u-boot/drivers/net/bcm-sf2-eth-gmac.c
Masahiro Yamada 9b643e312d treewide: replace with error() with pr_err()
U-Boot widely uses error() as a bit noisier variant of printf().

This macro causes name conflict with the following line in
include/linux/compiler-gcc.h:

  # define __compiletime_error(message) __attribute__((error(message)))

This prevents us from using __compiletime_error(), and makes it
difficult to fully sync BUILD_BUG macros with Linux.  (Notice
Linux's BUILD_BUG_ON_MSG is implemented by using compiletime_assert().)

Let's convert error() into now treewide-available pr_err().

Done with the help of Coccinelle, excluing tools/ directory.

The semantic patch I used is as follows:

// <smpl>
@@@@
-error
+pr_err
 (...)
// </smpl>

Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Simon Glass <sjg@chromium.org>
[trini: Re-run Coccinelle]
Signed-off-by: Tom Rini <trini@konsulko.com>
2017-10-04 11:59:44 -04:00

973 lines
24 KiB
C

/*
* Copyright 2014-2017 Broadcom.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifdef BCM_GMAC_DEBUG
#ifndef DEBUG
#define DEBUG
#endif
#endif
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <asm/io.h>
#include <phy.h>
#include "bcm-sf2-eth.h"
#include "bcm-sf2-eth-gmac.h"
#define SPINWAIT(exp, us) { \
uint countdown = (us) + 9; \
while ((exp) && (countdown >= 10)) {\
udelay(10); \
countdown -= 10; \
} \
}
#define RX_BUF_SIZE_ALIGNED ALIGN(RX_BUF_SIZE, ARCH_DMA_MINALIGN)
#define TX_BUF_SIZE_ALIGNED ALIGN(TX_BUF_SIZE, ARCH_DMA_MINALIGN)
#define DESCP_SIZE_ALIGNED ALIGN(sizeof(dma64dd_t), ARCH_DMA_MINALIGN)
static int gmac_disable_dma(struct eth_dma *dma, int dir);
static int gmac_enable_dma(struct eth_dma *dma, int dir);
/* DMA Descriptor */
typedef struct {
/* misc control bits */
uint32_t ctrl1;
/* buffer count and address extension */
uint32_t ctrl2;
/* memory address of the date buffer, bits 31:0 */
uint32_t addrlow;
/* memory address of the date buffer, bits 63:32 */
uint32_t addrhigh;
} dma64dd_t;
uint32_t g_dmactrlflags;
static uint32_t dma_ctrlflags(uint32_t mask, uint32_t flags)
{
debug("%s enter\n", __func__);
g_dmactrlflags &= ~mask;
g_dmactrlflags |= flags;
/* If trying to enable parity, check if parity is actually supported */
if (g_dmactrlflags & DMA_CTRL_PEN) {
uint32_t control;
control = readl(GMAC0_DMA_TX_CTRL_ADDR);
writel(control | D64_XC_PD, GMAC0_DMA_TX_CTRL_ADDR);
if (readl(GMAC0_DMA_TX_CTRL_ADDR) & D64_XC_PD) {
/*
* We *can* disable it, therefore it is supported;
* restore control register
*/
writel(control, GMAC0_DMA_TX_CTRL_ADDR);
} else {
/* Not supported, don't allow it to be enabled */
g_dmactrlflags &= ~DMA_CTRL_PEN;
}
}
return g_dmactrlflags;
}
static inline void reg32_clear_bits(uint32_t reg, uint32_t value)
{
uint32_t v = readl(reg);
v &= ~(value);
writel(v, reg);
}
static inline void reg32_set_bits(uint32_t reg, uint32_t value)
{
uint32_t v = readl(reg);
v |= value;
writel(v, reg);
}
#ifdef BCM_GMAC_DEBUG
static void dma_tx_dump(struct eth_dma *dma)
{
dma64dd_t *descp = NULL;
uint8_t *bufp;
int i;
printf("TX DMA Register:\n");
printf("control:0x%x; ptr:0x%x; addrl:0x%x; addrh:0x%x; stat0:0x%x, stat1:0x%x\n",
readl(GMAC0_DMA_TX_CTRL_ADDR),
readl(GMAC0_DMA_TX_PTR_ADDR),
readl(GMAC0_DMA_TX_ADDR_LOW_ADDR),
readl(GMAC0_DMA_TX_ADDR_HIGH_ADDR),
readl(GMAC0_DMA_TX_STATUS0_ADDR),
readl(GMAC0_DMA_TX_STATUS1_ADDR));
printf("TX Descriptors:\n");
for (i = 0; i < TX_BUF_NUM; i++) {
descp = (dma64dd_t *)(dma->tx_desc_aligned) + i;
printf("ctrl1:0x%08x; ctrl2:0x%08x; addr:0x%x 0x%08x\n",
descp->ctrl1, descp->ctrl2,
descp->addrhigh, descp->addrlow);
}
printf("TX Buffers:\n");
/* Initialize TX DMA descriptor table */
for (i = 0; i < TX_BUF_NUM; i++) {
bufp = (uint8_t *)(dma->tx_buf + i * TX_BUF_SIZE_ALIGNED);
printf("buf%d:0x%x; ", i, (uint32_t)bufp);
}
printf("\n");
}
static void dma_rx_dump(struct eth_dma *dma)
{
dma64dd_t *descp = NULL;
uint8_t *bufp;
int i;
printf("RX DMA Register:\n");
printf("control:0x%x; ptr:0x%x; addrl:0x%x; addrh:0x%x; stat0:0x%x, stat1:0x%x\n",
readl(GMAC0_DMA_RX_CTRL_ADDR),
readl(GMAC0_DMA_RX_PTR_ADDR),
readl(GMAC0_DMA_RX_ADDR_LOW_ADDR),
readl(GMAC0_DMA_RX_ADDR_HIGH_ADDR),
readl(GMAC0_DMA_RX_STATUS0_ADDR),
readl(GMAC0_DMA_RX_STATUS1_ADDR));
printf("RX Descriptors:\n");
for (i = 0; i < RX_BUF_NUM; i++) {
descp = (dma64dd_t *)(dma->rx_desc_aligned) + i;
printf("ctrl1:0x%08x; ctrl2:0x%08x; addr:0x%x 0x%08x\n",
descp->ctrl1, descp->ctrl2,
descp->addrhigh, descp->addrlow);
}
printf("RX Buffers:\n");
for (i = 0; i < RX_BUF_NUM; i++) {
bufp = dma->rx_buf + i * RX_BUF_SIZE_ALIGNED;
printf("buf%d:0x%x; ", i, (uint32_t)bufp);
}
printf("\n");
}
#endif
static int dma_tx_init(struct eth_dma *dma)
{
dma64dd_t *descp = NULL;
uint8_t *bufp;
int i;
uint32_t ctrl;
debug("%s enter\n", __func__);
/* clear descriptor memory */
memset((void *)(dma->tx_desc_aligned), 0,
TX_BUF_NUM * DESCP_SIZE_ALIGNED);
memset(dma->tx_buf, 0, TX_BUF_NUM * TX_BUF_SIZE_ALIGNED);
/* Initialize TX DMA descriptor table */
for (i = 0; i < TX_BUF_NUM; i++) {
descp = (dma64dd_t *)(dma->tx_desc_aligned) + i;
bufp = dma->tx_buf + i * TX_BUF_SIZE_ALIGNED;
/* clear buffer memory */
memset((void *)bufp, 0, TX_BUF_SIZE_ALIGNED);
ctrl = 0;
/* if last descr set endOfTable */
if (i == (TX_BUF_NUM-1))
ctrl = D64_CTRL1_EOT;
descp->ctrl1 = ctrl;
descp->ctrl2 = 0;
descp->addrlow = (uint32_t)bufp;
descp->addrhigh = 0;
}
/* flush descriptor and buffer */
descp = dma->tx_desc_aligned;
bufp = dma->tx_buf;
flush_dcache_range((unsigned long)descp,
(unsigned long)descp +
DESCP_SIZE_ALIGNED * TX_BUF_NUM);
flush_dcache_range((unsigned long)bufp,
(unsigned long)bufp +
TX_BUF_SIZE_ALIGNED * TX_BUF_NUM);
/* initialize the DMA channel */
writel((uint32_t)(dma->tx_desc_aligned), GMAC0_DMA_TX_ADDR_LOW_ADDR);
writel(0, GMAC0_DMA_TX_ADDR_HIGH_ADDR);
/* now update the dma last descriptor */
writel(((uint32_t)(dma->tx_desc_aligned)) & D64_XP_LD_MASK,
GMAC0_DMA_TX_PTR_ADDR);
return 0;
}
static int dma_rx_init(struct eth_dma *dma)
{
uint32_t last_desc;
dma64dd_t *descp = NULL;
uint8_t *bufp;
uint32_t ctrl;
int i;
debug("%s enter\n", __func__);
/* clear descriptor memory */
memset((void *)(dma->rx_desc_aligned), 0,
RX_BUF_NUM * DESCP_SIZE_ALIGNED);
/* clear buffer memory */
memset(dma->rx_buf, 0, RX_BUF_NUM * RX_BUF_SIZE_ALIGNED);
/* Initialize RX DMA descriptor table */
for (i = 0; i < RX_BUF_NUM; i++) {
descp = (dma64dd_t *)(dma->rx_desc_aligned) + i;
bufp = dma->rx_buf + i * RX_BUF_SIZE_ALIGNED;
ctrl = 0;
/* if last descr set endOfTable */
if (i == (RX_BUF_NUM - 1))
ctrl = D64_CTRL1_EOT;
descp->ctrl1 = ctrl;
descp->ctrl2 = RX_BUF_SIZE_ALIGNED;
descp->addrlow = (uint32_t)bufp;
descp->addrhigh = 0;
last_desc = ((uint32_t)(descp) & D64_XP_LD_MASK)
+ sizeof(dma64dd_t);
}
descp = dma->rx_desc_aligned;
bufp = dma->rx_buf;
/* flush descriptor and buffer */
flush_dcache_range((unsigned long)descp,
(unsigned long)descp +
DESCP_SIZE_ALIGNED * RX_BUF_NUM);
flush_dcache_range((unsigned long)(bufp),
(unsigned long)bufp +
RX_BUF_SIZE_ALIGNED * RX_BUF_NUM);
/* initailize the DMA channel */
writel((uint32_t)descp, GMAC0_DMA_RX_ADDR_LOW_ADDR);
writel(0, GMAC0_DMA_RX_ADDR_HIGH_ADDR);
/* now update the dma last descriptor */
writel(last_desc, GMAC0_DMA_RX_PTR_ADDR);
return 0;
}
static int dma_init(struct eth_dma *dma)
{
debug(" %s enter\n", __func__);
/*
* Default flags: For backwards compatibility both
* Rx Overflow Continue and Parity are DISABLED.
*/
dma_ctrlflags(DMA_CTRL_ROC | DMA_CTRL_PEN, 0);
debug("rx burst len 0x%x\n",
(readl(GMAC0_DMA_RX_CTRL_ADDR) & D64_RC_BL_MASK)
>> D64_RC_BL_SHIFT);
debug("tx burst len 0x%x\n",
(readl(GMAC0_DMA_TX_CTRL_ADDR) & D64_XC_BL_MASK)
>> D64_XC_BL_SHIFT);
dma_tx_init(dma);
dma_rx_init(dma);
/* From end of chip_init() */
/* enable the overflow continue feature and disable parity */
dma_ctrlflags(DMA_CTRL_ROC | DMA_CTRL_PEN /* mask */,
DMA_CTRL_ROC /* value */);
return 0;
}
static int dma_deinit(struct eth_dma *dma)
{
debug(" %s enter\n", __func__);
gmac_disable_dma(dma, MAC_DMA_RX);
gmac_disable_dma(dma, MAC_DMA_TX);
free(dma->tx_buf);
dma->tx_buf = NULL;
free(dma->tx_desc_aligned);
dma->tx_desc_aligned = NULL;
free(dma->rx_buf);
dma->rx_buf = NULL;
free(dma->rx_desc_aligned);
dma->rx_desc_aligned = NULL;
return 0;
}
int gmac_tx_packet(struct eth_dma *dma, void *packet, int length)
{
uint8_t *bufp = dma->tx_buf + dma->cur_tx_index * TX_BUF_SIZE_ALIGNED;
/* kick off the dma */
size_t len = length;
int txout = dma->cur_tx_index;
uint32_t flags;
dma64dd_t *descp = NULL;
uint32_t ctrl;
uint32_t last_desc = (((uint32_t)dma->tx_desc_aligned) +
sizeof(dma64dd_t)) & D64_XP_LD_MASK;
size_t buflen;
debug("%s enter\n", __func__);
/* load the buffer */
memcpy(bufp, packet, len);
/* Add 4 bytes for Ethernet FCS/CRC */
buflen = len + 4;
ctrl = (buflen & D64_CTRL2_BC_MASK);
/* the transmit will only be one frame or set SOF, EOF */
/* also set int on completion */
flags = D64_CTRL1_SOF | D64_CTRL1_IOC | D64_CTRL1_EOF;
/* txout points to the descriptor to uset */
/* if last descriptor then set EOT */
if (txout == (TX_BUF_NUM - 1)) {
flags |= D64_CTRL1_EOT;
last_desc = ((uint32_t)(dma->tx_desc_aligned)) & D64_XP_LD_MASK;
}
/* write the descriptor */
descp = ((dma64dd_t *)(dma->tx_desc_aligned)) + txout;
descp->addrlow = (uint32_t)bufp;
descp->addrhigh = 0;
descp->ctrl1 = flags;
descp->ctrl2 = ctrl;
/* flush descriptor and buffer */
flush_dcache_range((unsigned long)dma->tx_desc_aligned,
(unsigned long)dma->tx_desc_aligned +
DESCP_SIZE_ALIGNED * TX_BUF_NUM);
flush_dcache_range((unsigned long)bufp,
(unsigned long)bufp + TX_BUF_SIZE_ALIGNED);
/* now update the dma last descriptor */
writel(last_desc, GMAC0_DMA_TX_PTR_ADDR);
/* tx dma should be enabled so packet should go out */
/* update txout */
dma->cur_tx_index = (txout + 1) & (TX_BUF_NUM - 1);
return 0;
}
bool gmac_check_tx_done(struct eth_dma *dma)
{
/* wait for tx to complete */
uint32_t intstatus;
bool xfrdone = false;
debug("%s enter\n", __func__);
intstatus = readl(GMAC0_INT_STATUS_ADDR);
debug("int(0x%x)\n", intstatus);
if (intstatus & (I_XI0 | I_XI1 | I_XI2 | I_XI3)) {
xfrdone = true;
/* clear the int bits */
intstatus &= ~(I_XI0 | I_XI1 | I_XI2 | I_XI3);
writel(intstatus, GMAC0_INT_STATUS_ADDR);
} else {
debug("Tx int(0x%x)\n", intstatus);
}
return xfrdone;
}
int gmac_check_rx_done(struct eth_dma *dma, uint8_t *buf)
{
void *bufp, *datap;
size_t rcvlen = 0, buflen = 0;
uint32_t stat0 = 0, stat1 = 0;
uint32_t control, offset;
uint8_t statbuf[HWRXOFF*2];
int index, curr, active;
dma64dd_t *descp = NULL;
/* udelay(50); */
/*
* this api will check if a packet has been received.
* If so it will return the address of the buffer and current
* descriptor index will be incremented to the
* next descriptor. Once done with the frame the buffer should be
* added back onto the descriptor and the lastdscr should be updated
* to this descriptor.
*/
index = dma->cur_rx_index;
offset = (uint32_t)(dma->rx_desc_aligned);
stat0 = readl(GMAC0_DMA_RX_STATUS0_ADDR) & D64_RS0_CD_MASK;
stat1 = readl(GMAC0_DMA_RX_STATUS1_ADDR) & D64_RS0_CD_MASK;
curr = ((stat0 - offset) & D64_RS0_CD_MASK) / sizeof(dma64dd_t);
active = ((stat1 - offset) & D64_RS0_CD_MASK) / sizeof(dma64dd_t);
/* check if any frame */
if (index == curr)
return -1;
debug("received packet\n");
debug("expect(0x%x) curr(0x%x) active(0x%x)\n", index, curr, active);
/* remove warning */
if (index == active)
;
/* get the packet pointer that corresponds to the rx descriptor */
bufp = dma->rx_buf + index * RX_BUF_SIZE_ALIGNED;
descp = (dma64dd_t *)(dma->rx_desc_aligned) + index;
/* flush descriptor and buffer */
flush_dcache_range((unsigned long)dma->rx_desc_aligned,
(unsigned long)dma->rx_desc_aligned +
DESCP_SIZE_ALIGNED * RX_BUF_NUM);
flush_dcache_range((unsigned long)bufp,
(unsigned long)bufp + RX_BUF_SIZE_ALIGNED);
buflen = (descp->ctrl2 & D64_CTRL2_BC_MASK);
stat0 = readl(GMAC0_DMA_RX_STATUS0_ADDR);
stat1 = readl(GMAC0_DMA_RX_STATUS1_ADDR);
debug("bufp(0x%x) index(0x%x) buflen(0x%x) stat0(0x%x) stat1(0x%x)\n",
(uint32_t)bufp, index, buflen, stat0, stat1);
dma->cur_rx_index = (index + 1) & (RX_BUF_NUM - 1);
/* get buffer offset */
control = readl(GMAC0_DMA_RX_CTRL_ADDR);
offset = (control & D64_RC_RO_MASK) >> D64_RC_RO_SHIFT;
rcvlen = *(uint16_t *)bufp;
debug("Received %d bytes\n", rcvlen);
/* copy status into temp buf then copy data from rx buffer */
memcpy(statbuf, bufp, offset);
datap = (void *)((uint32_t)bufp + offset);
memcpy(buf, datap, rcvlen);
/* update descriptor that is being added back on ring */
descp->ctrl2 = RX_BUF_SIZE_ALIGNED;
descp->addrlow = (uint32_t)bufp;
descp->addrhigh = 0;
/* flush descriptor */
flush_dcache_range((unsigned long)dma->rx_desc_aligned,
(unsigned long)dma->rx_desc_aligned +
DESCP_SIZE_ALIGNED * RX_BUF_NUM);
/* set the lastdscr for the rx ring */
writel(((uint32_t)descp) & D64_XP_LD_MASK, GMAC0_DMA_RX_PTR_ADDR);
return (int)rcvlen;
}
static int gmac_disable_dma(struct eth_dma *dma, int dir)
{
int status;
debug("%s enter\n", __func__);
if (dir == MAC_DMA_TX) {
/* address PR8249/PR7577 issue */
/* suspend tx DMA first */
writel(D64_XC_SE, GMAC0_DMA_TX_CTRL_ADDR);
SPINWAIT(((status = (readl(GMAC0_DMA_TX_STATUS0_ADDR) &
D64_XS0_XS_MASK)) !=
D64_XS0_XS_DISABLED) &&
(status != D64_XS0_XS_IDLE) &&
(status != D64_XS0_XS_STOPPED), 10000);
/*
* PR2414 WAR: DMA engines are not disabled until
* transfer finishes
*/
writel(0, GMAC0_DMA_TX_CTRL_ADDR);
SPINWAIT(((status = (readl(GMAC0_DMA_TX_STATUS0_ADDR) &
D64_XS0_XS_MASK)) !=
D64_XS0_XS_DISABLED), 10000);
/* wait for the last transaction to complete */
udelay(2);
status = (status == D64_XS0_XS_DISABLED);
} else {
/*
* PR2414 WAR: DMA engines are not disabled until
* transfer finishes
*/
writel(0, GMAC0_DMA_RX_CTRL_ADDR);
SPINWAIT(((status = (readl(GMAC0_DMA_RX_STATUS0_ADDR) &
D64_RS0_RS_MASK)) !=
D64_RS0_RS_DISABLED), 10000);
status = (status == D64_RS0_RS_DISABLED);
}
return status;
}
static int gmac_enable_dma(struct eth_dma *dma, int dir)
{
uint32_t control;
debug("%s enter\n", __func__);
if (dir == MAC_DMA_TX) {
dma->cur_tx_index = 0;
/*
* These bits 20:18 (burstLen) of control register can be
* written but will take effect only if these bits are
* valid. So this will not affect previous versions
* of the DMA. They will continue to have those bits set to 0.
*/
control = readl(GMAC0_DMA_TX_CTRL_ADDR);
control |= D64_XC_XE;
if ((g_dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_XC_PD;
writel(control, GMAC0_DMA_TX_CTRL_ADDR);
/* initailize the DMA channel */
writel((uint32_t)(dma->tx_desc_aligned),
GMAC0_DMA_TX_ADDR_LOW_ADDR);
writel(0, GMAC0_DMA_TX_ADDR_HIGH_ADDR);
} else {
dma->cur_rx_index = 0;
control = (readl(GMAC0_DMA_RX_CTRL_ADDR) &
D64_RC_AE) | D64_RC_RE;
if ((g_dmactrlflags & DMA_CTRL_PEN) == 0)
control |= D64_RC_PD;
if (g_dmactrlflags & DMA_CTRL_ROC)
control |= D64_RC_OC;
/*
* These bits 20:18 (burstLen) of control register can be
* written but will take effect only if these bits are
* valid. So this will not affect previous versions
* of the DMA. They will continue to have those bits set to 0.
*/
control &= ~D64_RC_BL_MASK;
/* Keep default Rx burstlen */
control |= readl(GMAC0_DMA_RX_CTRL_ADDR) & D64_RC_BL_MASK;
control |= HWRXOFF << D64_RC_RO_SHIFT;
writel(control, GMAC0_DMA_RX_CTRL_ADDR);
/*
* the rx descriptor ring should have
* the addresses set properly;
* set the lastdscr for the rx ring
*/
writel(((uint32_t)(dma->rx_desc_aligned) +
(RX_BUF_NUM - 1) * RX_BUF_SIZE_ALIGNED) &
D64_XP_LD_MASK, GMAC0_DMA_RX_PTR_ADDR);
}
return 0;
}
bool gmac_mii_busywait(unsigned int timeout)
{
uint32_t tmp = 0;
while (timeout > 10) {
tmp = readl(GMAC_MII_CTRL_ADDR);
if (tmp & (1 << GMAC_MII_BUSY_SHIFT)) {
udelay(10);
timeout -= 10;
} else {
break;
}
}
return tmp & (1 << GMAC_MII_BUSY_SHIFT);
}
int gmac_miiphy_read(struct mii_dev *bus, int phyaddr, int devad, int reg)
{
uint32_t tmp = 0;
u16 value = 0;
/* Busy wait timeout is 1ms */
if (gmac_mii_busywait(1000)) {
pr_err("%s: Prepare MII read: MII/MDIO busy\n", __func__);
return -1;
}
/* Read operation */
tmp = GMAC_MII_DATA_READ_CMD;
tmp |= (phyaddr << GMAC_MII_PHY_ADDR_SHIFT) |
(reg << GMAC_MII_PHY_REG_SHIFT);
debug("MII read cmd 0x%x, phy 0x%x, reg 0x%x\n", tmp, phyaddr, reg);
writel(tmp, GMAC_MII_DATA_ADDR);
if (gmac_mii_busywait(1000)) {
pr_err("%s: MII read failure: MII/MDIO busy\n", __func__);
return -1;
}
value = readl(GMAC_MII_DATA_ADDR) & 0xffff;
debug("MII read data 0x%x\n", value);
return value;
}
int gmac_miiphy_write(struct mii_dev *bus, int phyaddr, int devad, int reg,
u16 value)
{
uint32_t tmp = 0;
/* Busy wait timeout is 1ms */
if (gmac_mii_busywait(1000)) {
pr_err("%s: Prepare MII write: MII/MDIO busy\n", __func__);
return -1;
}
/* Write operation */
tmp = GMAC_MII_DATA_WRITE_CMD | (value & 0xffff);
tmp |= ((phyaddr << GMAC_MII_PHY_ADDR_SHIFT) |
(reg << GMAC_MII_PHY_REG_SHIFT));
debug("MII write cmd 0x%x, phy 0x%x, reg 0x%x, data 0x%x\n",
tmp, phyaddr, reg, value);
writel(tmp, GMAC_MII_DATA_ADDR);
if (gmac_mii_busywait(1000)) {
pr_err("%s: MII write failure: MII/MDIO busy\n", __func__);
return -1;
}
return 0;
}
void gmac_init_reset(void)
{
debug("%s enter\n", __func__);
/* set command config reg CC_SR */
reg32_set_bits(UNIMAC0_CMD_CFG_ADDR, CC_SR);
udelay(GMAC_RESET_DELAY);
}
void gmac_clear_reset(void)
{
debug("%s enter\n", __func__);
/* clear command config reg CC_SR */
reg32_clear_bits(UNIMAC0_CMD_CFG_ADDR, CC_SR);
udelay(GMAC_RESET_DELAY);
}
static void gmac_enable_local(bool en)
{
uint32_t cmdcfg;
debug("%s enter\n", __func__);
/* read command config reg */
cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
/* put mac in reset */
gmac_init_reset();
cmdcfg |= CC_SR;
/* first deassert rx_ena and tx_ena while in reset */
cmdcfg &= ~(CC_RE | CC_TE);
/* write command config reg */
writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
/* bring mac out of reset */
gmac_clear_reset();
/* if not enable exit now */
if (!en)
return;
/* enable the mac transmit and receive paths now */
udelay(2);
cmdcfg &= ~CC_SR;
cmdcfg |= (CC_RE | CC_TE);
/* assert rx_ena and tx_ena when out of reset to enable the mac */
writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
return;
}
int gmac_enable(void)
{
gmac_enable_local(1);
/* clear interrupts */
writel(I_INTMASK, GMAC0_INT_STATUS_ADDR);
return 0;
}
int gmac_disable(void)
{
gmac_enable_local(0);
return 0;
}
int gmac_set_speed(int speed, int duplex)
{
uint32_t cmdcfg;
uint32_t hd_ena;
uint32_t speed_cfg;
hd_ena = duplex ? 0 : CC_HD;
if (speed == 1000) {
speed_cfg = 2;
} else if (speed == 100) {
speed_cfg = 1;
} else if (speed == 10) {
speed_cfg = 0;
} else {
pr_err("%s: Invalid GMAC speed(%d)!\n", __func__, speed);
return -1;
}
cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
cmdcfg &= ~(CC_ES_MASK | CC_HD);
cmdcfg |= ((speed_cfg << CC_ES_SHIFT) | hd_ena);
printf("Change GMAC speed to %dMB\n", speed);
debug("GMAC speed cfg 0x%x\n", cmdcfg);
writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
return 0;
}
int gmac_set_mac_addr(unsigned char *mac)
{
/* set our local address */
debug("GMAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
writel(htonl(*(uint32_t *)mac), UNIMAC0_MAC_MSB_ADDR);
writew(htons(*(uint32_t *)&mac[4]), UNIMAC0_MAC_LSB_ADDR);
return 0;
}
int gmac_mac_init(struct eth_device *dev)
{
struct eth_info *eth = (struct eth_info *)(dev->priv);
struct eth_dma *dma = &(eth->dma);
uint32_t tmp;
uint32_t cmdcfg;
int chipid;
debug("%s enter\n", __func__);
/* Always use GMAC0 */
printf("Using GMAC%d\n", 0);
/* Reset AMAC0 core */
writel(0, AMAC0_IDM_RESET_ADDR);
tmp = readl(AMAC0_IO_CTRL_DIRECT_ADDR);
/* Set clock */
tmp &= ~(1 << AMAC0_IO_CTRL_CLK_250_SEL_SHIFT);
tmp |= (1 << AMAC0_IO_CTRL_GMII_MODE_SHIFT);
/* Set Tx clock */
tmp &= ~(1 << AMAC0_IO_CTRL_DEST_SYNC_MODE_EN_SHIFT);
writel(tmp, AMAC0_IO_CTRL_DIRECT_ADDR);
/* reset gmac */
/*
* As AMAC is just reset, NO need?
* set eth_data into loopback mode to ensure no rx traffic
* gmac_loopback(eth_data, TRUE);
* ET_TRACE(("%s gmac loopback\n", __func__));
* udelay(1);
*/
cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
cmdcfg &= ~(CC_TE | CC_RE | CC_RPI | CC_TAI | CC_HD | CC_ML |
CC_CFE | CC_RL | CC_RED | CC_PE | CC_TPI |
CC_PAD_EN | CC_PF);
cmdcfg |= (CC_PROM | CC_NLC | CC_CFE);
/* put mac in reset */
gmac_init_reset();
writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
gmac_clear_reset();
/* enable clear MIB on read */
reg32_set_bits(GMAC0_DEV_CTRL_ADDR, DC_MROR);
/* PHY: set smi_master to drive mdc_clk */
reg32_set_bits(GMAC0_PHY_CTRL_ADDR, PC_MTE);
/* clear persistent sw intstatus */
writel(0, GMAC0_INT_STATUS_ADDR);
if (dma_init(dma) < 0) {
pr_err("%s: GMAC dma_init failed\n", __func__);
goto err_exit;
}
chipid = CHIPID;
printf("%s: Chip ID: 0x%x\n", __func__, chipid);
/* set switch bypass mode */
tmp = readl(SWITCH_GLOBAL_CONFIG_ADDR);
tmp |= (1 << CDRU_SWITCH_BYPASS_SWITCH_SHIFT);
/* Switch mode */
/* tmp &= ~(1 << CDRU_SWITCH_BYPASS_SWITCH_SHIFT); */
writel(tmp, SWITCH_GLOBAL_CONFIG_ADDR);
tmp = readl(CRMU_CHIP_IO_PAD_CONTROL_ADDR);
tmp &= ~(1 << CDRU_IOMUX_FORCE_PAD_IN_SHIFT);
writel(tmp, CRMU_CHIP_IO_PAD_CONTROL_ADDR);
/* Set MDIO to internal GPHY */
tmp = readl(GMAC_MII_CTRL_ADDR);
/* Select internal MDC/MDIO bus*/
tmp &= ~(1 << GMAC_MII_CTRL_BYP_SHIFT);
/* select MDC/MDIO connecting to on-chip internal PHYs */
tmp &= ~(1 << GMAC_MII_CTRL_EXT_SHIFT);
/*
* give bit[6:0](MDCDIV) with required divisor to set
* the MDC clock frequency, 66MHZ/0x1A=2.5MHZ
*/
tmp |= 0x1A;
writel(tmp, GMAC_MII_CTRL_ADDR);
if (gmac_mii_busywait(1000)) {
pr_err("%s: Configure MDIO: MII/MDIO busy\n", __func__);
goto err_exit;
}
/* Configure GMAC0 */
/* enable one rx interrupt per received frame */
writel(1 << GMAC0_IRL_FRAMECOUNT_SHIFT, GMAC0_INTR_RECV_LAZY_ADDR);
/* read command config reg */
cmdcfg = readl(UNIMAC0_CMD_CFG_ADDR);
/* enable 802.3x tx flow control (honor received PAUSE frames) */
cmdcfg &= ~CC_RPI;
/* enable promiscuous mode */
cmdcfg |= CC_PROM;
/* Disable loopback mode */
cmdcfg &= ~CC_ML;
/* set the speed */
cmdcfg &= ~(CC_ES_MASK | CC_HD);
/* Set to 1Gbps and full duplex by default */
cmdcfg |= (2 << CC_ES_SHIFT);
/* put mac in reset */
gmac_init_reset();
/* write register */
writel(cmdcfg, UNIMAC0_CMD_CFG_ADDR);
/* bring mac out of reset */
gmac_clear_reset();
/* set max frame lengths; account for possible vlan tag */
writel(PKTSIZE + 32, UNIMAC0_FRM_LENGTH_ADDR);
return 0;
err_exit:
dma_deinit(dma);
return -1;
}
int gmac_add(struct eth_device *dev)
{
struct eth_info *eth = (struct eth_info *)(dev->priv);
struct eth_dma *dma = &(eth->dma);
void *tmp;
/*
* Desc has to be 16-byte aligned. But for dcache flush it must be
* aligned to ARCH_DMA_MINALIGN.
*/
tmp = memalign(ARCH_DMA_MINALIGN, DESCP_SIZE_ALIGNED * TX_BUF_NUM);
if (tmp == NULL) {
printf("%s: Failed to allocate TX desc Buffer\n", __func__);
return -1;
}
dma->tx_desc_aligned = (void *)tmp;
debug("TX Descriptor Buffer: %p; length: 0x%x\n",
dma->tx_desc_aligned, DESCP_SIZE_ALIGNED * TX_BUF_NUM);
tmp = memalign(ARCH_DMA_MINALIGN, TX_BUF_SIZE_ALIGNED * TX_BUF_NUM);
if (tmp == NULL) {
printf("%s: Failed to allocate TX Data Buffer\n", __func__);
free(dma->tx_desc_aligned);
return -1;
}
dma->tx_buf = (uint8_t *)tmp;
debug("TX Data Buffer: %p; length: 0x%x\n",
dma->tx_buf, TX_BUF_SIZE_ALIGNED * TX_BUF_NUM);
/* Desc has to be 16-byte aligned */
tmp = memalign(ARCH_DMA_MINALIGN, DESCP_SIZE_ALIGNED * RX_BUF_NUM);
if (tmp == NULL) {
printf("%s: Failed to allocate RX Descriptor\n", __func__);
free(dma->tx_desc_aligned);
free(dma->tx_buf);
return -1;
}
dma->rx_desc_aligned = (void *)tmp;
debug("RX Descriptor Buffer: %p, length: 0x%x\n",
dma->rx_desc_aligned, DESCP_SIZE_ALIGNED * RX_BUF_NUM);
tmp = memalign(ARCH_DMA_MINALIGN, RX_BUF_SIZE_ALIGNED * RX_BUF_NUM);
if (tmp == NULL) {
printf("%s: Failed to allocate RX Data Buffer\n", __func__);
free(dma->tx_desc_aligned);
free(dma->tx_buf);
free(dma->rx_desc_aligned);
return -1;
}
dma->rx_buf = (uint8_t *)tmp;
debug("RX Data Buffer: %p; length: 0x%x\n",
dma->rx_buf, RX_BUF_SIZE_ALIGNED * RX_BUF_NUM);
g_dmactrlflags = 0;
eth->phy_interface = PHY_INTERFACE_MODE_GMII;
dma->tx_packet = gmac_tx_packet;
dma->check_tx_done = gmac_check_tx_done;
dma->check_rx_done = gmac_check_rx_done;
dma->enable_dma = gmac_enable_dma;
dma->disable_dma = gmac_disable_dma;
eth->miiphy_read = gmac_miiphy_read;
eth->miiphy_write = gmac_miiphy_write;
eth->mac_init = gmac_mac_init;
eth->disable_mac = gmac_disable;
eth->enable_mac = gmac_enable;
eth->set_mac_addr = gmac_set_mac_addr;
eth->set_mac_speed = gmac_set_speed;
return 0;
}