52f7d8442e
In Errata 1.0.24, if the board is running at OPP50 and has a warm reset, the boot ROM sets the frequencies for OPP100. This patch attempts to drop the frequencies back to OPP50 as soon as possible in the SPL. Then later the voltages and frequencies up set higher. Cc: Enric Balletbo i Serra <eballetbo@iseebcn.com> Cc: Lars Poeschel <poeschel@lemonage.de> Signed-off-by: Steve Kipisz <s-kipisz2@ti.com> [trini: Adapt to current framework] Signed-off-by: Tom Rini <trini@ti.com> |
||
---|---|---|
.. | ||
board.c | ||
board.h | ||
Makefile | ||
mux.c | ||
README | ||
u-boot.lds |
Summary ======= This document covers various features of the 'am335x_evm' build, and some of the related build targets (am335x_evm_uartN, etc). Hardware ======== The binary produced by this board supports, based on parsing of the EEPROM documented in TI's reference designs: - AM335x GP EVM - AM335x EVM SK - Beaglebone White - Beaglebone Black Customization ============= Given that all of the above boards are reference platforms (and the Beaglebone platforms are OSHA), it is likely that this platform code and configuration will be used as the basis of a custom platform. It is worth noting that aside from things such as NAND or MMC only being required if a custom platform makes use of these blocks, the following are required, depending on design: - GPIO is only required if DDR3 power is controlled in a way similar to EVM SK - SPI is only required for SPI flash, or exposing the SPI bus. The following blocks are required: - I2C, to talk with the PMIC and ensure that we do not run afoul of errata 1.0.24. When removing options as part of customization, CONFIG_EXTRA_ENV_SETTINGS will need additional care to update for your needs and to remove no longer relevant options as in some cases we define additional text blocks (such as for NAND or DFU strings). Also note that all of the SPL options are grouped together, rather than with the IP blocks, so both areas will need their choices updated to reflect the custom design. NAND ==== The AM335x GP EVM ships with a 256MiB NAND available in most profiles. In this example to program the NAND we assume that an SD card has been inserted with the files to write in the first SD slot and that mtdparts have been configured correctly for the board. As a time saving measure we load MLO into memory in one location, copy it into the three locatations that the ROM checks for additional valid copies, then load U-Boot into memory. We then write that whole section of memory to NAND. U-Boot # mmc rescan U-Boot # env default -f -a U-Boot # nand erase.chip U-Boot # saveenv U-Boot # load mmc 0 81000000 MLO U-Boot # cp.b 81000000 81020000 20000 U-Boot # cp.b 81000000 81040000 20000 U-Boot # cp.b 81000000 81060000 20000 U-Boot # load mmc 0 81080000 u-boot.img U-Boot # nand write 81000000 0 260000 U-Boot # load mmc 0 ${loadaddr} uImage U-Boot # nand write ${loadaddr} kernel 500000 NOR === The Beaglebone White can be equiped with a "memory cape" that in turn can have a NOR module plugged into it. In this case it is then possible to program and boot from NOR. Note that due to how U-Boot is architectured we must build a specific version of U-Boot that knows we have NOR flash. This build is named 'am335x_evm_nor'. Further, we have a 'am335x_evm_norboot' build that will assume that the environment is on NOR rather than NAND. In the following example we assume that and SD card has been populated with MLO and u-boot.img from a 'am335x_evm_nor' build and also contains the 'u-boot.bin' from a 'am335x_evm_norboot' build. When booting from NOR, a binary must be written to the start of NOR, with no header or similar prepended. In the following example we use a size of 512KiB (0x80000) as that is how much space we set aside before the environment, as per the config file. U-Boot # mmc rescan U-Boot # load mmc 0 ${loadaddr} u-boot.bin U-Boot # protect off 08000000 +80000 U-Boot # erase 08000000 +80000 U-Boot # cp.b ${loadaddr} 08000000 ${filesize} Falcon Mode =========== The default build includes "Falcon Mode" (see doc/README.falcon) via NAND, eMMC (or raw SD cards) and FAT SD cards. Our default behavior currently is to read a 'c' on the console while in SPL at any point prior to loading the OS payload (so as soon as possible) to opt to booting full U-Boot. Also note that while one can program Falcon Mode "in place" great care needs to be taken by the user to not 'brick' their setup. As these are all eval boards with multiple boot methods, recovery should not be an issue in this worst-case however. Falcon Mode: eMMC ================= The recommended layout in this case is: MMC BLOCKS |--------------------------------| LOCATION IN BYTES 0x0000 - 0x007F : MBR or GPT table : 0x000000 - 0x020000 0x0080 - 0x00FF : ARGS or FDT file : 0x010000 - 0x020000 0x0100 - 0x01FF : SPL.backup1 (first copy used) : 0x020000 - 0x040000 0x0200 - 0x02FF : SPL.backup2 (second copy used) : 0x040000 - 0x060000 0x0300 - 0x06FF : U-Boot : 0x060000 - 0x0e0000 0x0700 - 0x08FF : U-Boot Env + Redundant : 0x0e0000 - 0x120000 0x0900 - 0x28FF : Kernel : 0x120000 - 0x520000 Note that when we run 'spl export' it will prepare to boot the kernel. This includes relocation of the uImage from where we loaded it to the entry point defined in the header. As these locations overlap by default, it would leave us with an image that if written to MMC will not boot, so instead of using the loadaddr variable we use 0x81000000 in the following example. In this example we are loading from the network, for simplicity, and assume a valid partition table already exists and 'mmc dev' has already been run to select the correct device. Also note that if you previously had a FAT partition (such as on a Beaglebone Black) it is not enough to write garbage into the area, you must delete it from the partition table first. # Ensure we are able to talk with this mmc device U-Boot # mmc rescan U-Boot # tftp 81000000 am335x/MLO # Write to two of the backup locations ROM uses U-Boot # mmc write 81000000 100 100 U-Boot # mmc write 81000000 200 100 # Write U-Boot to the location set in the config U-Boot # tftp 81000000 am335x/u-boot.img U-Boot # mmc write 81000000 300 400 # Load kernel and device tree into memory, perform export U-Boot # tftp 81000000 am335x/uImage U-Boot # run findfdt U-Boot # tftp ${fdtaddr} am335x/${fdtfile} U-Boot # run mmcargs U-Boot # spl export fdt 81000000 - ${fdtaddr} # Write the updated device tree to MMC U-Boot # mmc write ${fdtaddr} 80 80 # Write the uImage to MMC U-Boot # mmc write 81000000 900 2000 Falcon Mode: FAT SD cards ========================= In this case the additional file is written to the filesystem. In this example we assume that the uImage and device tree to be used are already on the FAT filesystem (only the uImage MUST be for this to function afterwards) along with a Falcon Mode aware MLO and the FAT partition has already been created and marked bootable: U-Boot # mmc rescan # Load kernel and device tree into memory, perform export U-Boot # load mmc 0:1 ${loadaddr} uImage U-Boot # run findfdt U-Boot # load mmc 0:1 ${fdtaddr} ${fdtfile} U-Boot # run mmcargs U-Boot # spl export fdt ${loadaddr} - ${fdtaddr} This will print a number of lines and then end with something like: Using Device Tree in place at 80f80000, end 80f85928 Using Device Tree in place at 80f80000, end 80f88928 So then you: U-Boot # fatwrite mmc 0:1 0x80f80000 args 8928 Falcon Mode: NAND ================= In this case the additional data is written to another partition of the NAND. In this example we assume that the uImage and device tree to be are already located on the NAND somewhere (such as fileystem or mtd partition) along with a Falcon Mode aware MLO written to the correct locations for booting and mtdparts have been configured correctly for the board: U-Boot # nand read ${loadaddr} kernel U-Boot # load nand rootfs ${fdtaddr} /boot/am335x-evm.dtb U-Boot # run nandargs U-Boot # spl export fdt ${loadaddr} - ${fdtaddr} U-Boot # nand erase.part u-boot-spl-os U-Boot # nand write ${fdtaddr} u-boot-spl-os