI_CONTROL_TWSIEN;
/* assert START */
writel(*flags | MVTWSI_CONTROL_START |
MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* wait for controller to process START */
return twsi_wait(adap, expected_status);
}
/*
* Send a byte (i2c address or data).
*/
static int twsi_send(struct i2c_adapter *adap, u8 byte, int expected_status,
u8 *flags)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
/* put byte in data register for sending */
writel(byte, &twsi->data);
/* clear any pending interrupt -- that'll cause sending */
writel(*flags | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* wait for controller to receive byte and check ACK */
return twsi_wait(adap, expected_status);
}
/*
* Receive a byte.
* Global mvtwsi_control_flags variable says if we should ack or nak.
*/
static int twsi_recv(struct i2c_adapter *adap, u8 *byte, u8 *flags)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
int expected_status, status;
/* compute expected status based on ACK bit in global control flags */
if (*flags & MVTWSI_CONTROL_ACK)
expected_status = MVTWSI_STATUS_DATA_R_ACK;
else
expected_status = MVTWSI_STATUS_DATA_R_NAK;
/* acknowledge *previous state* and launch receive */
writel(*flags | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* wait for controller to receive byte and assert ACK or NAK */
status = twsi_wait(adap, expected_status);
/* if we did receive expected byte then store it */
if (status == 0)
*byte = readl(&twsi->data);
/* return status */
return status;
}
/*
* Assert the STOP condition.
* This is also used to force the bus back in idle (SDA=SCL=1).
*/
static int twsi_stop(struct i2c_adapter *adap, int status)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
int control, stop_status;
int timeout = 1000;
/* assert STOP */
control = MVTWSI_CONTROL_TWSIEN | MVTWSI_CONTROL_STOP;
writel(control | MVTWSI_CONTROL_CLEAR_IFLG, &twsi->control);
/* wait for IDLE; IFLG won't rise so twsi_wait() is no use. */
do {
stop_status = readl(&twsi->status);
if (stop_status == MVTWSI_STATUS_IDLE)
break;
udelay(10); /* one clock cycle at 100 kHz */
} while (timeout--);
control = readl(&twsi->control);
if (stop_status != MVTWSI_STATUS_IDLE)
if (status == 0)
status = mvtwsi_error(
MVTWSI_ERROR_TIMEOUT,
control, status, MVTWSI_STATUS_IDLE);
return status;
}
static unsigned int twsi_calc_freq(const int n, const int m)
{
#ifdef CONFIG_SUNXI
return CONFIG_SYS_TCLK / (10 * (m + 1) * (1 << n));
#else
return CONFIG_SYS_TCLK / (10 * (m + 1) * (2 << n));
#endif
}
/*
* Reset controller.
* Controller reset also resets the baud rate and slave address, so
* they must be re-established afterwards.
*/
static void twsi_reset(struct i2c_adapter *adap)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
/* reset controller */
writel(0, &twsi->soft_reset);
/* wait 2 ms -- this is what the Marvell LSP does */
udelay(20000);
}
/*
* I2C init called by cmd_i2c when doing 'i2c reset'.
* Sets baud to the highest possible value not exceeding requested one.
*/
static unsigned int twsi_i2c_set_bus_speed(struct i2c_adapter *adap,
unsigned int requested_speed)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
unsigned int tmp_speed, highest_speed, n, m;
unsigned int baud = 0x44; /* baudrate at controller reset */
/* use actual speed to collect progressively higher values */
highest_speed = 0;
/* compute m, n setting for highest speed not above requested speed */
for (n = 0; n < 8; n++) {
for (m = 0; m < 16; m++) {
tmp_speed = twsi_calc_freq(n, m);
if ((tmp_speed <= requested_speed) &&
(tmp_speed > highest_speed)) {
highest_speed = tmp_speed;
baud = (m << 3) | n;
}
}
}
writel(baud, &twsi->baudrate);
return 0;
}
static void twsi_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
{
struct mvtwsi_registers *twsi = twsi_get_base(adap);
/* reset controller */
twsi_reset(adap);
/* set speed */
twsi_i2c_set_bus_speed(adap, speed);
/* set slave address even though we don't use it */
writel(slaveadd, &twsi->slave_address);
writel(0, &twsi->xtnd_slave_addr);
/* assert STOP but don't care for the result */
(void) twsi_stop(adap, 0);
}
/*
* Begin I2C transaction with expected start status, at given address.
* Common to i2c_probe, i2c_read and i2c_write.
* Expected address status will derive from direction bit (bit 0) in addr.
*/
static int i2c_begin(struct i2c_adapter *adap, int expected_start_status,
u8 addr, u8 *flags)
{
int status, expected_addr_status;
/* compute expected address status from direction bit in addr */
if (addr & 1) /* reading */
expected_addr_status = MVTWSI_STATUS_ADDR_R_ACK;
else /* writing */
expected_addr_status = MVTWSI_STATUS_ADDR_W_ACK;
/* assert START */
status = twsi_start(adap, expected_start_status, flags);
/* send out the address if the start went well */
if (status == 0)
status = twsi_send(adap, addr, expected_addr_status,
flags);
/* return ok or status of first failure to caller */
return status;
}
/*
* I2C probe called by cmd_i2c when doing 'i2c probe'.
* Begin read, nak data byte, end.
*/
static int twsi_i2c_probe(struct i2c_adapter *adap, uchar chip)
{
u8 dummy_byte;
u8 flags = 0;
int status;
/* begin i2c read */
status = i2c_begin(adap, MVTWSI_STATUS_START, (chip << 1) | 1, &flags);
/* dummy read was accepted: receive byte but NAK it. */
if (status == 0)
status = twsi_recv(adap, &dummy_byte, &flags);
/* Stop transaction */
twsi_stop(adap, 0);
/* return 0 or status of first failure */
return status;
}
/*
* I2C read called by cmd_i2c when doing 'i2c read' and by cmd_eeprom.c
* Begin write, send address byte(s), begin read, receive data bytes, end.
*
* NOTE: some EEPROMS want a stop right before the second start, while
* some will choke if it is there. Deciding which we should do is eeprom
* stuff, not i2c, but at the moment the APIs won't let us put it in
* cmd_eeprom, so we have to choose here, and for the moment that'll be
* a repeated start without a preceding stop.
*/
static int twsi_i2c_read(struct i2c_adapter *adap, uchar chip, uint addr,
int alen, uchar *data, int length)
{
int status;
u8 flags = 0;
/* begin i2c write to send the address bytes */
status = i2c_begin(adap, MVTWSI_STATUS_START, (chip << 1), &flags);
/* send addr bytes */
while ((status == 0) && alen--)
status = twsi_send(adap, addr >> (8*alen),
MVTWSI_STATUS_DATA_W_ACK, &flags);
/* begin i2c read to receive eeprom data bytes */
if (status == 0)
status = i2c_begin(adap, MVTWSI_STATUS_REPEATED_START,
(chip << 1) | 1, &flags);
/* prepare ACK if at least one byte must be received */
if (length > 0)
flags |= MVTWSI_CONTROL_ACK;
/* now receive actual bytes */
while ((status == 0) && length--) {
/* reset NAK if we if no more to read now */
if (length == 0)
flags &= ~MVTWSI_CONTROL_ACK;
/* read current byte */
status = twsi_recv(adap, data++, &flags);
}
/* Stop transaction */
status = twsi_stop(adap, status);
/* return 0 or status of first failure */
return status;
}
/*
* I2C write called by cmd_i2c when doing 'i2c write' and by cmd_eeprom.c
* Begin write, send address byte(s), send data bytes, end.
*/
static int twsi_i2c_write(struct i2c_adapter *adap, uchar chip, uint addr,
int alen, uchar *data, int length)
{
int status;
u8 flags = 0;
/* begin i2c write to send the eeprom adress bytes then data bytes */
status = i2c_begin(adap, MVTWSI_STATUS_START, (chip << 1), &flags);
/* send addr bytes */
while ((status == 0) && alen--)
status = twsi_send(adap, addr >> (8*alen),
MVTWSI_STATUS_DATA_W_ACK, &flags);
/* send data bytes */
while ((status == 0) && (length-- > 0))
status = twsi_send(adap, *(data++), MVTWSI_STATUS_DATA_W_ACK,
&flags);
/* Stop transaction */
status = twsi_stop(adap, status);
/* return 0 or status of first failure */
return status;
}
#ifdef CONFIG_I2C_MVTWSI_BASE0
U_BOOT_I2C_ADAP_COMPLETE(twsi0, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 0)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE1
U_BOOT_I2C_ADAP_COMPLETE(twsi1, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 1)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE2
U_BOOT_I2C_ADAP_COMPLETE(twsi2, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 2)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE3
U_BOOT_I2C_ADAP_COMPLETE(twsi3, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 3)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE4
U_BOOT_I2C_ADAP_COMPLETE(twsi4, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 4)
#endif
#ifdef CONFIG_I2C_MVTWSI_BASE5
U_BOOT_I2C_ADAP_COMPLETE(twsi5, twsi_i2c_init, twsi_i2c_probe,
twsi_i2c_read, twsi_i2c_write,
twsi_i2c_set_bus_speed,
CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE, 5)
#endif