u-boot/drivers/net/rtl8169.c
Simon Glass cf92e05c01 Move ALLOC_CACHE_ALIGN_BUFFER() to the new memalign.h header
Now that we have a new header file for cache-aligned allocation, we should
move the stack-based allocation macro there also.

Signed-off-by: Simon Glass <sjg@chromium.org>
2015-09-11 17:15:20 -04:00

1169 lines
29 KiB
C

/*
* rtl8169.c : U-Boot driver for the RealTek RTL8169
*
* Masami Komiya (mkomiya@sonare.it)
*
* Most part is taken from r8169.c of etherboot
*
*/
/**************************************************************************
* r8169.c: Etherboot device driver for the RealTek RTL-8169 Gigabit
* Written 2003 by Timothy Legge <tlegge@rogers.com>
*
* SPDX-License-Identifier: GPL-2.0+
*
* Portions of this code based on:
* r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver
* for Linux kernel 2.4.x.
*
* Written 2002 ShuChen <shuchen@realtek.com.tw>
* See Linux Driver for full information
*
* Linux Driver Version 1.27a, 10.02.2002
*
* Thanks to:
* Jean Chen of RealTek Semiconductor Corp. for
* providing the evaluation NIC used to develop
* this driver. RealTek's support for Etherboot
* is appreciated.
*
* REVISION HISTORY:
* ================
*
* v1.0 11-26-2003 timlegge Initial port of Linux driver
* v1.5 01-17-2004 timlegge Initial driver output cleanup
*
* Indent Options: indent -kr -i8
***************************************************************************/
/*
* 26 August 2006 Mihai Georgian <u-boot@linuxnotincluded.org.uk>
* Modified to use le32_to_cpu and cpu_to_le32 properly
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <memalign.h>
#include <net.h>
#ifndef CONFIG_DM_ETH
#include <netdev.h>
#endif
#include <asm/io.h>
#include <pci.h>
#undef DEBUG_RTL8169
#undef DEBUG_RTL8169_TX
#undef DEBUG_RTL8169_RX
#define drv_version "v1.5"
#define drv_date "01-17-2004"
static unsigned long ioaddr;
/* Condensed operations for readability. */
#define currticks() get_timer(0)
/* media options */
#define MAX_UNITS 8
static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
/* MAC address length*/
#define MAC_ADDR_LEN 6
/* max supported gigabit ethernet frame size -- must be at least (dev->mtu+14+4).*/
#define MAX_ETH_FRAME_SIZE 1536
#define TX_FIFO_THRESH 256 /* In bytes */
#define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */
#define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
#define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
#define EarlyTxThld 0x3F /* 0x3F means NO early transmit */
#define RxPacketMaxSize 0x0800 /* Maximum size supported is 16K-1 */
#define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */
#define NUM_TX_DESC 1 /* Number of Tx descriptor registers */
#ifdef CONFIG_SYS_RX_ETH_BUFFER
#define NUM_RX_DESC CONFIG_SYS_RX_ETH_BUFFER
#else
#define NUM_RX_DESC 4 /* Number of Rx descriptor registers */
#endif
#define RX_BUF_SIZE 1536 /* Rx Buffer size */
#define RX_BUF_LEN 8192
#define RTL_MIN_IO_SIZE 0x80
#define TX_TIMEOUT (6*HZ)
/* write/read MMIO register. Notice: {read,write}[wl] do the necessary swapping */
#define RTL_W8(reg, val8) writeb((val8), ioaddr + (reg))
#define RTL_W16(reg, val16) writew((val16), ioaddr + (reg))
#define RTL_W32(reg, val32) writel((val32), ioaddr + (reg))
#define RTL_R8(reg) readb(ioaddr + (reg))
#define RTL_R16(reg) readw(ioaddr + (reg))
#define RTL_R32(reg) readl(ioaddr + (reg))
#define ETH_FRAME_LEN MAX_ETH_FRAME_SIZE
#define ETH_ALEN MAC_ADDR_LEN
#define ETH_ZLEN 60
#define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)(unsigned long)dev->priv, \
(pci_addr_t)(unsigned long)a)
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)(unsigned long)dev->priv, \
(phys_addr_t)a)
enum RTL8169_registers {
MAC0 = 0, /* Ethernet hardware address. */
MAR0 = 8, /* Multicast filter. */
TxDescStartAddrLow = 0x20,
TxDescStartAddrHigh = 0x24,
TxHDescStartAddrLow = 0x28,
TxHDescStartAddrHigh = 0x2c,
FLASH = 0x30,
ERSR = 0x36,
ChipCmd = 0x37,
TxPoll = 0x38,
IntrMask = 0x3C,
IntrStatus = 0x3E,
TxConfig = 0x40,
RxConfig = 0x44,
RxMissed = 0x4C,
Cfg9346 = 0x50,
Config0 = 0x51,
Config1 = 0x52,
Config2 = 0x53,
Config3 = 0x54,
Config4 = 0x55,
Config5 = 0x56,
MultiIntr = 0x5C,
PHYAR = 0x60,
TBICSR = 0x64,
TBI_ANAR = 0x68,
TBI_LPAR = 0x6A,
PHYstatus = 0x6C,
RxMaxSize = 0xDA,
CPlusCmd = 0xE0,
RxDescStartAddrLow = 0xE4,
RxDescStartAddrHigh = 0xE8,
EarlyTxThres = 0xEC,
FuncEvent = 0xF0,
FuncEventMask = 0xF4,
FuncPresetState = 0xF8,
FuncForceEvent = 0xFC,
};
enum RTL8169_register_content {
/*InterruptStatusBits */
SYSErr = 0x8000,
PCSTimeout = 0x4000,
SWInt = 0x0100,
TxDescUnavail = 0x80,
RxFIFOOver = 0x40,
RxUnderrun = 0x20,
RxOverflow = 0x10,
TxErr = 0x08,
TxOK = 0x04,
RxErr = 0x02,
RxOK = 0x01,
/*RxStatusDesc */
RxRES = 0x00200000,
RxCRC = 0x00080000,
RxRUNT = 0x00100000,
RxRWT = 0x00400000,
/*ChipCmdBits */
CmdReset = 0x10,
CmdRxEnb = 0x08,
CmdTxEnb = 0x04,
RxBufEmpty = 0x01,
/*Cfg9346Bits */
Cfg9346_Lock = 0x00,
Cfg9346_Unlock = 0xC0,
/*rx_mode_bits */
AcceptErr = 0x20,
AcceptRunt = 0x10,
AcceptBroadcast = 0x08,
AcceptMulticast = 0x04,
AcceptMyPhys = 0x02,
AcceptAllPhys = 0x01,
/*RxConfigBits */
RxCfgFIFOShift = 13,
RxCfgDMAShift = 8,
/*TxConfigBits */
TxInterFrameGapShift = 24,
TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */
/*rtl8169_PHYstatus */
TBI_Enable = 0x80,
TxFlowCtrl = 0x40,
RxFlowCtrl = 0x20,
_1000bpsF = 0x10,
_100bps = 0x08,
_10bps = 0x04,
LinkStatus = 0x02,
FullDup = 0x01,
/*GIGABIT_PHY_registers */
PHY_CTRL_REG = 0,
PHY_STAT_REG = 1,
PHY_AUTO_NEGO_REG = 4,
PHY_1000_CTRL_REG = 9,
/*GIGABIT_PHY_REG_BIT */
PHY_Restart_Auto_Nego = 0x0200,
PHY_Enable_Auto_Nego = 0x1000,
/* PHY_STAT_REG = 1; */
PHY_Auto_Nego_Comp = 0x0020,
/* PHY_AUTO_NEGO_REG = 4; */
PHY_Cap_10_Half = 0x0020,
PHY_Cap_10_Full = 0x0040,
PHY_Cap_100_Half = 0x0080,
PHY_Cap_100_Full = 0x0100,
/* PHY_1000_CTRL_REG = 9; */
PHY_Cap_1000_Full = 0x0200,
PHY_Cap_Null = 0x0,
/*_MediaType*/
_10_Half = 0x01,
_10_Full = 0x02,
_100_Half = 0x04,
_100_Full = 0x08,
_1000_Full = 0x10,
/*_TBICSRBit*/
TBILinkOK = 0x02000000,
};
static struct {
const char *name;
u8 version; /* depend on RTL8169 docs */
u32 RxConfigMask; /* should clear the bits supported by this chip */
} rtl_chip_info[] = {
{"RTL-8169", 0x00, 0xff7e1880,},
{"RTL-8169", 0x04, 0xff7e1880,},
{"RTL-8169", 0x00, 0xff7e1880,},
{"RTL-8169s/8110s", 0x02, 0xff7e1880,},
{"RTL-8169s/8110s", 0x04, 0xff7e1880,},
{"RTL-8169sb/8110sb", 0x10, 0xff7e1880,},
{"RTL-8169sc/8110sc", 0x18, 0xff7e1880,},
{"RTL-8168b/8111sb", 0x30, 0xff7e1880,},
{"RTL-8168b/8111sb", 0x38, 0xff7e1880,},
{"RTL-8168d/8111d", 0x28, 0xff7e1880,},
{"RTL-8168evl/8111evl", 0x2e, 0xff7e1880,},
{"RTL-8168/8111g", 0x4c, 0xff7e1880,},
{"RTL-8101e", 0x34, 0xff7e1880,},
{"RTL-8100e", 0x32, 0xff7e1880,},
};
enum _DescStatusBit {
OWNbit = 0x80000000,
EORbit = 0x40000000,
FSbit = 0x20000000,
LSbit = 0x10000000,
};
struct TxDesc {
u32 status;
u32 vlan_tag;
u32 buf_addr;
u32 buf_Haddr;
};
struct RxDesc {
u32 status;
u32 vlan_tag;
u32 buf_addr;
u32 buf_Haddr;
};
static unsigned char rxdata[RX_BUF_LEN];
#define RTL8169_DESC_SIZE 16
#if ARCH_DMA_MINALIGN > 256
# define RTL8169_ALIGN ARCH_DMA_MINALIGN
#else
# define RTL8169_ALIGN 256
#endif
/*
* Warn if the cache-line size is larger than the descriptor size. In such
* cases the driver will likely fail because the CPU needs to flush the cache
* when requeuing RX buffers, therefore descriptors written by the hardware
* may be discarded.
*
* This can be fixed by defining CONFIG_SYS_NONCACHED_MEMORY which will cause
* the driver to allocate descriptors from a pool of non-cached memory.
*/
#if RTL8169_DESC_SIZE < ARCH_DMA_MINALIGN
#if !defined(CONFIG_SYS_NONCACHED_MEMORY) && \
!defined(CONFIG_SYS_DCACHE_OFF) && !defined(CONFIG_X86)
#warning cache-line size is larger than descriptor size
#endif
#endif
/*
* Create a static buffer of size RX_BUF_SZ for each TX Descriptor. All
* descriptors point to a part of this buffer.
*/
DEFINE_ALIGN_BUFFER(u8, txb, NUM_TX_DESC * RX_BUF_SIZE, RTL8169_ALIGN);
/*
* Create a static buffer of size RX_BUF_SZ for each RX Descriptor. All
* descriptors point to a part of this buffer.
*/
DEFINE_ALIGN_BUFFER(u8, rxb, NUM_RX_DESC * RX_BUF_SIZE, RTL8169_ALIGN);
struct rtl8169_private {
ulong iobase;
void *mmio_addr; /* memory map physical address */
int chipset;
unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */
unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */
unsigned long dirty_tx;
struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */
struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */
unsigned char *RxBufferRings; /* Index of Rx Buffer */
unsigned char *RxBufferRing[NUM_RX_DESC]; /* Index of Rx Buffer array */
unsigned char *Tx_skbuff[NUM_TX_DESC];
} tpx;
static struct rtl8169_private *tpc;
static const u16 rtl8169_intr_mask =
SYSErr | PCSTimeout | RxUnderrun | RxOverflow | RxFIFOOver | TxErr |
TxOK | RxErr | RxOK;
static const unsigned int rtl8169_rx_config =
(RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift);
static struct pci_device_id supported[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8167) },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8168) },
{ PCI_DEVICE(PCI_VENDOR_ID_REALTEK, 0x8169) },
{}
};
void mdio_write(int RegAddr, int value)
{
int i;
RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value);
udelay(1000);
for (i = 2000; i > 0; i--) {
/* Check if the RTL8169 has completed writing to the specified MII register */
if (!(RTL_R32(PHYAR) & 0x80000000)) {
break;
} else {
udelay(100);
}
}
}
int mdio_read(int RegAddr)
{
int i, value = -1;
RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16);
udelay(1000);
for (i = 2000; i > 0; i--) {
/* Check if the RTL8169 has completed retrieving data from the specified MII register */
if (RTL_R32(PHYAR) & 0x80000000) {
value = (int) (RTL_R32(PHYAR) & 0xFFFF);
break;
} else {
udelay(100);
}
}
return value;
}
static int rtl8169_init_board(unsigned long dev_iobase, const char *name)
{
int i;
u32 tmp;
#ifdef DEBUG_RTL8169
printf ("%s\n", __FUNCTION__);
#endif
ioaddr = dev_iobase;
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--)
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
else
udelay(10);
/* identify chip attached to board */
tmp = RTL_R32(TxConfig);
tmp = ((tmp & 0x7c000000) + ((tmp & 0x00800000) << 2)) >> 24;
for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--){
if (tmp == rtl_chip_info[i].version) {
tpc->chipset = i;
goto match;
}
}
/* if unknown chip, assume array element #0, original RTL-8169 in this case */
printf("PCI device %s: unknown chip version, assuming RTL-8169\n",
name);
printf("PCI device: TxConfig = 0x%lX\n", (unsigned long) RTL_R32(TxConfig));
tpc->chipset = 0;
match:
return 0;
}
/*
* TX and RX descriptors are 16 bytes. This causes problems with the cache
* maintenance on CPUs where the cache-line size exceeds the size of these
* descriptors. What will happen is that when the driver receives a packet
* it will be immediately requeued for the hardware to reuse. The CPU will
* therefore need to flush the cache-line containing the descriptor, which
* will cause all other descriptors in the same cache-line to be flushed
* along with it. If one of those descriptors had been written to by the
* device those changes (and the associated packet) will be lost.
*
* To work around this, we make use of non-cached memory if available. If
* descriptors are mapped uncached there's no need to manually flush them
* or invalidate them.
*
* Note that this only applies to descriptors. The packet data buffers do
* not have the same constraints since they are 1536 bytes large, so they
* are unlikely to share cache-lines.
*/
static void *rtl_alloc_descs(unsigned int num)
{
size_t size = num * RTL8169_DESC_SIZE;
#ifdef CONFIG_SYS_NONCACHED_MEMORY
return (void *)noncached_alloc(size, RTL8169_ALIGN);
#else
return memalign(RTL8169_ALIGN, size);
#endif
}
/*
* Cache maintenance functions. These are simple wrappers around the more
* general purpose flush_cache() and invalidate_dcache_range() functions.
*/
static void rtl_inval_rx_desc(struct RxDesc *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + sizeof(*desc), ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
#endif
}
static void rtl_flush_rx_desc(struct RxDesc *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
flush_cache((unsigned long)desc, sizeof(*desc));
#endif
}
static void rtl_inval_tx_desc(struct TxDesc *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
unsigned long start = (unsigned long)desc & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + sizeof(*desc), ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
#endif
}
static void rtl_flush_tx_desc(struct TxDesc *desc)
{
#ifndef CONFIG_SYS_NONCACHED_MEMORY
flush_cache((unsigned long)desc, sizeof(*desc));
#endif
}
static void rtl_inval_buffer(void *buf, size_t size)
{
unsigned long start = (unsigned long)buf & ~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + size, ARCH_DMA_MINALIGN);
invalidate_dcache_range(start, end);
}
static void rtl_flush_buffer(void *buf, size_t size)
{
flush_cache((unsigned long)buf, size);
}
/**************************************************************************
RECV - Receive a frame
***************************************************************************/
static int rtl_recv_common(pci_dev_t bdf, unsigned long dev_iobase,
uchar **packetp)
{
/* return true if there's an ethernet packet ready to read */
/* nic->packet should contain data on return */
/* nic->packetlen should contain length of data */
int cur_rx;
int length = 0;
#ifdef DEBUG_RTL8169_RX
printf ("%s\n", __FUNCTION__);
#endif
ioaddr = dev_iobase;
cur_rx = tpc->cur_rx;
rtl_inval_rx_desc(&tpc->RxDescArray[cur_rx]);
if ((le32_to_cpu(tpc->RxDescArray[cur_rx].status) & OWNbit) == 0) {
if (!(le32_to_cpu(tpc->RxDescArray[cur_rx].status) & RxRES)) {
length = (int) (le32_to_cpu(tpc->RxDescArray[cur_rx].
status) & 0x00001FFF) - 4;
rtl_inval_buffer(tpc->RxBufferRing[cur_rx], length);
memcpy(rxdata, tpc->RxBufferRing[cur_rx], length);
if (cur_rx == NUM_RX_DESC - 1)
tpc->RxDescArray[cur_rx].status =
cpu_to_le32((OWNbit | EORbit) + RX_BUF_SIZE);
else
tpc->RxDescArray[cur_rx].status =
cpu_to_le32(OWNbit + RX_BUF_SIZE);
tpc->RxDescArray[cur_rx].buf_addr = cpu_to_le32(
pci_mem_to_phys(bdf, (pci_addr_t)(unsigned long)
tpc->RxBufferRing[cur_rx]));
rtl_flush_rx_desc(&tpc->RxDescArray[cur_rx]);
#ifdef CONFIG_DM_ETH
*packetp = rxdata;
#else
net_process_received_packet(rxdata, length);
#endif
} else {
puts("Error Rx");
length = -EIO;
}
cur_rx = (cur_rx + 1) % NUM_RX_DESC;
tpc->cur_rx = cur_rx;
return length;
} else {
ushort sts = RTL_R8(IntrStatus);
RTL_W8(IntrStatus, sts & ~(TxErr | RxErr | SYSErr));
udelay(100); /* wait */
}
tpc->cur_rx = cur_rx;
return (0); /* initially as this is called to flush the input */
}
#ifdef CONFIG_DM_ETH
int rtl8169_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct rtl8169_private *priv = dev_get_priv(dev);
return rtl_recv_common(pci_get_bdf(dev), priv->iobase, packetp);
}
#else
static int rtl_recv(struct eth_device *dev)
{
return rtl_recv_common((pci_dev_t)dev->priv, dev->iobase, NULL);
}
#endif /* nCONFIG_DM_ETH */
#define HZ 1000
/**************************************************************************
SEND - Transmit a frame
***************************************************************************/
static int rtl_send_common(pci_dev_t bdf, unsigned long dev_iobase,
void *packet, int length)
{
/* send the packet to destination */
u32 to;
u8 *ptxb;
int entry = tpc->cur_tx % NUM_TX_DESC;
u32 len = length;
int ret;
#ifdef DEBUG_RTL8169_TX
int stime = currticks();
printf ("%s\n", __FUNCTION__);
printf("sending %d bytes\n", len);
#endif
ioaddr = dev_iobase;
/* point to the current txb incase multiple tx_rings are used */
ptxb = tpc->Tx_skbuff[entry * MAX_ETH_FRAME_SIZE];
memcpy(ptxb, (char *)packet, (int)length);
rtl_flush_buffer(ptxb, length);
while (len < ETH_ZLEN)
ptxb[len++] = '\0';
tpc->TxDescArray[entry].buf_Haddr = 0;
tpc->TxDescArray[entry].buf_addr = cpu_to_le32(
pci_mem_to_phys(bdf, (pci_addr_t)(unsigned long)ptxb));
if (entry != (NUM_TX_DESC - 1)) {
tpc->TxDescArray[entry].status =
cpu_to_le32((OWNbit | FSbit | LSbit) |
((len > ETH_ZLEN) ? len : ETH_ZLEN));
} else {
tpc->TxDescArray[entry].status =
cpu_to_le32((OWNbit | EORbit | FSbit | LSbit) |
((len > ETH_ZLEN) ? len : ETH_ZLEN));
}
rtl_flush_tx_desc(&tpc->TxDescArray[entry]);
RTL_W8(TxPoll, 0x40); /* set polling bit */
tpc->cur_tx++;
to = currticks() + TX_TIMEOUT;
do {
rtl_inval_tx_desc(&tpc->TxDescArray[entry]);
} while ((le32_to_cpu(tpc->TxDescArray[entry].status) & OWNbit)
&& (currticks() < to)); /* wait */
if (currticks() >= to) {
#ifdef DEBUG_RTL8169_TX
puts("tx timeout/error\n");
printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
#endif
ret = 0;
} else {
#ifdef DEBUG_RTL8169_TX
puts("tx done\n");
#endif
ret = length;
}
/* Delay to make net console (nc) work properly */
udelay(20);
return ret;
}
#ifdef CONFIG_DM_ETH
int rtl8169_eth_send(struct udevice *dev, void *packet, int length)
{
struct rtl8169_private *priv = dev_get_priv(dev);
return rtl_send_common(pci_get_bdf(dev), priv->iobase, packet, length);
}
#else
static int rtl_send(struct eth_device *dev, void *packet, int length)
{
return rtl_send_common((pci_dev_t)dev->priv, dev->iobase, packet,
length);
}
#endif
static void rtl8169_set_rx_mode(void)
{
u32 mc_filter[2]; /* Multicast hash filter */
int rx_mode;
u32 tmp = 0;
#ifdef DEBUG_RTL8169
printf ("%s\n", __FUNCTION__);
#endif
/* IFF_ALLMULTI */
/* Too many to filter perfectly -- accept all multicasts. */
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
mc_filter[1] = mc_filter[0] = 0xffffffff;
tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) &
rtl_chip_info[tpc->chipset].RxConfigMask);
RTL_W32(RxConfig, tmp);
RTL_W32(MAR0 + 0, mc_filter[0]);
RTL_W32(MAR0 + 4, mc_filter[1]);
}
static void rtl8169_hw_start(pci_dev_t bdf)
{
u32 i;
#ifdef DEBUG_RTL8169
int stime = currticks();
printf ("%s\n", __FUNCTION__);
#endif
#if 0
/* Soft reset the chip. */
RTL_W8(ChipCmd, CmdReset);
/* Check that the chip has finished the reset. */
for (i = 1000; i > 0; i--) {
if ((RTL_R8(ChipCmd) & CmdReset) == 0)
break;
else
udelay(10);
}
#endif
RTL_W8(Cfg9346, Cfg9346_Unlock);
/* RTL-8169sb/8110sb or previous version */
if (tpc->chipset <= 5)
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(EarlyTxThres, EarlyTxThld);
/* For gigabit rtl8169 */
RTL_W16(RxMaxSize, RxPacketMaxSize);
/* Set Rx Config register */
i = rtl8169_rx_config | (RTL_R32(RxConfig) &
rtl_chip_info[tpc->chipset].RxConfigMask);
RTL_W32(RxConfig, i);
/* Set DMA burst size and Interframe Gap Time */
RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) |
(InterFrameGap << TxInterFrameGapShift));
tpc->cur_rx = 0;
RTL_W32(TxDescStartAddrLow, pci_mem_to_phys(bdf,
(pci_addr_t)(unsigned long)tpc->TxDescArray));
RTL_W32(TxDescStartAddrHigh, (unsigned long)0);
RTL_W32(RxDescStartAddrLow, pci_mem_to_phys(
bdf, (pci_addr_t)(unsigned long)tpc->RxDescArray));
RTL_W32(RxDescStartAddrHigh, (unsigned long)0);
/* RTL-8169sc/8110sc or later version */
if (tpc->chipset > 5)
RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb);
RTL_W8(Cfg9346, Cfg9346_Lock);
udelay(10);
RTL_W32(RxMissed, 0);
rtl8169_set_rx_mode();
/* no early-rx interrupts */
RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000);
#ifdef DEBUG_RTL8169
printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
#endif
}
static void rtl8169_init_ring(pci_dev_t bdf)
{
int i;
#ifdef DEBUG_RTL8169
int stime = currticks();
printf ("%s\n", __FUNCTION__);
#endif
tpc->cur_rx = 0;
tpc->cur_tx = 0;
tpc->dirty_tx = 0;
memset(tpc->TxDescArray, 0x0, NUM_TX_DESC * sizeof(struct TxDesc));
memset(tpc->RxDescArray, 0x0, NUM_RX_DESC * sizeof(struct RxDesc));
for (i = 0; i < NUM_TX_DESC; i++) {
tpc->Tx_skbuff[i] = &txb[i];
}
for (i = 0; i < NUM_RX_DESC; i++) {
if (i == (NUM_RX_DESC - 1))
tpc->RxDescArray[i].status =
cpu_to_le32((OWNbit | EORbit) + RX_BUF_SIZE);
else
tpc->RxDescArray[i].status =
cpu_to_le32(OWNbit + RX_BUF_SIZE);
tpc->RxBufferRing[i] = &rxb[i * RX_BUF_SIZE];
tpc->RxDescArray[i].buf_addr = cpu_to_le32(pci_mem_to_phys(
bdf, (pci_addr_t)(unsigned long)tpc->RxBufferRing[i]));
rtl_flush_rx_desc(&tpc->RxDescArray[i]);
}
#ifdef DEBUG_RTL8169
printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
#endif
}
static void rtl8169_common_start(pci_dev_t bdf, unsigned char *enetaddr)
{
int i;
#ifdef DEBUG_RTL8169
int stime = currticks();
printf ("%s\n", __FUNCTION__);
#endif
rtl8169_init_ring(bdf);
rtl8169_hw_start(bdf);
/* Construct a perfect filter frame with the mac address as first match
* and broadcast for all others */
for (i = 0; i < 192; i++)
txb[i] = 0xFF;
txb[0] = enetaddr[0];
txb[1] = enetaddr[1];
txb[2] = enetaddr[2];
txb[3] = enetaddr[3];
txb[4] = enetaddr[4];
txb[5] = enetaddr[5];
#ifdef DEBUG_RTL8169
printf("%s elapsed time : %lu\n", __func__, currticks()-stime);
#endif
}
#ifdef CONFIG_DM_ETH
static int rtl8169_eth_start(struct udevice *dev)
{
struct eth_pdata *plat = dev_get_platdata(dev);
rtl8169_common_start(pci_get_bdf(dev), plat->enetaddr);
return 0;
}
#else
/**************************************************************************
RESET - Finish setting up the ethernet interface
***************************************************************************/
static int rtl_reset(struct eth_device *dev, bd_t *bis)
{
rtl8169_common_start((pci_dev_t)dev->priv, dev->enetaddr);
return 0;
}
#endif /* nCONFIG_DM_ETH */
static void rtl_halt_common(unsigned long dev_iobase)
{
int i;
#ifdef DEBUG_RTL8169
printf ("%s\n", __FUNCTION__);
#endif
ioaddr = dev_iobase;
/* Stop the chip's Tx and Rx DMA processes. */
RTL_W8(ChipCmd, 0x00);
/* Disable interrupts by clearing the interrupt mask. */
RTL_W16(IntrMask, 0x0000);
RTL_W32(RxMissed, 0);
for (i = 0; i < NUM_RX_DESC; i++) {
tpc->RxBufferRing[i] = NULL;
}
}
#ifdef CONFIG_DM_ETH
void rtl8169_eth_stop(struct udevice *dev)
{
struct rtl8169_private *priv = dev_get_priv(dev);
rtl_halt_common(priv->iobase);
}
#else
/**************************************************************************
HALT - Turn off ethernet interface
***************************************************************************/
static void rtl_halt(struct eth_device *dev)
{
rtl_halt_common(dev->iobase);
}
#endif
/**************************************************************************
INIT - Look for an adapter, this routine's visible to the outside
***************************************************************************/
#define board_found 1
#define valid_link 0
static int rtl_init(unsigned long dev_ioaddr, const char *name,
unsigned char *enetaddr)
{
static int board_idx = -1;
int i, rc;
int option = -1, Cap10_100 = 0, Cap1000 = 0;
#ifdef DEBUG_RTL8169
printf ("%s\n", __FUNCTION__);
#endif
ioaddr = dev_ioaddr;
board_idx++;
/* point to private storage */
tpc = &tpx;
rc = rtl8169_init_board(ioaddr, name);
if (rc)
return rc;
/* Get MAC address. FIXME: read EEPROM */
for (i = 0; i < MAC_ADDR_LEN; i++)
enetaddr[i] = RTL_R8(MAC0 + i);
#ifdef DEBUG_RTL8169
printf("chipset = %d\n", tpc->chipset);
printf("MAC Address");
for (i = 0; i < MAC_ADDR_LEN; i++)
printf(":%02x", enetaddr[i]);
putc('\n');
#endif
#ifdef DEBUG_RTL8169
/* Print out some hardware info */
printf("%s: at ioaddr 0x%lx\n", name, ioaddr);
#endif
/* if TBI is not endbled */
if (!(RTL_R8(PHYstatus) & TBI_Enable)) {
int val = mdio_read(PHY_AUTO_NEGO_REG);
option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx];
/* Force RTL8169 in 10/100/1000 Full/Half mode. */
if (option > 0) {
#ifdef DEBUG_RTL8169
printf("%s: Force-mode Enabled.\n", dev->name);
#endif
Cap10_100 = 0, Cap1000 = 0;
switch (option) {
case _10_Half:
Cap10_100 = PHY_Cap_10_Half;
Cap1000 = PHY_Cap_Null;
break;
case _10_Full:
Cap10_100 = PHY_Cap_10_Full;
Cap1000 = PHY_Cap_Null;
break;
case _100_Half:
Cap10_100 = PHY_Cap_100_Half;
Cap1000 = PHY_Cap_Null;
break;
case _100_Full:
Cap10_100 = PHY_Cap_100_Full;
Cap1000 = PHY_Cap_Null;
break;
case _1000_Full:
Cap10_100 = PHY_Cap_Null;
Cap1000 = PHY_Cap_1000_Full;
break;
default:
break;
}
mdio_write(PHY_AUTO_NEGO_REG, Cap10_100 | (val & 0x1F)); /* leave PHY_AUTO_NEGO_REG bit4:0 unchanged */
mdio_write(PHY_1000_CTRL_REG, Cap1000);
} else {
#ifdef DEBUG_RTL8169
printf("%s: Auto-negotiation Enabled.\n",
dev->name);
#endif
/* enable 10/100 Full/Half Mode, leave PHY_AUTO_NEGO_REG bit4:0 unchanged */
mdio_write(PHY_AUTO_NEGO_REG,
PHY_Cap_10_Half | PHY_Cap_10_Full |
PHY_Cap_100_Half | PHY_Cap_100_Full |
(val & 0x1F));
/* enable 1000 Full Mode */
mdio_write(PHY_1000_CTRL_REG, PHY_Cap_1000_Full);
}
/* Enable auto-negotiation and restart auto-nigotiation */
mdio_write(PHY_CTRL_REG,
PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego);
udelay(100);
/* wait for auto-negotiation process */
for (i = 10000; i > 0; i--) {
/* check if auto-negotiation complete */
if (mdio_read(PHY_STAT_REG) & PHY_Auto_Nego_Comp) {
udelay(100);
option = RTL_R8(PHYstatus);
if (option & _1000bpsF) {
#ifdef DEBUG_RTL8169
printf("%s: 1000Mbps Full-duplex operation.\n",
dev->name);
#endif
} else {
#ifdef DEBUG_RTL8169
printf("%s: %sMbps %s-duplex operation.\n",
dev->name,
(option & _100bps) ? "100" :
"10",
(option & FullDup) ? "Full" :
"Half");
#endif
}
break;
} else {
udelay(100);
}
} /* end for-loop to wait for auto-negotiation process */
} else {
udelay(100);
#ifdef DEBUG_RTL8169
printf
("%s: 1000Mbps Full-duplex operation, TBI Link %s!\n",
dev->name,
(RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed");
#endif
}
tpc->RxDescArray = rtl_alloc_descs(NUM_RX_DESC);
if (!tpc->RxDescArray)
return -ENOMEM;
tpc->TxDescArray = rtl_alloc_descs(NUM_TX_DESC);
if (!tpc->TxDescArray)
return -ENOMEM;
return 0;
}
#ifndef CONFIG_DM_ETH
int rtl8169_initialize(bd_t *bis)
{
pci_dev_t devno;
int card_number = 0;
struct eth_device *dev;
u32 iobase;
int idx=0;
while(1){
unsigned int region;
u16 device;
int err;
/* Find RTL8169 */
if ((devno = pci_find_devices(supported, idx++)) < 0)
break;
pci_read_config_word(devno, PCI_DEVICE_ID, &device);
switch (device) {
case 0x8168:
region = 2;
break;
default:
region = 1;
break;
}
pci_read_config_dword(devno, PCI_BASE_ADDRESS_0 + (region * 4), &iobase);
iobase &= ~0xf;
debug ("rtl8169: REALTEK RTL8169 @0x%x\n", iobase);
dev = (struct eth_device *)malloc(sizeof *dev);
if (!dev) {
printf("Can not allocate memory of rtl8169\n");
break;
}
memset(dev, 0, sizeof(*dev));
sprintf (dev->name, "RTL8169#%d", card_number);
dev->priv = (void *)(unsigned long)devno;
dev->iobase = (int)pci_mem_to_phys(devno, iobase);
dev->init = rtl_reset;
dev->halt = rtl_halt;
dev->send = rtl_send;
dev->recv = rtl_recv;
err = rtl_init(dev->iobase, dev->name, dev->enetaddr);
if (err < 0) {
printf(pr_fmt("failed to initialize card: %d\n"), err);
free(dev);
continue;
}
eth_register (dev);
card_number++;
}
return card_number;
}
#endif
#ifdef CONFIG_DM_ETH
static int rtl8169_eth_probe(struct udevice *dev)
{
struct pci_child_platdata *pplat = dev_get_parent_platdata(dev);
struct rtl8169_private *priv = dev_get_priv(dev);
struct eth_pdata *plat = dev_get_platdata(dev);
u32 iobase;
int region;
int ret;
debug("rtl8169: REALTEK RTL8169 @0x%x\n", iobase);
switch (pplat->device) {
case 0x8168:
region = 2;
break;
default:
region = 1;
break;
}
pci_read_config32(pci_get_bdf(dev), PCI_BASE_ADDRESS_0 + region * 4,
&iobase);
iobase &= ~0xf;
priv->iobase = (int)pci_mem_to_phys(pci_get_bdf(dev), iobase);
ret = rtl_init(priv->iobase, dev->name, plat->enetaddr);
if (ret < 0) {
printf(pr_fmt("failed to initialize card: %d\n"), ret);
return ret;
}
return 0;
}
static const struct eth_ops rtl8169_eth_ops = {
.start = rtl8169_eth_start,
.send = rtl8169_eth_send,
.recv = rtl8169_eth_recv,
.stop = rtl8169_eth_stop,
};
static const struct udevice_id rtl8169_eth_ids[] = {
{ .compatible = "realtek,rtl8169" },
{ }
};
U_BOOT_DRIVER(eth_rtl8169) = {
.name = "eth_rtl8169",
.id = UCLASS_ETH,
.of_match = rtl8169_eth_ids,
.probe = rtl8169_eth_probe,
.ops = &rtl8169_eth_ops,
.priv_auto_alloc_size = sizeof(struct rtl8169_private),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};
U_BOOT_PCI_DEVICE(eth_rtl8169, supported);
#endif