u-boot/drivers/net/sun8i_emac.c
Philipp Tomsich 4d555ae3f5 sun8i_emac: configure PHY reset GPIO via DM
This ports the support for configuring a GPIO for resetting the
Ethernet PHY (incl. such details as the reset polarity and
pulse-length) from the Designware driver.

X-AffectedPlatforms: A64-uQ7
Signed-off-by: Philipp Tomsich <philipp.tomsich@theobroma-systems.com>
Reviewed-by: Jagan Teki <jagan@openedev.com>
2017-04-07 10:17:25 +05:30

862 lines
21 KiB
C

/*
* (C) Copyright 2016
* Author: Amit Singh Tomar, amittomer25@gmail.com
*
* SPDX-License-Identifier: GPL-2.0+
*
* Ethernet driver for H3/A64/A83T based SoC's
*
* It is derived from the work done by
* LABBE Corentin & Chen-Yu Tsai for Linux, THANKS!
*
*/
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/gpio.h>
#include <common.h>
#include <dm.h>
#include <fdt_support.h>
#include <linux/err.h>
#include <malloc.h>
#include <miiphy.h>
#include <net.h>
#ifdef CONFIG_DM_GPIO
#include <asm-generic/gpio.h>
#endif
#define MDIO_CMD_MII_BUSY BIT(0)
#define MDIO_CMD_MII_WRITE BIT(1)
#define MDIO_CMD_MII_PHY_REG_ADDR_MASK 0x000001f0
#define MDIO_CMD_MII_PHY_REG_ADDR_SHIFT 4
#define MDIO_CMD_MII_PHY_ADDR_MASK 0x0001f000
#define MDIO_CMD_MII_PHY_ADDR_SHIFT 12
#define CONFIG_TX_DESCR_NUM 32
#define CONFIG_RX_DESCR_NUM 32
#define CONFIG_ETH_BUFSIZE 2048 /* Note must be dma aligned */
/*
* The datasheet says that each descriptor can transfers up to 4096 bytes
* But later, the register documentation reduces that value to 2048,
* using 2048 cause strange behaviours and even BSP driver use 2047
*/
#define CONFIG_ETH_RXSIZE 2044 /* Note must fit in ETH_BUFSIZE */
#define TX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_TX_DESCR_NUM)
#define RX_TOTAL_BUFSIZE (CONFIG_ETH_BUFSIZE * CONFIG_RX_DESCR_NUM)
#define H3_EPHY_DEFAULT_VALUE 0x58000
#define H3_EPHY_DEFAULT_MASK GENMASK(31, 15)
#define H3_EPHY_ADDR_SHIFT 20
#define REG_PHY_ADDR_MASK GENMASK(4, 0)
#define H3_EPHY_LED_POL BIT(17) /* 1: active low, 0: active high */
#define H3_EPHY_SHUTDOWN BIT(16) /* 1: shutdown, 0: power up */
#define H3_EPHY_SELECT BIT(15) /* 1: internal PHY, 0: external PHY */
#define SC_RMII_EN BIT(13)
#define SC_EPIT BIT(2) /* 1: RGMII, 0: MII */
#define SC_ETCS_MASK GENMASK(1, 0)
#define SC_ETCS_EXT_GMII 0x1
#define SC_ETCS_INT_GMII 0x2
#define CONFIG_MDIO_TIMEOUT (3 * CONFIG_SYS_HZ)
#define AHB_GATE_OFFSET_EPHY 0
#if defined(CONFIG_MACH_SUNXI_H3_H5)
#define SUN8I_GPD8_GMAC 2
#else
#define SUN8I_GPD8_GMAC 4
#endif
/* H3/A64 EMAC Register's offset */
#define EMAC_CTL0 0x00
#define EMAC_CTL1 0x04
#define EMAC_INT_STA 0x08
#define EMAC_INT_EN 0x0c
#define EMAC_TX_CTL0 0x10
#define EMAC_TX_CTL1 0x14
#define EMAC_TX_FLOW_CTL 0x1c
#define EMAC_TX_DMA_DESC 0x20
#define EMAC_RX_CTL0 0x24
#define EMAC_RX_CTL1 0x28
#define EMAC_RX_DMA_DESC 0x34
#define EMAC_MII_CMD 0x48
#define EMAC_MII_DATA 0x4c
#define EMAC_ADDR0_HIGH 0x50
#define EMAC_ADDR0_LOW 0x54
#define EMAC_TX_DMA_STA 0xb0
#define EMAC_TX_CUR_DESC 0xb4
#define EMAC_TX_CUR_BUF 0xb8
#define EMAC_RX_DMA_STA 0xc0
#define EMAC_RX_CUR_DESC 0xc4
DECLARE_GLOBAL_DATA_PTR;
enum emac_variant {
A83T_EMAC = 1,
H3_EMAC,
A64_EMAC,
};
struct emac_dma_desc {
u32 status;
u32 st;
u32 buf_addr;
u32 next;
} __aligned(ARCH_DMA_MINALIGN);
struct emac_eth_dev {
struct emac_dma_desc rx_chain[CONFIG_TX_DESCR_NUM];
struct emac_dma_desc tx_chain[CONFIG_RX_DESCR_NUM];
char rxbuffer[RX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
char txbuffer[TX_TOTAL_BUFSIZE] __aligned(ARCH_DMA_MINALIGN);
u32 interface;
u32 phyaddr;
u32 link;
u32 speed;
u32 duplex;
u32 phy_configured;
u32 tx_currdescnum;
u32 rx_currdescnum;
u32 addr;
u32 tx_slot;
bool use_internal_phy;
enum emac_variant variant;
void *mac_reg;
phys_addr_t sysctl_reg;
struct phy_device *phydev;
struct mii_dev *bus;
#ifdef CONFIG_DM_GPIO
struct gpio_desc reset_gpio;
#endif
};
struct sun8i_eth_pdata {
struct eth_pdata eth_pdata;
u32 reset_delays[3];
};
static int sun8i_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct udevice *dev = bus->priv;
struct emac_eth_dev *priv = dev_get_priv(dev);
ulong start;
u32 miiaddr = 0;
int timeout = CONFIG_MDIO_TIMEOUT;
miiaddr &= ~MDIO_CMD_MII_WRITE;
miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK;
miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_REG_ADDR_MASK;
miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK;
miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_ADDR_MASK;
miiaddr |= MDIO_CMD_MII_BUSY;
writel(miiaddr, priv->mac_reg + EMAC_MII_CMD);
start = get_timer(0);
while (get_timer(start) < timeout) {
if (!(readl(priv->mac_reg + EMAC_MII_CMD) & MDIO_CMD_MII_BUSY))
return readl(priv->mac_reg + EMAC_MII_DATA);
udelay(10);
};
return -1;
}
static int sun8i_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct udevice *dev = bus->priv;
struct emac_eth_dev *priv = dev_get_priv(dev);
ulong start;
u32 miiaddr = 0;
int ret = -1, timeout = CONFIG_MDIO_TIMEOUT;
miiaddr &= ~MDIO_CMD_MII_PHY_REG_ADDR_MASK;
miiaddr |= (reg << MDIO_CMD_MII_PHY_REG_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_REG_ADDR_MASK;
miiaddr &= ~MDIO_CMD_MII_PHY_ADDR_MASK;
miiaddr |= (addr << MDIO_CMD_MII_PHY_ADDR_SHIFT) &
MDIO_CMD_MII_PHY_ADDR_MASK;
miiaddr |= MDIO_CMD_MII_WRITE;
miiaddr |= MDIO_CMD_MII_BUSY;
writel(val, priv->mac_reg + EMAC_MII_DATA);
writel(miiaddr, priv->mac_reg + EMAC_MII_CMD);
start = get_timer(0);
while (get_timer(start) < timeout) {
if (!(readl(priv->mac_reg + EMAC_MII_CMD) &
MDIO_CMD_MII_BUSY)) {
ret = 0;
break;
}
udelay(10);
};
return ret;
}
static int _sun8i_write_hwaddr(struct emac_eth_dev *priv, u8 *mac_id)
{
u32 macid_lo, macid_hi;
macid_lo = mac_id[0] + (mac_id[1] << 8) + (mac_id[2] << 16) +
(mac_id[3] << 24);
macid_hi = mac_id[4] + (mac_id[5] << 8);
writel(macid_hi, priv->mac_reg + EMAC_ADDR0_HIGH);
writel(macid_lo, priv->mac_reg + EMAC_ADDR0_LOW);
return 0;
}
static void sun8i_adjust_link(struct emac_eth_dev *priv,
struct phy_device *phydev)
{
u32 v;
v = readl(priv->mac_reg + EMAC_CTL0);
if (phydev->duplex)
v |= BIT(0);
else
v &= ~BIT(0);
v &= ~0x0C;
switch (phydev->speed) {
case 1000:
break;
case 100:
v |= BIT(2);
v |= BIT(3);
break;
case 10:
v |= BIT(3);
break;
}
writel(v, priv->mac_reg + EMAC_CTL0);
}
static int sun8i_emac_set_syscon_ephy(struct emac_eth_dev *priv, u32 *reg)
{
if (priv->use_internal_phy) {
/* H3 based SoC's that has an Internal 100MBit PHY
* needs to be configured and powered up before use
*/
*reg &= ~H3_EPHY_DEFAULT_MASK;
*reg |= H3_EPHY_DEFAULT_VALUE;
*reg |= priv->phyaddr << H3_EPHY_ADDR_SHIFT;
*reg &= ~H3_EPHY_SHUTDOWN;
*reg |= H3_EPHY_SELECT;
} else
/* This is to select External Gigabit PHY on
* the boards with H3 SoC.
*/
*reg &= ~H3_EPHY_SELECT;
return 0;
}
static int sun8i_emac_set_syscon(struct emac_eth_dev *priv)
{
int ret;
u32 reg;
reg = readl(priv->sysctl_reg);
if (priv->variant == H3_EMAC) {
ret = sun8i_emac_set_syscon_ephy(priv, &reg);
if (ret)
return ret;
}
reg &= ~(SC_ETCS_MASK | SC_EPIT);
if (priv->variant == H3_EMAC || priv->variant == A64_EMAC)
reg &= ~SC_RMII_EN;
switch (priv->interface) {
case PHY_INTERFACE_MODE_MII:
/* default */
break;
case PHY_INTERFACE_MODE_RGMII:
reg |= SC_EPIT | SC_ETCS_INT_GMII;
break;
case PHY_INTERFACE_MODE_RMII:
if (priv->variant == H3_EMAC ||
priv->variant == A64_EMAC) {
reg |= SC_RMII_EN | SC_ETCS_EXT_GMII;
break;
}
/* RMII not supported on A83T */
default:
debug("%s: Invalid PHY interface\n", __func__);
return -EINVAL;
}
writel(reg, priv->sysctl_reg);
return 0;
}
static int sun8i_phy_init(struct emac_eth_dev *priv, void *dev)
{
struct phy_device *phydev;
phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
if (!phydev)
return -ENODEV;
phy_connect_dev(phydev, dev);
priv->phydev = phydev;
phy_config(priv->phydev);
return 0;
}
static void rx_descs_init(struct emac_eth_dev *priv)
{
struct emac_dma_desc *desc_table_p = &priv->rx_chain[0];
char *rxbuffs = &priv->rxbuffer[0];
struct emac_dma_desc *desc_p;
u32 idx;
/* flush Rx buffers */
flush_dcache_range((uintptr_t)rxbuffs, (ulong)rxbuffs +
RX_TOTAL_BUFSIZE);
for (idx = 0; idx < CONFIG_RX_DESCR_NUM; idx++) {
desc_p = &desc_table_p[idx];
desc_p->buf_addr = (uintptr_t)&rxbuffs[idx * CONFIG_ETH_BUFSIZE]
;
desc_p->next = (uintptr_t)&desc_table_p[idx + 1];
desc_p->st |= CONFIG_ETH_RXSIZE;
desc_p->status = BIT(31);
}
/* Correcting the last pointer of the chain */
desc_p->next = (uintptr_t)&desc_table_p[0];
flush_dcache_range((uintptr_t)priv->rx_chain,
(uintptr_t)priv->rx_chain +
sizeof(priv->rx_chain));
writel((uintptr_t)&desc_table_p[0], (priv->mac_reg + EMAC_RX_DMA_DESC));
priv->rx_currdescnum = 0;
}
static void tx_descs_init(struct emac_eth_dev *priv)
{
struct emac_dma_desc *desc_table_p = &priv->tx_chain[0];
char *txbuffs = &priv->txbuffer[0];
struct emac_dma_desc *desc_p;
u32 idx;
for (idx = 0; idx < CONFIG_TX_DESCR_NUM; idx++) {
desc_p = &desc_table_p[idx];
desc_p->buf_addr = (uintptr_t)&txbuffs[idx * CONFIG_ETH_BUFSIZE]
;
desc_p->next = (uintptr_t)&desc_table_p[idx + 1];
desc_p->status = (1 << 31);
desc_p->st = 0;
}
/* Correcting the last pointer of the chain */
desc_p->next = (uintptr_t)&desc_table_p[0];
/* Flush all Tx buffer descriptors */
flush_dcache_range((uintptr_t)priv->tx_chain,
(uintptr_t)priv->tx_chain +
sizeof(priv->tx_chain));
writel((uintptr_t)&desc_table_p[0], priv->mac_reg + EMAC_TX_DMA_DESC);
priv->tx_currdescnum = 0;
}
static int _sun8i_emac_eth_init(struct emac_eth_dev *priv, u8 *enetaddr)
{
u32 reg, v;
int timeout = 100;
reg = readl((priv->mac_reg + EMAC_CTL1));
if (!(reg & 0x1)) {
/* Soft reset MAC */
setbits_le32((priv->mac_reg + EMAC_CTL1), 0x1);
do {
reg = readl(priv->mac_reg + EMAC_CTL1);
} while ((reg & 0x01) != 0 && (--timeout));
if (!timeout) {
printf("%s: Timeout\n", __func__);
return -1;
}
}
/* Rewrite mac address after reset */
_sun8i_write_hwaddr(priv, enetaddr);
v = readl(priv->mac_reg + EMAC_TX_CTL1);
/* TX_MD Transmission starts after a full frame located in TX DMA FIFO*/
v |= BIT(1);
writel(v, priv->mac_reg + EMAC_TX_CTL1);
v = readl(priv->mac_reg + EMAC_RX_CTL1);
/* RX_MD RX DMA reads data from RX DMA FIFO to host memory after a
* complete frame has been written to RX DMA FIFO
*/
v |= BIT(1);
writel(v, priv->mac_reg + EMAC_RX_CTL1);
/* DMA */
writel(8 << 24, priv->mac_reg + EMAC_CTL1);
/* Initialize rx/tx descriptors */
rx_descs_init(priv);
tx_descs_init(priv);
/* PHY Start Up */
genphy_parse_link(priv->phydev);
sun8i_adjust_link(priv, priv->phydev);
/* Start RX DMA */
v = readl(priv->mac_reg + EMAC_RX_CTL1);
v |= BIT(30);
writel(v, priv->mac_reg + EMAC_RX_CTL1);
/* Start TX DMA */
v = readl(priv->mac_reg + EMAC_TX_CTL1);
v |= BIT(30);
writel(v, priv->mac_reg + EMAC_TX_CTL1);
/* Enable RX/TX */
setbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31));
setbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31));
return 0;
}
static int parse_phy_pins(struct udevice *dev)
{
int offset;
const char *pin_name;
int drive, pull, i;
offset = fdtdec_lookup_phandle(gd->fdt_blob, dev_of_offset(dev),
"pinctrl-0");
if (offset < 0) {
printf("WARNING: emac: cannot find pinctrl-0 node\n");
return offset;
}
drive = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
"allwinner,drive", 4);
pull = fdt_getprop_u32_default_node(gd->fdt_blob, offset, 0,
"allwinner,pull", 0);
for (i = 0; ; i++) {
int pin;
pin_name = fdt_stringlist_get(gd->fdt_blob, offset,
"allwinner,pins", i, NULL);
if (!pin_name)
break;
if (pin_name[0] != 'P')
continue;
pin = (pin_name[1] - 'A') << 5;
if (pin >= 26 << 5)
continue;
pin += simple_strtol(&pin_name[2], NULL, 10);
sunxi_gpio_set_cfgpin(pin, SUN8I_GPD8_GMAC);
sunxi_gpio_set_drv(pin, drive);
sunxi_gpio_set_pull(pin, pull);
}
if (!i) {
printf("WARNING: emac: cannot find allwinner,pins property\n");
return -2;
}
return 0;
}
static int _sun8i_eth_recv(struct emac_eth_dev *priv, uchar **packetp)
{
u32 status, desc_num = priv->rx_currdescnum;
struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
int length = -EAGAIN;
int good_packet = 1;
uintptr_t desc_start = (uintptr_t)desc_p;
uintptr_t desc_end = desc_start +
roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
ulong data_start = (uintptr_t)desc_p->buf_addr;
ulong data_end;
/* Invalidate entire buffer descriptor */
invalidate_dcache_range(desc_start, desc_end);
status = desc_p->status;
/* Check for DMA own bit */
if (!(status & BIT(31))) {
length = (desc_p->status >> 16) & 0x3FFF;
if (length < 0x40) {
good_packet = 0;
debug("RX: Bad Packet (runt)\n");
}
data_end = data_start + length;
/* Invalidate received data */
invalidate_dcache_range(rounddown(data_start,
ARCH_DMA_MINALIGN),
roundup(data_end,
ARCH_DMA_MINALIGN));
if (good_packet) {
if (length > CONFIG_ETH_RXSIZE) {
printf("Received packet is too big (len=%d)\n",
length);
return -EMSGSIZE;
}
*packetp = (uchar *)(ulong)desc_p->buf_addr;
return length;
}
}
return length;
}
static int _sun8i_emac_eth_send(struct emac_eth_dev *priv, void *packet,
int len)
{
u32 v, desc_num = priv->tx_currdescnum;
struct emac_dma_desc *desc_p = &priv->tx_chain[desc_num];
uintptr_t desc_start = (uintptr_t)desc_p;
uintptr_t desc_end = desc_start +
roundup(sizeof(*desc_p), ARCH_DMA_MINALIGN);
uintptr_t data_start = (uintptr_t)desc_p->buf_addr;
uintptr_t data_end = data_start +
roundup(len, ARCH_DMA_MINALIGN);
/* Invalidate entire buffer descriptor */
invalidate_dcache_range(desc_start, desc_end);
desc_p->st = len;
/* Mandatory undocumented bit */
desc_p->st |= BIT(24);
memcpy((void *)data_start, packet, len);
/* Flush data to be sent */
flush_dcache_range(data_start, data_end);
/* frame end */
desc_p->st |= BIT(30);
desc_p->st |= BIT(31);
/*frame begin */
desc_p->st |= BIT(29);
desc_p->status = BIT(31);
/*Descriptors st and status field has changed, so FLUSH it */
flush_dcache_range(desc_start, desc_end);
/* Move to next Descriptor and wrap around */
if (++desc_num >= CONFIG_TX_DESCR_NUM)
desc_num = 0;
priv->tx_currdescnum = desc_num;
/* Start the DMA */
v = readl(priv->mac_reg + EMAC_TX_CTL1);
v |= BIT(31);/* mandatory */
v |= BIT(30);/* mandatory */
writel(v, priv->mac_reg + EMAC_TX_CTL1);
return 0;
}
static int sun8i_eth_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct emac_eth_dev *priv = dev_get_priv(dev);
return _sun8i_write_hwaddr(priv, pdata->enetaddr);
}
static void sun8i_emac_board_setup(struct emac_eth_dev *priv)
{
struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
if (priv->use_internal_phy) {
/* Set clock gating for ephy */
setbits_le32(&ccm->bus_gate4, BIT(AHB_GATE_OFFSET_EPHY));
/* Deassert EPHY */
setbits_le32(&ccm->ahb_reset2_cfg, BIT(AHB_RESET_OFFSET_EPHY));
}
/* Set clock gating for emac */
setbits_le32(&ccm->ahb_gate0, BIT(AHB_GATE_OFFSET_GMAC));
/* De-assert EMAC */
setbits_le32(&ccm->ahb_reset0_cfg, BIT(AHB_RESET_OFFSET_GMAC));
}
#if defined(CONFIG_DM_GPIO)
static int sun8i_mdio_reset(struct mii_dev *bus)
{
struct udevice *dev = bus->priv;
struct emac_eth_dev *priv = dev_get_priv(dev);
struct sun8i_eth_pdata *pdata = dev_get_platdata(dev);
int ret;
if (!dm_gpio_is_valid(&priv->reset_gpio))
return 0;
/* reset the phy */
ret = dm_gpio_set_value(&priv->reset_gpio, 0);
if (ret)
return ret;
udelay(pdata->reset_delays[0]);
ret = dm_gpio_set_value(&priv->reset_gpio, 1);
if (ret)
return ret;
udelay(pdata->reset_delays[1]);
ret = dm_gpio_set_value(&priv->reset_gpio, 0);
if (ret)
return ret;
udelay(pdata->reset_delays[2]);
return 0;
}
#endif
static int sun8i_mdio_init(const char *name, struct udevice *priv)
{
struct mii_dev *bus = mdio_alloc();
if (!bus) {
debug("Failed to allocate MDIO bus\n");
return -ENOMEM;
}
bus->read = sun8i_mdio_read;
bus->write = sun8i_mdio_write;
snprintf(bus->name, sizeof(bus->name), name);
bus->priv = (void *)priv;
#if defined(CONFIG_DM_GPIO)
bus->reset = sun8i_mdio_reset;
#endif
return mdio_register(bus);
}
static int sun8i_emac_eth_start(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
return _sun8i_emac_eth_init(dev->priv, pdata->enetaddr);
}
static int sun8i_emac_eth_send(struct udevice *dev, void *packet, int length)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
return _sun8i_emac_eth_send(priv, packet, length);
}
static int sun8i_emac_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
return _sun8i_eth_recv(priv, packetp);
}
static int _sun8i_free_pkt(struct emac_eth_dev *priv)
{
u32 desc_num = priv->rx_currdescnum;
struct emac_dma_desc *desc_p = &priv->rx_chain[desc_num];
uintptr_t desc_start = (uintptr_t)desc_p;
uintptr_t desc_end = desc_start +
roundup(sizeof(u32), ARCH_DMA_MINALIGN);
/* Make the current descriptor valid again */
desc_p->status |= BIT(31);
/* Flush Status field of descriptor */
flush_dcache_range(desc_start, desc_end);
/* Move to next desc and wrap-around condition. */
if (++desc_num >= CONFIG_RX_DESCR_NUM)
desc_num = 0;
priv->rx_currdescnum = desc_num;
return 0;
}
static int sun8i_eth_free_pkt(struct udevice *dev, uchar *packet,
int length)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
return _sun8i_free_pkt(priv);
}
static void sun8i_emac_eth_stop(struct udevice *dev)
{
struct emac_eth_dev *priv = dev_get_priv(dev);
/* Stop Rx/Tx transmitter */
clrbits_le32(priv->mac_reg + EMAC_RX_CTL0, BIT(31));
clrbits_le32(priv->mac_reg + EMAC_TX_CTL0, BIT(31));
/* Stop TX DMA */
clrbits_le32(priv->mac_reg + EMAC_TX_CTL1, BIT(30));
phy_shutdown(priv->phydev);
}
static int sun8i_emac_eth_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct emac_eth_dev *priv = dev_get_priv(dev);
priv->mac_reg = (void *)pdata->iobase;
sun8i_emac_board_setup(priv);
sun8i_emac_set_syscon(priv);
sun8i_mdio_init(dev->name, dev);
priv->bus = miiphy_get_dev_by_name(dev->name);
return sun8i_phy_init(priv, dev);
}
static const struct eth_ops sun8i_emac_eth_ops = {
.start = sun8i_emac_eth_start,
.write_hwaddr = sun8i_eth_write_hwaddr,
.send = sun8i_emac_eth_send,
.recv = sun8i_emac_eth_recv,
.free_pkt = sun8i_eth_free_pkt,
.stop = sun8i_emac_eth_stop,
};
static int sun8i_emac_eth_ofdata_to_platdata(struct udevice *dev)
{
struct sun8i_eth_pdata *sun8i_pdata = dev_get_platdata(dev);
struct eth_pdata *pdata = &sun8i_pdata->eth_pdata;
struct emac_eth_dev *priv = dev_get_priv(dev);
const char *phy_mode;
int node = dev_of_offset(dev);
int offset = 0;
#ifdef CONFIG_DM_GPIO
int reset_flags = GPIOD_IS_OUT;
int ret = 0;
#endif
pdata->iobase = dev_get_addr_name(dev, "emac");
priv->sysctl_reg = dev_get_addr_name(dev, "syscon");
pdata->phy_interface = -1;
priv->phyaddr = -1;
priv->use_internal_phy = false;
offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
"phy");
if (offset > 0)
priv->phyaddr = fdtdec_get_int(gd->fdt_blob, offset, "reg",
-1);
phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
printf("phy interface%d\n", pdata->phy_interface);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
priv->variant = dev_get_driver_data(dev);
if (!priv->variant) {
printf("%s: Missing variant '%s'\n", __func__,
(char *)priv->variant);
return -EINVAL;
}
if (priv->variant == H3_EMAC) {
if (fdt_getprop(gd->fdt_blob, node,
"allwinner,use-internal-phy", NULL))
priv->use_internal_phy = true;
}
priv->interface = pdata->phy_interface;
if (!priv->use_internal_phy)
parse_phy_pins(dev);
#ifdef CONFIG_DM_GPIO
if (fdtdec_get_bool(gd->fdt_blob, dev->of_offset,
"snps,reset-active-low"))
reset_flags |= GPIOD_ACTIVE_LOW;
ret = gpio_request_by_name(dev, "snps,reset-gpio", 0,
&priv->reset_gpio, reset_flags);
if (ret == 0) {
ret = fdtdec_get_int_array(gd->fdt_blob, dev->of_offset,
"snps,reset-delays-us",
sun8i_pdata->reset_delays, 3);
} else if (ret == -ENOENT) {
ret = 0;
}
#endif
return 0;
}
static const struct udevice_id sun8i_emac_eth_ids[] = {
{.compatible = "allwinner,sun8i-h3-emac", .data = (uintptr_t)H3_EMAC },
{.compatible = "allwinner,sun50i-a64-emac",
.data = (uintptr_t)A64_EMAC },
{.compatible = "allwinner,sun8i-a83t-emac",
.data = (uintptr_t)A83T_EMAC },
{ }
};
U_BOOT_DRIVER(eth_sun8i_emac) = {
.name = "eth_sun8i_emac",
.id = UCLASS_ETH,
.of_match = sun8i_emac_eth_ids,
.ofdata_to_platdata = sun8i_emac_eth_ofdata_to_platdata,
.probe = sun8i_emac_eth_probe,
.ops = &sun8i_emac_eth_ops,
.priv_auto_alloc_size = sizeof(struct emac_eth_dev),
.platdata_auto_alloc_size = sizeof(struct sun8i_eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};