ac727577f0
Upon further review, not all code authors are in favour of this change.
This reverts commit ee3556bcaf
.
Signed-off-by: Tom Rini <trini@konsulko.com>
332 lines
9.2 KiB
C
332 lines
9.2 KiB
C
/*
|
|
* Copyright 2008 Freescale Semiconductor, Inc.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <fsl_ddr_sdram.h>
|
|
|
|
#include <fsl_ddr.h>
|
|
/*
|
|
* Calculate the Density of each Physical Rank.
|
|
* Returned size is in bytes.
|
|
*
|
|
* Study these table from Byte 31 of JEDEC SPD Spec.
|
|
*
|
|
* DDR I DDR II
|
|
* Bit Size Size
|
|
* --- ----- ------
|
|
* 7 high 512MB 512MB
|
|
* 6 256MB 256MB
|
|
* 5 128MB 128MB
|
|
* 4 64MB 16GB
|
|
* 3 32MB 8GB
|
|
* 2 16MB 4GB
|
|
* 1 2GB 2GB
|
|
* 0 low 1GB 1GB
|
|
*
|
|
* Reorder Table to be linear by stripping the bottom
|
|
* 2 or 5 bits off and shifting them up to the top.
|
|
*
|
|
*/
|
|
static unsigned long long
|
|
compute_ranksize(unsigned int mem_type, unsigned char row_dens)
|
|
{
|
|
unsigned long long bsize;
|
|
|
|
/* Bottom 5 bits up to the top. */
|
|
bsize = ((row_dens >> 5) | ((row_dens & 31) << 3));
|
|
bsize <<= 27ULL;
|
|
debug("DDR: DDR II rank density = 0x%16llx\n", bsize);
|
|
|
|
return bsize;
|
|
}
|
|
|
|
/*
|
|
* Convert a two-nibble BCD value into a cycle time.
|
|
* While the spec calls for nano-seconds, picos are returned.
|
|
*
|
|
* This implements the tables for bytes 9, 23 and 25 for both
|
|
* DDR I and II. No allowance for distinguishing the invalid
|
|
* fields absent for DDR I yet present in DDR II is made.
|
|
* (That is, cycle times of .25, .33, .66 and .75 ns are
|
|
* allowed for both DDR II and I.)
|
|
*/
|
|
static unsigned int
|
|
convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val)
|
|
{
|
|
/* Table look up the lower nibble, allow DDR I & II. */
|
|
unsigned int tenths_ps[16] = {
|
|
0,
|
|
100,
|
|
200,
|
|
300,
|
|
400,
|
|
500,
|
|
600,
|
|
700,
|
|
800,
|
|
900,
|
|
250, /* This and the next 3 entries valid ... */
|
|
330, /* ... only for tCK calculations. */
|
|
660,
|
|
750,
|
|
0, /* undefined */
|
|
0 /* undefined */
|
|
};
|
|
|
|
unsigned int whole_ns = (spd_val & 0xF0) >> 4;
|
|
unsigned int tenth_ns = spd_val & 0x0F;
|
|
unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns];
|
|
|
|
return ps;
|
|
}
|
|
|
|
static unsigned int
|
|
convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val)
|
|
{
|
|
unsigned int tenth_ns = (spd_val & 0xF0) >> 4;
|
|
unsigned int hundredth_ns = spd_val & 0x0F;
|
|
unsigned int ps = tenth_ns * 100 + hundredth_ns * 10;
|
|
|
|
return ps;
|
|
}
|
|
|
|
static unsigned int byte40_table_ps[8] = {
|
|
0,
|
|
250,
|
|
330,
|
|
500,
|
|
660,
|
|
750,
|
|
0, /* supposed to be RFC, but not sure what that means */
|
|
0 /* Undefined */
|
|
};
|
|
|
|
static unsigned int
|
|
compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc)
|
|
{
|
|
return (((trctrfc_ext & 0x1) * 256) + trfc) * 1000
|
|
+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7];
|
|
}
|
|
|
|
static unsigned int
|
|
compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc)
|
|
{
|
|
return trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7];
|
|
}
|
|
|
|
/*
|
|
* Determine Refresh Rate. Ignore self refresh bit on DDR I.
|
|
* Table from SPD Spec, Byte 12, converted to picoseconds and
|
|
* filled in with "default" normal values.
|
|
*/
|
|
static unsigned int
|
|
determine_refresh_rate_ps(const unsigned int spd_refresh)
|
|
{
|
|
unsigned int refresh_time_ps[8] = {
|
|
15625000, /* 0 Normal 1.00x */
|
|
3900000, /* 1 Reduced .25x */
|
|
7800000, /* 2 Extended .50x */
|
|
31300000, /* 3 Extended 2.00x */
|
|
62500000, /* 4 Extended 4.00x */
|
|
125000000, /* 5 Extended 8.00x */
|
|
15625000, /* 6 Normal 1.00x filler */
|
|
15625000, /* 7 Normal 1.00x filler */
|
|
};
|
|
|
|
return refresh_time_ps[spd_refresh & 0x7];
|
|
}
|
|
|
|
/*
|
|
* The purpose of this function is to compute a suitable
|
|
* CAS latency given the DRAM clock period. The SPD only
|
|
* defines at most 3 CAS latencies. Typically the slower in
|
|
* frequency the DIMM runs at, the shorter its CAS latency can.
|
|
* be. If the DIMM is operating at a sufficiently low frequency,
|
|
* it may be able to run at a CAS latency shorter than the
|
|
* shortest SPD-defined CAS latency.
|
|
*
|
|
* If a CAS latency is not found, 0 is returned.
|
|
*
|
|
* Do this by finding in the standard speed bin table the longest
|
|
* tCKmin that doesn't exceed the value of mclk_ps (tCK).
|
|
*
|
|
* An assumption made is that the SDRAM device allows the
|
|
* CL to be programmed for a value that is lower than those
|
|
* advertised by the SPD. This is not always the case,
|
|
* as those modes not defined in the SPD are optional.
|
|
*
|
|
* CAS latency de-rating based upon values JEDEC Standard No. 79-2C
|
|
* Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS,
|
|
* and tRC for corresponding bin"
|
|
*
|
|
* ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3
|
|
* Not certain if any good value exists for CL=2
|
|
*/
|
|
/* CL2 CL3 CL4 CL5 CL6 CL7*/
|
|
unsigned short ddr2_speed_bins[] = { 0, 5000, 3750, 3000, 2500, 1875 };
|
|
|
|
unsigned int
|
|
compute_derated_DDR2_CAS_latency(unsigned int mclk_ps)
|
|
{
|
|
const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins);
|
|
unsigned int lowest_tCKmin_found = 0;
|
|
unsigned int lowest_tCKmin_CL = 0;
|
|
unsigned int i;
|
|
|
|
debug("mclk_ps = %u\n", mclk_ps);
|
|
|
|
for (i = 0; i < num_speed_bins; i++) {
|
|
unsigned int x = ddr2_speed_bins[i];
|
|
debug("i=%u, x = %u, lowest_tCKmin_found = %u\n",
|
|
i, x, lowest_tCKmin_found);
|
|
if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) {
|
|
lowest_tCKmin_found = x;
|
|
lowest_tCKmin_CL = i + 2;
|
|
}
|
|
}
|
|
|
|
debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL);
|
|
|
|
return lowest_tCKmin_CL;
|
|
}
|
|
|
|
/*
|
|
* ddr_compute_dimm_parameters for DDR2 SPD
|
|
*
|
|
* Compute DIMM parameters based upon the SPD information in spd.
|
|
* Writes the results to the dimm_params_t structure pointed by pdimm.
|
|
*
|
|
* FIXME: use #define for the retvals
|
|
*/
|
|
unsigned int ddr_compute_dimm_parameters(const unsigned int ctrl_num,
|
|
const ddr2_spd_eeprom_t *spd,
|
|
dimm_params_t *pdimm,
|
|
unsigned int dimm_number)
|
|
{
|
|
unsigned int retval;
|
|
|
|
if (spd->mem_type) {
|
|
if (spd->mem_type != SPD_MEMTYPE_DDR2) {
|
|
printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number);
|
|
return 1;
|
|
}
|
|
} else {
|
|
memset(pdimm, 0, sizeof(dimm_params_t));
|
|
return 1;
|
|
}
|
|
|
|
retval = ddr2_spd_check(spd);
|
|
if (retval) {
|
|
printf("DIMM %u: failed checksum\n", dimm_number);
|
|
return 2;
|
|
}
|
|
|
|
/*
|
|
* The part name in ASCII in the SPD EEPROM is not null terminated.
|
|
* Guarantee null termination here by presetting all bytes to 0
|
|
* and copying the part name in ASCII from the SPD onto it
|
|
*/
|
|
memset(pdimm->mpart, 0, sizeof(pdimm->mpart));
|
|
memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1);
|
|
|
|
/* DIMM organization parameters */
|
|
pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1;
|
|
pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens);
|
|
pdimm->capacity = pdimm->n_ranks * pdimm->rank_density;
|
|
pdimm->data_width = spd->dataw;
|
|
pdimm->primary_sdram_width = spd->primw;
|
|
pdimm->ec_sdram_width = spd->ecw;
|
|
|
|
/* These are all the types defined by the JEDEC DDR2 SPD 1.3 spec */
|
|
switch (spd->dimm_type) {
|
|
case DDR2_SPD_DIMMTYPE_RDIMM:
|
|
case DDR2_SPD_DIMMTYPE_72B_SO_RDIMM:
|
|
case DDR2_SPD_DIMMTYPE_MINI_RDIMM:
|
|
/* Registered/buffered DIMMs */
|
|
pdimm->registered_dimm = 1;
|
|
break;
|
|
|
|
case DDR2_SPD_DIMMTYPE_UDIMM:
|
|
case DDR2_SPD_DIMMTYPE_SO_DIMM:
|
|
case DDR2_SPD_DIMMTYPE_MICRO_DIMM:
|
|
case DDR2_SPD_DIMMTYPE_MINI_UDIMM:
|
|
/* Unbuffered DIMMs */
|
|
pdimm->registered_dimm = 0;
|
|
break;
|
|
|
|
case DDR2_SPD_DIMMTYPE_72B_SO_CDIMM:
|
|
default:
|
|
printf("unknown dimm_type 0x%02X\n", spd->dimm_type);
|
|
return 1;
|
|
}
|
|
|
|
/* SDRAM device parameters */
|
|
pdimm->n_row_addr = spd->nrow_addr;
|
|
pdimm->n_col_addr = spd->ncol_addr;
|
|
pdimm->n_banks_per_sdram_device = spd->nbanks;
|
|
pdimm->edc_config = spd->config;
|
|
pdimm->burst_lengths_bitmask = spd->burstl;
|
|
|
|
/*
|
|
* Calculate the Maximum Data Rate based on the Minimum Cycle time.
|
|
* The SPD clk_cycle field (tCKmin) is measured in tenths of
|
|
* nanoseconds and represented as BCD.
|
|
*/
|
|
pdimm->tckmin_x_ps
|
|
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle);
|
|
pdimm->tckmin_x_minus_1_ps
|
|
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2);
|
|
pdimm->tckmin_x_minus_2_ps
|
|
= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3);
|
|
|
|
pdimm->tckmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax);
|
|
|
|
/*
|
|
* Compute CAS latencies defined by SPD
|
|
* The SPD caslat_x should have at least 1 and at most 3 bits set.
|
|
*
|
|
* If cas_lat after masking is 0, the __ilog2 function returns
|
|
* 255 into the variable. This behavior is abused once.
|
|
*/
|
|
pdimm->caslat_x = __ilog2(spd->cas_lat);
|
|
pdimm->caslat_x_minus_1 = __ilog2(spd->cas_lat
|
|
& ~(1 << pdimm->caslat_x));
|
|
pdimm->caslat_x_minus_2 = __ilog2(spd->cas_lat
|
|
& ~(1 << pdimm->caslat_x)
|
|
& ~(1 << pdimm->caslat_x_minus_1));
|
|
|
|
/* Compute CAS latencies below that defined by SPD */
|
|
pdimm->caslat_lowest_derated = compute_derated_DDR2_CAS_latency(
|
|
get_memory_clk_period_ps(ctrl_num));
|
|
|
|
/* Compute timing parameters */
|
|
pdimm->trcd_ps = spd->trcd * 250;
|
|
pdimm->trp_ps = spd->trp * 250;
|
|
pdimm->tras_ps = spd->tras * 1000;
|
|
|
|
pdimm->twr_ps = spd->twr * 250;
|
|
pdimm->twtr_ps = spd->twtr * 250;
|
|
pdimm->trfc_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc);
|
|
|
|
pdimm->trrd_ps = spd->trrd * 250;
|
|
pdimm->trc_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc);
|
|
|
|
pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh);
|
|
|
|
pdimm->tis_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup);
|
|
pdimm->tih_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold);
|
|
pdimm->tds_ps
|
|
= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup);
|
|
pdimm->tdh_ps
|
|
= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold);
|
|
|
|
pdimm->trtp_ps = spd->trtp * 250;
|
|
pdimm->tdqsq_max_ps = spd->tdqsq * 10;
|
|
pdimm->tqhs_ps = spd->tqhs * 10;
|
|
|
|
return 0;
|
|
}
|