e895a4b06f
This function can fail if the device tree runs out of space. Rather than silently booting with an incomplete device tree, allow the failure to be detected. Unfortunately this involves changing a lot of places in the code. I have not changed behvaiour to return an error where one is not currently returned, to avoid unexpected breakage. Eventually it would be nice to allow boards to register functions to be called to update the device tree. This would avoid all the many functions to do this. However it's not clear yet if this should be done using driver model or with a linker list. This work is left for later. Signed-off-by: Simon Glass <sjg@chromium.org> Acked-by: Anatolij Gustschin <agust@denx.de> |
||
---|---|---|
.. | ||
ddr.c | ||
Kconfig | ||
law.c | ||
MAINTAINERS | ||
Makefile | ||
p1_p2_rdb_pc.c | ||
README | ||
spl_minimal.c | ||
spl.c | ||
tlb.c |
Overview -------- P1_P2_RDB_PC represents a set of boards including P1020MSBG-PC P1020RDB-PC P1020RDB-PD P1020UTM-PC P1021RDB-PC P1024RDB P1025RDB P2020RDB-PC They have similar design of P1020RDB but have DDR3 instead of DDR2. P2020RDB-PC has 64-bit DDR. All others have 32-bit DDR. Key features on these boards include: * DDR3 * NOR flash * NAND flash (on RDB's only) * SPI flash (on RDB's only) * SDHC/MMC card slot * VSC7385 Ethernet switch (on P1020MBG, P1020RDB, & P1021RDB) * PCIE slot and mini-PCIE slots As these boards use soldered DDR chips not regular DIMMs, an on-board EEPROM is used to store SPD data. In case of absent or corrupted SPD, falling back to timing data embedded in the source code will be used. Raw timing data is extracted from DDR chip datasheet. Different speeds of DDR are supported with this approach. ODT option is forced to fit this set of boards, again because they don't have regular DIMMs. CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS is defined as 5ms to meet specification for writing timing. VSC firmware Address is defined by default in config file for eTSEC1. SD width is based off DIP switch. DIP switch is detected on the board by reading i2c bus and setting the appropriate mux values. Some boards have QE module in the silicon (P1021 and P1025). QE and eLBC have pins multiplexing. QE function needs to be disabled to access Nor Flash and CPLD. QE-UEC and QE-UART can be enabled for linux kernel by setting "qe" in hwconfig. In addition, QE-UEC and QE-TDM also have pins multiplexing, to enable QE-TDM for linux kernel, set "qe;tdm" in hwconfig. Syntax is as below 'setenv hwconfig qe' to enable QE UEC/UART and disable Nor-Flash/CPLD. 'setenv hwconfig 'qe;tdm'' to enalbe QE TDM and disable Nor-Flash/CPLD.