addb2e1650
code and in SoC code). Boards using the old way have CFG_NAND_LEGACY and BOARDLIBS = drivers/nand_legacy/libnand_legacy.a added. Build breakage for NETTA.ERR and NETTA_ISDN - will go away when the new NAND support is implemented for these boards.
1590 lines
42 KiB
C
1590 lines
42 KiB
C
/*
|
|
* Driver for Disk-On-Chip 2000 and Millennium
|
|
* (c) 1999 Machine Vision Holdings, Inc.
|
|
* (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
|
|
*
|
|
* $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <config.h>
|
|
#include <command.h>
|
|
#include <malloc.h>
|
|
#include <asm/io.h>
|
|
|
|
#ifdef CONFIG_SHOW_BOOT_PROGRESS
|
|
# include <status_led.h>
|
|
# define SHOW_BOOT_PROGRESS(arg) show_boot_progress(arg)
|
|
#else
|
|
# define SHOW_BOOT_PROGRESS(arg)
|
|
#endif
|
|
|
|
#if (CONFIG_COMMANDS & CFG_CMD_DOC)
|
|
|
|
#include <linux/mtd/nftl.h>
|
|
#include <linux/mtd/nand_legacy.h>
|
|
#include <linux/mtd/nand_ids.h>
|
|
|
|
#include <linux/mtd/doc2000.h>
|
|
#include <linux/mtd/nftl.h>
|
|
|
|
#ifdef CFG_DOC_SUPPORT_2000
|
|
#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
|
|
#else
|
|
#define DoC_is_2000(doc) (0)
|
|
#endif
|
|
|
|
#ifdef CFG_DOC_SUPPORT_MILLENNIUM
|
|
#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
|
|
#else
|
|
#define DoC_is_Millennium(doc) (0)
|
|
#endif
|
|
|
|
/* CFG_DOC_PASSIVE_PROBE:
|
|
In order to ensure that the BIOS checksum is correct at boot time, and
|
|
hence that the onboard BIOS extension gets executed, the DiskOnChip
|
|
goes into reset mode when it is read sequentially: all registers
|
|
return 0xff until the chip is woken up again by writing to the
|
|
DOCControl register.
|
|
|
|
Unfortunately, this means that the probe for the DiskOnChip is unsafe,
|
|
because one of the first things it does is write to where it thinks
|
|
the DOCControl register should be - which may well be shared memory
|
|
for another device. I've had machines which lock up when this is
|
|
attempted. Hence the possibility to do a passive probe, which will fail
|
|
to detect a chip in reset mode, but is at least guaranteed not to lock
|
|
the machine.
|
|
|
|
If you have this problem, uncomment the following line:
|
|
#define CFG_DOC_PASSIVE_PROBE
|
|
*/
|
|
|
|
#undef DOC_DEBUG
|
|
#undef ECC_DEBUG
|
|
#undef PSYCHO_DEBUG
|
|
#undef NFTL_DEBUG
|
|
|
|
static struct DiskOnChip doc_dev_desc[CFG_MAX_DOC_DEVICE];
|
|
|
|
/* Current DOC Device */
|
|
static int curr_device = -1;
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
int rcode = 0;
|
|
|
|
switch (argc) {
|
|
case 0:
|
|
case 1:
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
case 2:
|
|
if (strcmp(argv[1],"info") == 0) {
|
|
int i;
|
|
|
|
putc ('\n');
|
|
|
|
for (i=0; i<CFG_MAX_DOC_DEVICE; ++i) {
|
|
if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN)
|
|
continue; /* list only known devices */
|
|
printf ("Device %d: ", i);
|
|
doc_print(&doc_dev_desc[i]);
|
|
}
|
|
return 0;
|
|
|
|
} else if (strcmp(argv[1],"device") == 0) {
|
|
if ((curr_device < 0) || (curr_device >= CFG_MAX_DOC_DEVICE)) {
|
|
puts ("\nno devices available\n");
|
|
return 1;
|
|
}
|
|
printf ("\nDevice %d: ", curr_device);
|
|
doc_print(&doc_dev_desc[curr_device]);
|
|
return 0;
|
|
}
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
case 3:
|
|
if (strcmp(argv[1],"device") == 0) {
|
|
int dev = (int)simple_strtoul(argv[2], NULL, 10);
|
|
|
|
printf ("\nDevice %d: ", dev);
|
|
if (dev >= CFG_MAX_DOC_DEVICE) {
|
|
puts ("unknown device\n");
|
|
return 1;
|
|
}
|
|
doc_print(&doc_dev_desc[dev]);
|
|
/*doc_print (dev);*/
|
|
|
|
if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) {
|
|
return 1;
|
|
}
|
|
|
|
curr_device = dev;
|
|
|
|
puts ("... is now current device\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
default:
|
|
/* at least 4 args */
|
|
|
|
if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) {
|
|
ulong addr = simple_strtoul(argv[2], NULL, 16);
|
|
ulong off = simple_strtoul(argv[3], NULL, 16);
|
|
ulong size = simple_strtoul(argv[4], NULL, 16);
|
|
int cmd = (strcmp(argv[1],"read") == 0);
|
|
int ret, total;
|
|
|
|
printf ("\nDOC %s: device %d offset %ld, size %ld ... ",
|
|
cmd ? "read" : "write", curr_device, off, size);
|
|
|
|
ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size,
|
|
(size_t *)&total, (u_char*)addr);
|
|
|
|
printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write",
|
|
ret ? "ERROR" : "OK");
|
|
|
|
return ret;
|
|
} else if (strcmp(argv[1],"erase") == 0) {
|
|
ulong off = simple_strtoul(argv[2], NULL, 16);
|
|
ulong size = simple_strtoul(argv[3], NULL, 16);
|
|
int ret;
|
|
|
|
printf ("\nDOC erase: device %d offset %ld, size %ld ... ",
|
|
curr_device, off, size);
|
|
|
|
ret = doc_erase (doc_dev_desc + curr_device, off, size);
|
|
|
|
printf("%s\n", ret ? "ERROR" : "OK");
|
|
|
|
return ret;
|
|
} else {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
rcode = 1;
|
|
}
|
|
|
|
return rcode;
|
|
}
|
|
}
|
|
U_BOOT_CMD(
|
|
doc, 5, 1, do_doc,
|
|
"doc - Disk-On-Chip sub-system\n",
|
|
"info - show available DOC devices\n"
|
|
"doc device [dev] - show or set current device\n"
|
|
"doc read addr off size\n"
|
|
"doc write addr off size - read/write `size'"
|
|
" bytes starting at offset `off'\n"
|
|
" to/from memory address `addr'\n"
|
|
"doc erase off size - erase `size' bytes of DOC from offset `off'\n"
|
|
);
|
|
|
|
int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
char *boot_device = NULL;
|
|
char *ep;
|
|
int dev;
|
|
ulong cnt;
|
|
ulong addr;
|
|
ulong offset = 0;
|
|
image_header_t *hdr;
|
|
int rcode = 0;
|
|
|
|
switch (argc) {
|
|
case 1:
|
|
addr = CFG_LOAD_ADDR;
|
|
boot_device = getenv ("bootdevice");
|
|
break;
|
|
case 2:
|
|
addr = simple_strtoul(argv[1], NULL, 16);
|
|
boot_device = getenv ("bootdevice");
|
|
break;
|
|
case 3:
|
|
addr = simple_strtoul(argv[1], NULL, 16);
|
|
boot_device = argv[2];
|
|
break;
|
|
case 4:
|
|
addr = simple_strtoul(argv[1], NULL, 16);
|
|
boot_device = argv[2];
|
|
offset = simple_strtoul(argv[3], NULL, 16);
|
|
break;
|
|
default:
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
return 1;
|
|
}
|
|
|
|
if (!boot_device) {
|
|
puts ("\n** No boot device **\n");
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
return 1;
|
|
}
|
|
|
|
dev = simple_strtoul(boot_device, &ep, 16);
|
|
|
|
if ((dev >= CFG_MAX_DOC_DEVICE) ||
|
|
(doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) {
|
|
printf ("\n** Device %d not available\n", dev);
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
return 1;
|
|
}
|
|
|
|
printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n",
|
|
dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr,
|
|
offset);
|
|
|
|
if (doc_rw (doc_dev_desc + dev, 1, offset,
|
|
SECTORSIZE, NULL, (u_char *)addr)) {
|
|
printf ("** Read error on %d\n", dev);
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
return 1;
|
|
}
|
|
|
|
hdr = (image_header_t *)addr;
|
|
|
|
if (hdr->ih_magic == IH_MAGIC) {
|
|
|
|
print_image_hdr (hdr);
|
|
|
|
cnt = (hdr->ih_size + sizeof(image_header_t));
|
|
cnt -= SECTORSIZE;
|
|
} else {
|
|
puts ("\n** Bad Magic Number **\n");
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
return 1;
|
|
}
|
|
|
|
if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt,
|
|
NULL, (u_char *)(addr+SECTORSIZE))) {
|
|
printf ("** Read error on %d\n", dev);
|
|
SHOW_BOOT_PROGRESS (-1);
|
|
return 1;
|
|
}
|
|
|
|
/* Loading ok, update default load address */
|
|
|
|
load_addr = addr;
|
|
|
|
/* Check if we should attempt an auto-start */
|
|
if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) {
|
|
char *local_args[2];
|
|
extern int do_bootm (cmd_tbl_t *, int, int, char *[]);
|
|
|
|
local_args[0] = argv[0];
|
|
local_args[1] = NULL;
|
|
|
|
printf ("Automatic boot of image at addr 0x%08lX ...\n", addr);
|
|
|
|
do_bootm (cmdtp, 0, 1, local_args);
|
|
rcode = 1;
|
|
}
|
|
return rcode;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
docboot, 4, 1, do_docboot,
|
|
"docboot - boot from DOC device\n",
|
|
"loadAddr dev\n"
|
|
);
|
|
|
|
int doc_rw (struct DiskOnChip* this, int cmd,
|
|
loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf)
|
|
{
|
|
int noecc, ret = 0, n, total = 0;
|
|
char eccbuf[6];
|
|
|
|
while(len) {
|
|
/* The ECC will not be calculated correctly if
|
|
less than 512 is written or read */
|
|
noecc = (from != (from | 0x1ff) + 1) || (len < 0x200);
|
|
|
|
if (cmd)
|
|
ret = doc_read_ecc(this, from, len,
|
|
(size_t *)&n, (u_char*)buf,
|
|
noecc ? (uchar *)NULL : (uchar *)eccbuf);
|
|
else
|
|
ret = doc_write_ecc(this, from, len,
|
|
(size_t *)&n, (u_char*)buf,
|
|
noecc ? (uchar *)NULL : (uchar *)eccbuf);
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
from += n;
|
|
buf += n;
|
|
total += n;
|
|
len -= n;
|
|
}
|
|
|
|
if (retlen)
|
|
*retlen = total;
|
|
|
|
return ret;
|
|
}
|
|
|
|
void doc_print(struct DiskOnChip *this) {
|
|
printf("%s at 0x%lX,\n"
|
|
"\t %d chip%s %s, size %d MB, \n"
|
|
"\t total size %ld MB, sector size %ld kB\n",
|
|
this->name, this->physadr, this->numchips,
|
|
this->numchips>1 ? "s" : "", this->chips_name,
|
|
1 << (this->chipshift - 20),
|
|
this->totlen >> 20, this->erasesize >> 10);
|
|
|
|
if (this->nftl_found) {
|
|
struct NFTLrecord *nftl = &this->nftl;
|
|
unsigned long bin_size, flash_size;
|
|
|
|
bin_size = nftl->nb_boot_blocks * this->erasesize;
|
|
flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize;
|
|
|
|
printf("\t NFTL boot record:\n"
|
|
"\t Binary partition: size %ld%s\n"
|
|
"\t Flash disk partition: size %ld%s, offset 0x%lx\n",
|
|
bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10,
|
|
bin_size > (1 << 20) ? "MB" : "kB",
|
|
flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10,
|
|
flash_size > (1 << 20) ? "MB" : "kB", bin_size);
|
|
} else {
|
|
puts ("\t No NFTL boot record found.\n");
|
|
}
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* This function is needed to avoid calls of the __ashrdi3 function. */
|
|
static int shr(int val, int shift) {
|
|
return val >> shift;
|
|
}
|
|
|
|
/* Perform the required delay cycles by reading from the appropriate register */
|
|
static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
|
|
{
|
|
volatile char dummy;
|
|
int i;
|
|
|
|
for (i = 0; i < cycles; i++) {
|
|
if (DoC_is_Millennium(doc))
|
|
dummy = ReadDOC(doc->virtadr, NOP);
|
|
else
|
|
dummy = ReadDOC(doc->virtadr, DOCStatus);
|
|
}
|
|
|
|
}
|
|
|
|
/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
|
|
static int _DoC_WaitReady(struct DiskOnChip *doc)
|
|
{
|
|
unsigned long docptr = doc->virtadr;
|
|
unsigned long start = get_timer(0);
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
puts ("_DoC_WaitReady called for out-of-line wait\n");
|
|
#endif
|
|
|
|
/* Out-of-line routine to wait for chip response */
|
|
while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
|
|
#ifdef CFG_DOC_SHORT_TIMEOUT
|
|
/* it seems that after a certain time the DoC deasserts
|
|
* the CDSN_CTRL_FR_B although it is not ready...
|
|
* using a short timout solve this (timer increments every ms) */
|
|
if (get_timer(start) > 10) {
|
|
return DOC_ETIMEOUT;
|
|
}
|
|
#else
|
|
if (get_timer(start) > 10 * 1000) {
|
|
puts ("_DoC_WaitReady timed out.\n");
|
|
return DOC_ETIMEOUT;
|
|
}
|
|
#endif
|
|
udelay(1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int DoC_WaitReady(struct DiskOnChip *doc)
|
|
{
|
|
unsigned long docptr = doc->virtadr;
|
|
/* This is inline, to optimise the common case, where it's ready instantly */
|
|
int ret = 0;
|
|
|
|
/* 4 read form NOP register should be issued in prior to the read from CDSNControl
|
|
see Software Requirement 11.4 item 2. */
|
|
DoC_Delay(doc, 4);
|
|
|
|
if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
|
|
/* Call the out-of-line routine to wait */
|
|
ret = _DoC_WaitReady(doc);
|
|
|
|
/* issue 2 read from NOP register after reading from CDSNControl register
|
|
see Software Requirement 11.4 item 2. */
|
|
DoC_Delay(doc, 2);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
|
|
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
|
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
|
|
|
static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command,
|
|
unsigned char xtraflags)
|
|
{
|
|
unsigned long docptr = doc->virtadr;
|
|
|
|
if (DoC_is_2000(doc))
|
|
xtraflags |= CDSN_CTRL_FLASH_IO;
|
|
|
|
/* Assert the CLE (Command Latch Enable) line to the flash chip */
|
|
WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(command, docptr, CDSNSlowIO);
|
|
|
|
/* Send the command */
|
|
WriteDOC_(command, docptr, doc->ioreg);
|
|
|
|
/* Lower the CLE line */
|
|
WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
|
|
bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
|
|
required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
|
|
|
|
static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
|
|
unsigned char xtraflags1, unsigned char xtraflags2)
|
|
{
|
|
unsigned long docptr;
|
|
int i;
|
|
|
|
docptr = doc->virtadr;
|
|
|
|
if (DoC_is_2000(doc))
|
|
xtraflags1 |= CDSN_CTRL_FLASH_IO;
|
|
|
|
/* Assert the ALE (Address Latch Enable) line to the flash chip */
|
|
WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
|
|
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Send the address */
|
|
/* Devices with 256-byte page are addressed as:
|
|
Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
|
|
* there is no device on the market with page256
|
|
and more than 24 bits.
|
|
Devices with 512-byte page are addressed as:
|
|
Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
|
|
* 25-31 is sent only if the chip support it.
|
|
* bit 8 changes the read command to be sent
|
|
(NAND_CMD_READ0 or NAND_CMD_READ1).
|
|
*/
|
|
|
|
if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
|
|
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
|
|
}
|
|
|
|
if (doc->page256) {
|
|
ofs = ofs >> 8;
|
|
} else {
|
|
ofs = ofs >> 9;
|
|
}
|
|
|
|
if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
|
|
for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
|
|
if (DoC_is_Millennium(doc))
|
|
WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
|
|
WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
|
|
}
|
|
}
|
|
|
|
DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */
|
|
|
|
/* FIXME: The SlowIO's for millennium could be replaced by
|
|
a single WritePipeTerm here. mf. */
|
|
|
|
/* Lower the ALE line */
|
|
WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
|
|
CDSNControl);
|
|
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Wait for the chip to respond - Software requirement 11.4.1 */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* Read a buffer from DoC, taking care of Millennium oddities */
|
|
static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
|
|
{
|
|
volatile int dummy;
|
|
int modulus = 0xffff;
|
|
unsigned long docptr;
|
|
int i;
|
|
|
|
docptr = doc->virtadr;
|
|
|
|
if (len <= 0)
|
|
return;
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
/* Read the data via the internal pipeline through CDSN IO register,
|
|
see Pipelined Read Operations 11.3 */
|
|
dummy = ReadDOC(docptr, ReadPipeInit);
|
|
|
|
/* Millennium should use the LastDataRead register - Pipeline Reads */
|
|
len--;
|
|
|
|
/* This is needed for correctly ECC calculation */
|
|
modulus = 0xff;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
buf[i] = ReadDOC(docptr, LastDataRead);
|
|
}
|
|
}
|
|
|
|
/* Write a buffer to DoC, taking care of Millennium oddities */
|
|
static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
|
|
{
|
|
unsigned long docptr;
|
|
int i;
|
|
|
|
docptr = doc->virtadr;
|
|
|
|
if (len <= 0)
|
|
return;
|
|
|
|
for (i = 0; i < len; i++)
|
|
WriteDOC_(buf[i], docptr, doc->ioreg + i);
|
|
|
|
if (DoC_is_Millennium(doc)) {
|
|
WriteDOC(0x00, docptr, WritePipeTerm);
|
|
}
|
|
}
|
|
|
|
|
|
/* DoC_SelectChip: Select a given flash chip within the current floor */
|
|
|
|
static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
|
|
{
|
|
unsigned long docptr = doc->virtadr;
|
|
|
|
/* Software requirement 11.4.4 before writing DeviceSelect */
|
|
/* Deassert the CE line to eliminate glitches on the FCE# outputs */
|
|
WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Select the individual flash chip requested */
|
|
WriteDOC(chip, docptr, CDSNDeviceSelect);
|
|
DoC_Delay(doc, 4);
|
|
|
|
/* Reassert the CE line */
|
|
WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
|
|
CDSNControl);
|
|
DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */
|
|
|
|
/* Wait for it to be ready */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* DoC_SelectFloor: Select a given floor (bank of flash chips) */
|
|
|
|
static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
|
|
{
|
|
unsigned long docptr = doc->virtadr;
|
|
|
|
/* Select the floor (bank) of chips required */
|
|
WriteDOC(floor, docptr, FloorSelect);
|
|
|
|
/* Wait for the chip to be ready */
|
|
return DoC_WaitReady(doc);
|
|
}
|
|
|
|
/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
|
|
|
|
static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
|
|
{
|
|
int mfr, id, i;
|
|
volatile char dummy;
|
|
|
|
/* Page in the required floor/chip */
|
|
DoC_SelectFloor(doc, floor);
|
|
DoC_SelectChip(doc, chip);
|
|
|
|
/* Reset the chip */
|
|
if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
|
|
#ifdef DOC_DEBUG
|
|
printf("DoC_Command (reset) for %d,%d returned true\n",
|
|
floor, chip);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Read the NAND chip ID: 1. Send ReadID command */
|
|
if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
|
|
#ifdef DOC_DEBUG
|
|
printf("DoC_Command (ReadID) for %d,%d returned true\n",
|
|
floor, chip);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Read the NAND chip ID: 2. Send address byte zero */
|
|
DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
|
|
|
|
/* Read the manufacturer and device id codes from the device */
|
|
|
|
/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
|
|
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
|
|
DoC_Delay(doc, 2);
|
|
mfr = ReadDOC_(doc->virtadr, doc->ioreg);
|
|
|
|
/* CDSN Slow IO register see Software Requirement 11.4 item 5. */
|
|
dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
|
|
DoC_Delay(doc, 2);
|
|
id = ReadDOC_(doc->virtadr, doc->ioreg);
|
|
|
|
/* No response - return failure */
|
|
if (mfr == 0xff || mfr == 0)
|
|
return 0;
|
|
|
|
/* Check it's the same as the first chip we identified.
|
|
* M-Systems say that any given DiskOnChip device should only
|
|
* contain _one_ type of flash part, although that's not a
|
|
* hardware restriction. */
|
|
if (doc->mfr) {
|
|
if (doc->mfr == mfr && doc->id == id)
|
|
return 1; /* This is another the same the first */
|
|
else
|
|
printf("Flash chip at floor %d, chip %d is different:\n",
|
|
floor, chip);
|
|
}
|
|
|
|
/* Print and store the manufacturer and ID codes. */
|
|
for (i = 0; nand_flash_ids[i].name != NULL; i++) {
|
|
if (mfr == nand_flash_ids[i].manufacture_id &&
|
|
id == nand_flash_ids[i].model_id) {
|
|
#ifdef DOC_DEBUG
|
|
printf("Flash chip found: Manufacturer ID: %2.2X, "
|
|
"Chip ID: %2.2X (%s)\n", mfr, id,
|
|
nand_flash_ids[i].name);
|
|
#endif
|
|
if (!doc->mfr) {
|
|
doc->mfr = mfr;
|
|
doc->id = id;
|
|
doc->chipshift =
|
|
nand_flash_ids[i].chipshift;
|
|
doc->page256 = nand_flash_ids[i].page256;
|
|
doc->pageadrlen =
|
|
nand_flash_ids[i].pageadrlen;
|
|
doc->erasesize =
|
|
nand_flash_ids[i].erasesize;
|
|
doc->chips_name =
|
|
nand_flash_ids[i].name;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DOC_DEBUG
|
|
/* We haven't fully identified the chip. Print as much as we know. */
|
|
printf("Unknown flash chip found: %2.2X %2.2X\n",
|
|
id, mfr);
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
|
|
|
|
static void DoC_ScanChips(struct DiskOnChip *this)
|
|
{
|
|
int floor, chip;
|
|
int numchips[MAX_FLOORS];
|
|
int maxchips = MAX_CHIPS;
|
|
int ret = 1;
|
|
|
|
this->numchips = 0;
|
|
this->mfr = 0;
|
|
this->id = 0;
|
|
|
|
if (DoC_is_Millennium(this))
|
|
maxchips = MAX_CHIPS_MIL;
|
|
|
|
/* For each floor, find the number of valid chips it contains */
|
|
for (floor = 0; floor < MAX_FLOORS; floor++) {
|
|
ret = 1;
|
|
numchips[floor] = 0;
|
|
for (chip = 0; chip < maxchips && ret != 0; chip++) {
|
|
|
|
ret = DoC_IdentChip(this, floor, chip);
|
|
if (ret) {
|
|
numchips[floor]++;
|
|
this->numchips++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If there are none at all that we recognise, bail */
|
|
if (!this->numchips) {
|
|
puts ("No flash chips recognised.\n");
|
|
return;
|
|
}
|
|
|
|
/* Allocate an array to hold the information for each chip */
|
|
this->chips = malloc(sizeof(struct Nand) * this->numchips);
|
|
if (!this->chips) {
|
|
puts ("No memory for allocating chip info structures\n");
|
|
return;
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
/* Fill out the chip array with {floor, chipno} for each
|
|
* detected chip in the device. */
|
|
for (floor = 0; floor < MAX_FLOORS; floor++) {
|
|
for (chip = 0; chip < numchips[floor]; chip++) {
|
|
this->chips[ret].floor = floor;
|
|
this->chips[ret].chip = chip;
|
|
this->chips[ret].curadr = 0;
|
|
this->chips[ret].curmode = 0x50;
|
|
ret++;
|
|
}
|
|
}
|
|
|
|
/* Calculate and print the total size of the device */
|
|
this->totlen = this->numchips * (1 << this->chipshift);
|
|
|
|
#ifdef DOC_DEBUG
|
|
printf("%d flash chips found. Total DiskOnChip size: %ld MB\n",
|
|
this->numchips, this->totlen >> 20);
|
|
#endif
|
|
}
|
|
|
|
/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
|
|
* various device information of the NFTL partition and Bad Unit Table. Update
|
|
* the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
|
|
* is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
|
|
*/
|
|
static int find_boot_record(struct NFTLrecord *nftl)
|
|
{
|
|
struct nftl_uci1 h1;
|
|
struct nftl_oob oob;
|
|
unsigned int block, boot_record_count = 0;
|
|
int retlen;
|
|
u8 buf[SECTORSIZE];
|
|
struct NFTLMediaHeader *mh = &nftl->MediaHdr;
|
|
unsigned int i;
|
|
|
|
nftl->MediaUnit = BLOCK_NIL;
|
|
nftl->SpareMediaUnit = BLOCK_NIL;
|
|
|
|
/* search for a valid boot record */
|
|
for (block = 0; block < nftl->nb_blocks; block++) {
|
|
int ret;
|
|
|
|
/* Check for ANAND header first. Then can whinge if it's found but later
|
|
checks fail */
|
|
if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE,
|
|
(size_t *)&retlen, buf, NULL))) {
|
|
static int warncount = 5;
|
|
|
|
if (warncount) {
|
|
printf("Block read at 0x%x failed\n", block * nftl->EraseSize);
|
|
if (!--warncount)
|
|
puts ("Further failures for this block will not be printed\n");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
|
|
/* ANAND\0 not found. Continue */
|
|
#ifdef PSYCHO_DEBUG
|
|
printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize);
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
#ifdef NFTL_DEBUG
|
|
printf("ANAND header found at 0x%x\n", block * nftl->EraseSize);
|
|
#endif
|
|
|
|
/* To be safer with BIOS, also use erase mark as discriminant */
|
|
if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8,
|
|
8, (size_t *)&retlen, (uchar *)&h1) < 0)) {
|
|
#ifdef NFTL_DEBUG
|
|
printf("ANAND header found at 0x%x, but OOB data read failed\n",
|
|
block * nftl->EraseSize);
|
|
#endif
|
|
continue;
|
|
}
|
|
|
|
/* OK, we like it. */
|
|
|
|
if (boot_record_count) {
|
|
/* We've already processed one. So we just check if
|
|
this one is the same as the first one we found */
|
|
if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
|
|
#ifdef NFTL_DEBUG
|
|
printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n",
|
|
nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
|
|
#endif
|
|
/* if (debug) Print both side by side */
|
|
return -1;
|
|
}
|
|
if (boot_record_count == 1)
|
|
nftl->SpareMediaUnit = block;
|
|
|
|
boot_record_count++;
|
|
continue;
|
|
}
|
|
|
|
/* This is the first we've seen. Copy the media header structure into place */
|
|
memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
|
|
|
|
/* Do some sanity checks on it */
|
|
if (mh->UnitSizeFactor == 0) {
|
|
#ifdef NFTL_DEBUG
|
|
puts ("UnitSizeFactor 0x00 detected.\n"
|
|
"This violates the spec but we think we know what it means...\n");
|
|
#endif
|
|
} else if (mh->UnitSizeFactor != 0xff) {
|
|
printf ("Sorry, we don't support UnitSizeFactor "
|
|
"of != 1 yet.\n");
|
|
return -1;
|
|
}
|
|
|
|
nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
|
|
if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
|
|
printf ("NFTL Media Header sanity check failed:\n"
|
|
"nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
|
|
nftl->nb_boot_blocks, nftl->nb_blocks);
|
|
return -1;
|
|
}
|
|
|
|
nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
|
|
if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
|
|
printf ("NFTL Media Header sanity check failed:\n"
|
|
"numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
|
|
nftl->numvunits,
|
|
nftl->nb_blocks,
|
|
nftl->nb_boot_blocks);
|
|
return -1;
|
|
}
|
|
|
|
nftl->nr_sects = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
|
|
|
|
/* If we're not using the last sectors in the device for some reason,
|
|
reduce nb_blocks accordingly so we forget they're there */
|
|
nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
|
|
|
|
/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
|
|
for (i = 0; i < nftl->nb_blocks; i++) {
|
|
if ((i & (SECTORSIZE - 1)) == 0) {
|
|
/* read one sector for every SECTORSIZE of blocks */
|
|
if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize +
|
|
i + SECTORSIZE, SECTORSIZE,
|
|
(size_t *)&retlen, buf, (uchar *)&oob)) < 0) {
|
|
puts ("Read of bad sector table failed\n");
|
|
return -1;
|
|
}
|
|
}
|
|
/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
|
|
if (buf[i & (SECTORSIZE - 1)] != 0xff)
|
|
nftl->ReplUnitTable[i] = BLOCK_RESERVED;
|
|
}
|
|
|
|
nftl->MediaUnit = block;
|
|
boot_record_count++;
|
|
|
|
} /* foreach (block) */
|
|
|
|
return boot_record_count?0:-1;
|
|
}
|
|
|
|
/* This routine is made available to other mtd code via
|
|
* inter_module_register. It must only be accessed through
|
|
* inter_module_get which will bump the use count of this module. The
|
|
* addresses passed back in mtd are valid as long as the use count of
|
|
* this module is non-zero, i.e. between inter_module_get and
|
|
* inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000.
|
|
*/
|
|
static void DoC2k_init(struct DiskOnChip* this)
|
|
{
|
|
struct NFTLrecord *nftl;
|
|
|
|
switch (this->ChipID) {
|
|
case DOC_ChipID_Doc2k:
|
|
this->name = "DiskOnChip 2000";
|
|
this->ioreg = DoC_2k_CDSN_IO;
|
|
break;
|
|
case DOC_ChipID_DocMil:
|
|
this->name = "DiskOnChip Millennium";
|
|
this->ioreg = DoC_Mil_CDSN_IO;
|
|
break;
|
|
}
|
|
|
|
#ifdef DOC_DEBUG
|
|
printf("%s found at address 0x%lX\n", this->name,
|
|
this->physadr);
|
|
#endif
|
|
|
|
this->totlen = 0;
|
|
this->numchips = 0;
|
|
|
|
this->curfloor = -1;
|
|
this->curchip = -1;
|
|
|
|
/* Ident all the chips present. */
|
|
DoC_ScanChips(this);
|
|
if ((!this->numchips) || (!this->chips))
|
|
return;
|
|
|
|
nftl = &this->nftl;
|
|
|
|
/* Get physical parameters */
|
|
nftl->EraseSize = this->erasesize;
|
|
nftl->nb_blocks = this->totlen / this->erasesize;
|
|
nftl->mtd = this;
|
|
|
|
if (find_boot_record(nftl) != 0)
|
|
this->nftl_found = 0;
|
|
else
|
|
this->nftl_found = 1;
|
|
|
|
printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20);
|
|
}
|
|
|
|
int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len,
|
|
size_t * retlen, u_char * buf, u_char * eccbuf)
|
|
{
|
|
unsigned long docptr;
|
|
struct Nand *mychip;
|
|
unsigned char syndrome[6];
|
|
volatile char dummy;
|
|
int i, len256 = 0, ret=0;
|
|
|
|
docptr = this->virtadr;
|
|
|
|
/* Don't allow read past end of device */
|
|
if (from >= this->totlen) {
|
|
puts ("Out of flash\n");
|
|
return DOC_EINVAL;
|
|
}
|
|
|
|
/* Don't allow a single read to cross a 512-byte block boundary */
|
|
if (from + len > ((from | 0x1ff) + 1))
|
|
len = ((from | 0x1ff) + 1) - from;
|
|
|
|
/* The ECC will not be calculated correctly if less than 512 is read */
|
|
if (len != 0x200 && eccbuf)
|
|
printf("ECC needs a full sector read (adr: %lx size %lx)\n",
|
|
(long) from, (long) len);
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len);
|
|
#endif
|
|
|
|
/* Find the chip which is to be used and select it */
|
|
mychip = &this->chips[shr(from, this->chipshift)];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
DoC_Command(this,
|
|
(!this->page256
|
|
&& (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
|
|
CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
|
|
CDSN_CTRL_ECC_IO);
|
|
|
|
if (eccbuf) {
|
|
/* Prime the ECC engine */
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_EN, docptr, ECCConf);
|
|
} else {
|
|
/* disable the ECC engine */
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
|
}
|
|
|
|
/* treat crossing 256-byte sector for 2M x 8bits devices */
|
|
if (this->page256 && from + len > (from | 0xff) + 1) {
|
|
len256 = (from | 0xff) + 1 - from;
|
|
DoC_ReadBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
|
|
CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
|
|
}
|
|
|
|
DoC_ReadBuf(this, &buf[len256], len - len256);
|
|
|
|
/* Let the caller know we completed it */
|
|
*retlen = len;
|
|
|
|
if (eccbuf) {
|
|
/* Read the ECC data through the DiskOnChip ECC logic */
|
|
/* Note: this will work even with 2M x 8bit devices as */
|
|
/* they have 8 bytes of OOB per 256 page. mf. */
|
|
DoC_ReadBuf(this, eccbuf, 6);
|
|
|
|
/* Flush the pipeline */
|
|
if (DoC_is_Millennium(this)) {
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
dummy = ReadDOC(docptr, ECCConf);
|
|
i = ReadDOC(docptr, ECCConf);
|
|
} else {
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
dummy = ReadDOC(docptr, 2k_ECCStatus);
|
|
i = ReadDOC(docptr, 2k_ECCStatus);
|
|
}
|
|
|
|
/* Check the ECC Status */
|
|
if (i & 0x80) {
|
|
int nb_errors;
|
|
/* There was an ECC error */
|
|
#ifdef ECC_DEBUG
|
|
printf("DiskOnChip ECC Error: Read at %lx\n", (long)from);
|
|
#endif
|
|
/* Read the ECC syndrom through the DiskOnChip ECC logic.
|
|
These syndrome will be all ZERO when there is no error */
|
|
for (i = 0; i < 6; i++) {
|
|
syndrome[i] =
|
|
ReadDOC(docptr, ECCSyndrome0 + i);
|
|
}
|
|
nb_errors = doc_decode_ecc(buf, syndrome);
|
|
|
|
#ifdef ECC_DEBUG
|
|
printf("Errors corrected: %x\n", nb_errors);
|
|
#endif
|
|
if (nb_errors < 0) {
|
|
/* We return error, but have actually done the read. Not that
|
|
this can be told to user-space, via sys_read(), but at least
|
|
MTD-aware stuff can know about it by checking *retlen */
|
|
printf("ECC Errors at %lx\n", (long)from);
|
|
ret = DOC_EECC;
|
|
}
|
|
}
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
|
(long)from, eccbuf[0], eccbuf[1], eccbuf[2],
|
|
eccbuf[3], eccbuf[4], eccbuf[5]);
|
|
#endif
|
|
|
|
/* disable the ECC engine */
|
|
WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
|
|
}
|
|
|
|
/* according to 11.4.1, we need to wait for the busy line
|
|
* drop if we read to the end of the page. */
|
|
if(0 == ((from + *retlen) & 0x1ff))
|
|
{
|
|
DoC_WaitReady(this);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len,
|
|
size_t * retlen, const u_char * buf,
|
|
u_char * eccbuf)
|
|
{
|
|
int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
|
|
unsigned long docptr;
|
|
volatile char dummy;
|
|
int len256 = 0;
|
|
struct Nand *mychip;
|
|
|
|
docptr = this->virtadr;
|
|
|
|
/* Don't allow write past end of device */
|
|
if (to >= this->totlen) {
|
|
puts ("Out of flash\n");
|
|
return DOC_EINVAL;
|
|
}
|
|
|
|
/* Don't allow a single write to cross a 512-byte block boundary */
|
|
if (to + len > ((to | 0x1ff) + 1))
|
|
len = ((to | 0x1ff) + 1) - to;
|
|
|
|
/* The ECC will not be calculated correctly if less than 512 is written */
|
|
if (len != 0x200 && eccbuf)
|
|
printf("ECC needs a full sector write (adr: %lx size %lx)\n",
|
|
(long) to, (long) len);
|
|
|
|
/* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
|
|
|
|
/* Find the chip which is to be used and select it */
|
|
mychip = &this->chips[shr(to, this->chipshift)];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
/* Set device to main plane of flash */
|
|
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
|
|
DoC_Command(this,
|
|
(!this->page256
|
|
&& (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
|
|
CDSN_CTRL_WP);
|
|
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
|
|
|
|
if (eccbuf) {
|
|
/* Prime the ECC engine */
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
|
|
} else {
|
|
/* disable the ECC engine */
|
|
WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
|
}
|
|
|
|
/* treat crossing 256-byte sector for 2M x 8bits devices */
|
|
if (this->page256 && to + len > (to | 0xff) + 1) {
|
|
len256 = (to | 0xff) + 1 - to;
|
|
DoC_WriteBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
|
/* There's an implicit DoC_WaitReady() in DoC_Command */
|
|
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
|
puts ("Error programming flash\n");
|
|
/* Error in programming */
|
|
*retlen = 0;
|
|
return DOC_EIO;
|
|
}
|
|
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
|
|
CDSN_CTRL_ECC_IO);
|
|
}
|
|
|
|
DoC_WriteBuf(this, &buf[len256], len - len256);
|
|
|
|
if (eccbuf) {
|
|
WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr,
|
|
CDSNControl);
|
|
|
|
if (DoC_is_Millennium(this)) {
|
|
WriteDOC(0, docptr, NOP);
|
|
WriteDOC(0, docptr, NOP);
|
|
WriteDOC(0, docptr, NOP);
|
|
} else {
|
|
WriteDOC_(0, docptr, this->ioreg);
|
|
WriteDOC_(0, docptr, this->ioreg);
|
|
WriteDOC_(0, docptr, this->ioreg);
|
|
}
|
|
|
|
/* Read the ECC data through the DiskOnChip ECC logic */
|
|
for (di = 0; di < 6; di++) {
|
|
eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
|
|
}
|
|
|
|
/* Reset the ECC engine */
|
|
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printf
|
|
("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
|
|
(long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
|
|
eccbuf[4], eccbuf[5]);
|
|
#endif
|
|
}
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
|
/* There's an implicit DoC_WaitReady() in DoC_Command */
|
|
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
|
puts ("Error programming flash\n");
|
|
/* Error in programming */
|
|
*retlen = 0;
|
|
return DOC_EIO;
|
|
}
|
|
|
|
/* Let the caller know we completed it */
|
|
*retlen = len;
|
|
|
|
if (eccbuf) {
|
|
unsigned char x[8];
|
|
size_t dummy;
|
|
int ret;
|
|
|
|
/* Write the ECC data to flash */
|
|
for (di=0; di<6; di++)
|
|
x[di] = eccbuf[di];
|
|
|
|
x[6]=0x55;
|
|
x[7]=0x55;
|
|
|
|
ret = doc_write_oob(this, to, 8, &dummy, x);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
|
|
size_t * retlen, u_char * buf)
|
|
{
|
|
int len256 = 0, ret;
|
|
unsigned long docptr;
|
|
struct Nand *mychip;
|
|
|
|
docptr = this->virtadr;
|
|
|
|
mychip = &this->chips[shr(ofs, this->chipshift)];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
|
/* page to maintain compatibility with doc_read_ecc. */
|
|
if (this->page256) {
|
|
if (!(ofs & 0x8))
|
|
ofs += 0x100;
|
|
else
|
|
ofs -= 0x8;
|
|
}
|
|
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
|
|
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
|
/* next OOB block, but it didn't work here. mf. */
|
|
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
|
DoC_ReadBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
|
|
CDSN_CTRL_WP, 0);
|
|
}
|
|
|
|
DoC_ReadBuf(this, &buf[len256], len - len256);
|
|
|
|
*retlen = len;
|
|
/* Reading the full OOB data drops us off of the end of the page,
|
|
* causing the flash device to go into busy mode, so we need
|
|
* to wait until ready 11.4.1 and Toshiba TC58256FT docs */
|
|
|
|
ret = DoC_WaitReady(this);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len,
|
|
size_t * retlen, const u_char * buf)
|
|
{
|
|
int len256 = 0;
|
|
unsigned long docptr = this->virtadr;
|
|
struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)];
|
|
volatile int dummy;
|
|
|
|
#ifdef PSYCHO_DEBUG
|
|
printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
|
|
(long)ofs, len, buf[0], buf[1], buf[2], buf[3],
|
|
buf[8], buf[9], buf[14],buf[15]);
|
|
#endif
|
|
|
|
/* Find the chip which is to be used and select it */
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
/* disable the ECC engine */
|
|
WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
|
|
WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
|
|
|
|
/* Reset the chip, see Software Requirement 11.4 item 1. */
|
|
DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
|
|
|
|
/* issue the Read2 command to set the pointer to the Spare Data Area. */
|
|
DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
|
|
|
|
/* update address for 2M x 8bit devices. OOB starts on the second */
|
|
/* page to maintain compatibility with doc_read_ecc. */
|
|
if (this->page256) {
|
|
if (!(ofs & 0x8))
|
|
ofs += 0x100;
|
|
else
|
|
ofs -= 0x8;
|
|
}
|
|
|
|
/* issue the Serial Data In command to initial the Page Program process */
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
|
|
|
|
/* treat crossing 8-byte OOB data for 2M x 8bit devices */
|
|
/* Note: datasheet says it should automaticaly wrap to the */
|
|
/* next OOB block, but it didn't work here. mf. */
|
|
if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
|
|
len256 = (ofs | 0x7) + 1 - ofs;
|
|
DoC_WriteBuf(this, buf, len256);
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
DoC_Command(this, NAND_CMD_STATUS, 0);
|
|
/* DoC_WaitReady() is implicit in DoC_Command */
|
|
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
|
puts ("Error programming oob data\n");
|
|
/* There was an error */
|
|
*retlen = 0;
|
|
return DOC_EIO;
|
|
}
|
|
DoC_Command(this, NAND_CMD_SEQIN, 0);
|
|
DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
|
|
}
|
|
|
|
DoC_WriteBuf(this, &buf[len256], len - len256);
|
|
|
|
DoC_Command(this, NAND_CMD_PAGEPROG, 0);
|
|
DoC_Command(this, NAND_CMD_STATUS, 0);
|
|
/* DoC_WaitReady() is implicit in DoC_Command */
|
|
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
|
puts ("Error programming oob data\n");
|
|
/* There was an error */
|
|
*retlen = 0;
|
|
return DOC_EIO;
|
|
}
|
|
|
|
*retlen = len;
|
|
return 0;
|
|
|
|
}
|
|
|
|
int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len)
|
|
{
|
|
volatile int dummy;
|
|
unsigned long docptr;
|
|
struct Nand *mychip;
|
|
|
|
if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) {
|
|
puts ("Offset and size must be sector aligned\n");
|
|
return DOC_EINVAL;
|
|
}
|
|
|
|
docptr = this->virtadr;
|
|
|
|
/* FIXME: Do this in the background. Use timers or schedule_task() */
|
|
while(len) {
|
|
mychip = &this->chips[shr(ofs, this->chipshift)];
|
|
|
|
if (this->curfloor != mychip->floor) {
|
|
DoC_SelectFloor(this, mychip->floor);
|
|
DoC_SelectChip(this, mychip->chip);
|
|
} else if (this->curchip != mychip->chip) {
|
|
DoC_SelectChip(this, mychip->chip);
|
|
}
|
|
this->curfloor = mychip->floor;
|
|
this->curchip = mychip->chip;
|
|
|
|
DoC_Command(this, NAND_CMD_ERASE1, 0);
|
|
DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
|
|
DoC_Command(this, NAND_CMD_ERASE2, 0);
|
|
|
|
DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
|
|
|
|
dummy = ReadDOC(docptr, CDSNSlowIO);
|
|
DoC_Delay(this, 2);
|
|
|
|
if (ReadDOC_(docptr, this->ioreg) & 1) {
|
|
printf("Error erasing at 0x%lx\n", (long)ofs);
|
|
/* There was an error */
|
|
goto callback;
|
|
}
|
|
ofs += this->erasesize;
|
|
len -= this->erasesize;
|
|
}
|
|
|
|
callback:
|
|
return 0;
|
|
}
|
|
|
|
static inline int doccheck(unsigned long potential, unsigned long physadr)
|
|
{
|
|
unsigned long window=potential;
|
|
unsigned char tmp, ChipID;
|
|
#ifndef DOC_PASSIVE_PROBE
|
|
unsigned char tmp2;
|
|
#endif
|
|
|
|
/* Routine copied from the Linux DOC driver */
|
|
|
|
#ifdef CFG_DOCPROBE_55AA
|
|
/* Check for 0x55 0xAA signature at beginning of window,
|
|
this is no longer true once we remove the IPL (for Millennium */
|
|
if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa)
|
|
return 0;
|
|
#endif /* CFG_DOCPROBE_55AA */
|
|
|
|
#ifndef DOC_PASSIVE_PROBE
|
|
/* It's not possible to cleanly detect the DiskOnChip - the
|
|
* bootup procedure will put the device into reset mode, and
|
|
* it's not possible to talk to it without actually writing
|
|
* to the DOCControl register. So we store the current contents
|
|
* of the DOCControl register's location, in case we later decide
|
|
* that it's not a DiskOnChip, and want to put it back how we
|
|
* found it.
|
|
*/
|
|
tmp2 = ReadDOC(window, DOCControl);
|
|
|
|
/* Reset the DiskOnChip ASIC */
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
|
|
window, DOCControl);
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
|
|
window, DOCControl);
|
|
|
|
/* Enable the DiskOnChip ASIC */
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
|
|
window, DOCControl);
|
|
WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
|
|
window, DOCControl);
|
|
#endif /* !DOC_PASSIVE_PROBE */
|
|
|
|
ChipID = ReadDOC(window, ChipID);
|
|
|
|
switch (ChipID) {
|
|
case DOC_ChipID_Doc2k:
|
|
/* Check the TOGGLE bit in the ECC register */
|
|
tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT;
|
|
if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp)
|
|
return ChipID;
|
|
break;
|
|
|
|
case DOC_ChipID_DocMil:
|
|
/* Check the TOGGLE bit in the ECC register */
|
|
tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT;
|
|
if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp)
|
|
return ChipID;
|
|
break;
|
|
|
|
default:
|
|
#ifndef CFG_DOCPROBE_55AA
|
|
/*
|
|
* if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume
|
|
* the DOC is missing
|
|
*/
|
|
# if 0
|
|
printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n",
|
|
ChipID, physadr);
|
|
# endif
|
|
#endif
|
|
#ifndef DOC_PASSIVE_PROBE
|
|
/* Put back the contents of the DOCControl register, in case it's not
|
|
* actually a DiskOnChip.
|
|
*/
|
|
WriteDOC(tmp2, window, DOCControl);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
puts ("DiskOnChip failed TOGGLE test, dropping.\n");
|
|
|
|
#ifndef DOC_PASSIVE_PROBE
|
|
/* Put back the contents of the DOCControl register: it's not a DiskOnChip */
|
|
WriteDOC(tmp2, window, DOCControl);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
void doc_probe(unsigned long physadr)
|
|
{
|
|
struct DiskOnChip *this = NULL;
|
|
int i=0, ChipID;
|
|
|
|
if ((ChipID = doccheck(physadr, physadr))) {
|
|
|
|
for (i=0; i<CFG_MAX_DOC_DEVICE; i++) {
|
|
if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) {
|
|
this = doc_dev_desc + i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!this) {
|
|
puts ("Cannot allocate memory for data structures.\n");
|
|
return;
|
|
}
|
|
|
|
if (curr_device == -1)
|
|
curr_device = i;
|
|
|
|
memset((char *)this, 0, sizeof(struct DiskOnChip));
|
|
|
|
this->virtadr = physadr;
|
|
this->physadr = physadr;
|
|
this->ChipID = ChipID;
|
|
|
|
DoC2k_init(this);
|
|
} else {
|
|
puts ("No DiskOnChip found\n");
|
|
}
|
|
}
|
|
|
|
#endif /* (CONFIG_COMMANDS & CFG_CMD_DOC) */
|