u-boot/include/net.h
oliver@schinagl.nl 9f455bcb34 net: cosmetic: Make the MAC address string less magical
In u-boot printf has been extended with the %pM formatter to allow
printing of MAC addresses. However buffers that want to store a MAC
address cannot safely get the size. Add a define for this case so the
string of a MAC address can be reliably obtained.

Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
Acked-by: Joe Hershberger <joe.hershberger@ni.com>
2017-02-07 10:54:32 -06:00

864 lines
25 KiB
C

/*
* LiMon Monitor (LiMon) - Network.
*
* Copyright 1994 - 2000 Neil Russell.
* (See License)
* SPDX-License-Identifier: GPL-2.0
*
* History
* 9/16/00 bor adapted to TQM823L/STK8xxL board, RARP/TFTP boot added
*/
#ifndef __NET_H__
#define __NET_H__
#if defined(CONFIG_8xx)
#include <commproc.h>
#endif /* CONFIG_8xx */
#include <asm/cache.h>
#include <asm/byteorder.h> /* for nton* / ntoh* stuff */
#define DEBUG_LL_STATE 0 /* Link local state machine changes */
#define DEBUG_DEV_PKT 0 /* Packets or info directed to the device */
#define DEBUG_NET_PKT 0 /* Packets on info on the network at large */
#define DEBUG_INT_STATE 0 /* Internal network state changes */
/*
* The number of receive packet buffers, and the required packet buffer
* alignment in memory.
*
*/
#ifdef CONFIG_SYS_RX_ETH_BUFFER
# define PKTBUFSRX CONFIG_SYS_RX_ETH_BUFFER
#else
# define PKTBUFSRX 4
#endif
#define PKTALIGN ARCH_DMA_MINALIGN
/* ARP hardware address length */
#define ARP_HLEN 6
/*
* The size of a MAC address in string form, each digit requires two chars
* and five separator characters to form '00:00:00:00:00:00'.
*/
#define ARP_HLEN_ASCII (ARP_HLEN * 2) + (ARP_HLEN - 1)
/* IPv4 addresses are always 32 bits in size */
struct in_addr {
__be32 s_addr;
};
/**
* An incoming packet handler.
* @param pkt pointer to the application packet
* @param dport destination UDP port
* @param sip source IP address
* @param sport source UDP port
* @param len packet length
*/
typedef void rxhand_f(uchar *pkt, unsigned dport,
struct in_addr sip, unsigned sport,
unsigned len);
/**
* An incoming ICMP packet handler.
* @param type ICMP type
* @param code ICMP code
* @param dport destination UDP port
* @param sip source IP address
* @param sport source UDP port
* @param pkt pointer to the ICMP packet data
* @param len packet length
*/
typedef void rxhand_icmp_f(unsigned type, unsigned code, unsigned dport,
struct in_addr sip, unsigned sport, uchar *pkt, unsigned len);
/*
* A timeout handler. Called after time interval has expired.
*/
typedef void thand_f(void);
enum eth_state_t {
ETH_STATE_INIT,
ETH_STATE_PASSIVE,
ETH_STATE_ACTIVE
};
#ifdef CONFIG_DM_ETH
/**
* struct eth_pdata - Platform data for Ethernet MAC controllers
*
* @iobase: The base address of the hardware registers
* @enetaddr: The Ethernet MAC address that is loaded from EEPROM or env
* @phy_interface: PHY interface to use - see PHY_INTERFACE_MODE_...
* @max_speed: Maximum speed of Ethernet connection supported by MAC
*/
struct eth_pdata {
phys_addr_t iobase;
unsigned char enetaddr[ARP_HLEN];
int phy_interface;
int max_speed;
};
enum eth_recv_flags {
/*
* Check hardware device for new packets (otherwise only return those
* which are already in the memory buffer ready to process)
*/
ETH_RECV_CHECK_DEVICE = 1 << 0,
};
/**
* struct eth_ops - functions of Ethernet MAC controllers
*
* start: Prepare the hardware to send and receive packets
* send: Send the bytes passed in "packet" as a packet on the wire
* recv: Check if the hardware received a packet. If so, set the pointer to the
* packet buffer in the packetp parameter. If not, return an error or 0 to
* indicate that the hardware receive FIFO is empty. If 0 is returned, the
* network stack will not process the empty packet, but free_pkt() will be
* called if supplied
* free_pkt: Give the driver an opportunity to manage its packet buffer memory
* when the network stack is finished processing it. This will only be
* called when no error was returned from recv - optional
* stop: Stop the hardware from looking for packets - may be called even if
* state == PASSIVE
* mcast: Join or leave a multicast group (for TFTP) - optional
* write_hwaddr: Write a MAC address to the hardware (used to pass it to Linux
* on some platforms like ARM). This function expects the
* eth_pdata::enetaddr field to be populated. The method can
* return -ENOSYS to indicate that this is not implemented for
this hardware - optional.
* read_rom_hwaddr: Some devices have a backup of the MAC address stored in a
* ROM on the board. This is how the driver should expose it
* to the network stack. This function should fill in the
* eth_pdata::enetaddr field - optional
*/
struct eth_ops {
int (*start)(struct udevice *dev);
int (*send)(struct udevice *dev, void *packet, int length);
int (*recv)(struct udevice *dev, int flags, uchar **packetp);
int (*free_pkt)(struct udevice *dev, uchar *packet, int length);
void (*stop)(struct udevice *dev);
#ifdef CONFIG_MCAST_TFTP
int (*mcast)(struct udevice *dev, const u8 *enetaddr, int join);
#endif
int (*write_hwaddr)(struct udevice *dev);
int (*read_rom_hwaddr)(struct udevice *dev);
};
#define eth_get_ops(dev) ((struct eth_ops *)(dev)->driver->ops)
struct udevice *eth_get_dev(void); /* get the current device */
/*
* The devname can be either an exact name given by the driver or device tree
* or it can be an alias of the form "eth%d"
*/
struct udevice *eth_get_dev_by_name(const char *devname);
unsigned char *eth_get_ethaddr(void); /* get the current device MAC */
/* Used only when NetConsole is enabled */
int eth_is_active(struct udevice *dev); /* Test device for active state */
int eth_init_state_only(void); /* Set active state */
void eth_halt_state_only(void); /* Set passive state */
#endif
#ifndef CONFIG_DM_ETH
struct eth_device {
char name[16];
unsigned char enetaddr[ARP_HLEN];
phys_addr_t iobase;
int state;
int (*init)(struct eth_device *, bd_t *);
int (*send)(struct eth_device *, void *packet, int length);
int (*recv)(struct eth_device *);
void (*halt)(struct eth_device *);
#ifdef CONFIG_MCAST_TFTP
int (*mcast)(struct eth_device *, const u8 *enetaddr, u8 set);
#endif
int (*write_hwaddr)(struct eth_device *);
struct eth_device *next;
int index;
void *priv;
};
int eth_register(struct eth_device *dev);/* Register network device */
int eth_unregister(struct eth_device *dev);/* Remove network device */
extern struct eth_device *eth_current;
static __always_inline struct eth_device *eth_get_dev(void)
{
return eth_current;
}
struct eth_device *eth_get_dev_by_name(const char *devname);
struct eth_device *eth_get_dev_by_index(int index); /* get dev @ index */
/* get the current device MAC */
static inline unsigned char *eth_get_ethaddr(void)
{
if (eth_current)
return eth_current->enetaddr;
return NULL;
}
/* Used only when NetConsole is enabled */
int eth_is_active(struct eth_device *dev); /* Test device for active state */
/* Set active state */
static __always_inline int eth_init_state_only(void)
{
eth_get_dev()->state = ETH_STATE_ACTIVE;
return 0;
}
/* Set passive state */
static __always_inline void eth_halt_state_only(void)
{
eth_get_dev()->state = ETH_STATE_PASSIVE;
}
/*
* Set the hardware address for an ethernet interface based on 'eth%daddr'
* environment variable (or just 'ethaddr' if eth_number is 0).
* Args:
* base_name - base name for device (normally "eth")
* eth_number - value of %d (0 for first device of this type)
* Returns:
* 0 is success, non-zero is error status from driver.
*/
int eth_write_hwaddr(struct eth_device *dev, const char *base_name,
int eth_number);
int usb_eth_initialize(bd_t *bi);
#endif
int eth_initialize(void); /* Initialize network subsystem */
void eth_try_another(int first_restart); /* Change the device */
void eth_set_current(void); /* set nterface to ethcur var */
int eth_get_dev_index(void); /* get the device index */
void eth_parse_enetaddr(const char *addr, uchar *enetaddr);
int eth_getenv_enetaddr(const char *name, uchar *enetaddr);
int eth_setenv_enetaddr(const char *name, const uchar *enetaddr);
/**
* eth_setenv_enetaddr_by_index() - set the MAC address environment variable
*
* This sets up an environment variable with the given MAC address (@enetaddr).
* The environment variable to be set is defined by <@base_name><@index>addr.
* If @index is 0 it is omitted. For common Ethernet this means ethaddr,
* eth1addr, etc.
*
* @base_name: Base name for variable, typically "eth"
* @index: Index of interface being updated (>=0)
* @enetaddr: Pointer to MAC address to put into the variable
* @return 0 if OK, other value on error
*/
int eth_setenv_enetaddr_by_index(const char *base_name, int index,
uchar *enetaddr);
/*
* Initialize USB ethernet device with CONFIG_DM_ETH
* Returns:
* 0 is success, non-zero is error status.
*/
int usb_ether_init(void);
/*
* Get the hardware address for an ethernet interface .
* Args:
* base_name - base name for device (normally "eth")
* index - device index number (0 for first)
* enetaddr - returns 6 byte hardware address
* Returns:
* Return true if the address is valid.
*/
int eth_getenv_enetaddr_by_index(const char *base_name, int index,
uchar *enetaddr);
int eth_init(void); /* Initialize the device */
int eth_send(void *packet, int length); /* Send a packet */
#if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
int eth_receive(void *packet, int length); /* Receive a packet*/
extern void (*push_packet)(void *packet, int length);
#endif
int eth_rx(void); /* Check for received packets */
void eth_halt(void); /* stop SCC */
const char *eth_get_name(void); /* get name of current device */
#ifdef CONFIG_MCAST_TFTP
int eth_mcast_join(struct in_addr mcast_addr, int join);
u32 ether_crc(size_t len, unsigned char const *p);
#endif
/**********************************************************************/
/*
* Protocol headers.
*/
/*
* Ethernet header
*/
struct ethernet_hdr {
u8 et_dest[ARP_HLEN]; /* Destination node */
u8 et_src[ARP_HLEN]; /* Source node */
u16 et_protlen; /* Protocol or length */
};
/* Ethernet header size */
#define ETHER_HDR_SIZE (sizeof(struct ethernet_hdr))
#define ETH_FCS_LEN 4 /* Octets in the FCS */
struct e802_hdr {
u8 et_dest[ARP_HLEN]; /* Destination node */
u8 et_src[ARP_HLEN]; /* Source node */
u16 et_protlen; /* Protocol or length */
u8 et_dsap; /* 802 DSAP */
u8 et_ssap; /* 802 SSAP */
u8 et_ctl; /* 802 control */
u8 et_snap1; /* SNAP */
u8 et_snap2;
u8 et_snap3;
u16 et_prot; /* 802 protocol */
};
/* 802 + SNAP + ethernet header size */
#define E802_HDR_SIZE (sizeof(struct e802_hdr))
/*
* Virtual LAN Ethernet header
*/
struct vlan_ethernet_hdr {
u8 vet_dest[ARP_HLEN]; /* Destination node */
u8 vet_src[ARP_HLEN]; /* Source node */
u16 vet_vlan_type; /* PROT_VLAN */
u16 vet_tag; /* TAG of VLAN */
u16 vet_type; /* protocol type */
};
/* VLAN Ethernet header size */
#define VLAN_ETHER_HDR_SIZE (sizeof(struct vlan_ethernet_hdr))
#define PROT_IP 0x0800 /* IP protocol */
#define PROT_ARP 0x0806 /* IP ARP protocol */
#define PROT_RARP 0x8035 /* IP ARP protocol */
#define PROT_VLAN 0x8100 /* IEEE 802.1q protocol */
#define PROT_IPV6 0x86dd /* IPv6 over bluebook */
#define PROT_PPP_SES 0x8864 /* PPPoE session messages */
#define IPPROTO_ICMP 1 /* Internet Control Message Protocol */
#define IPPROTO_UDP 17 /* User Datagram Protocol */
/*
* Internet Protocol (IP) header.
*/
struct ip_hdr {
u8 ip_hl_v; /* header length and version */
u8 ip_tos; /* type of service */
u16 ip_len; /* total length */
u16 ip_id; /* identification */
u16 ip_off; /* fragment offset field */
u8 ip_ttl; /* time to live */
u8 ip_p; /* protocol */
u16 ip_sum; /* checksum */
struct in_addr ip_src; /* Source IP address */
struct in_addr ip_dst; /* Destination IP address */
};
#define IP_OFFS 0x1fff /* ip offset *= 8 */
#define IP_FLAGS 0xe000 /* first 3 bits */
#define IP_FLAGS_RES 0x8000 /* reserved */
#define IP_FLAGS_DFRAG 0x4000 /* don't fragments */
#define IP_FLAGS_MFRAG 0x2000 /* more fragments */
#define IP_HDR_SIZE (sizeof(struct ip_hdr))
/*
* Internet Protocol (IP) + UDP header.
*/
struct ip_udp_hdr {
u8 ip_hl_v; /* header length and version */
u8 ip_tos; /* type of service */
u16 ip_len; /* total length */
u16 ip_id; /* identification */
u16 ip_off; /* fragment offset field */
u8 ip_ttl; /* time to live */
u8 ip_p; /* protocol */
u16 ip_sum; /* checksum */
struct in_addr ip_src; /* Source IP address */
struct in_addr ip_dst; /* Destination IP address */
u16 udp_src; /* UDP source port */
u16 udp_dst; /* UDP destination port */
u16 udp_len; /* Length of UDP packet */
u16 udp_xsum; /* Checksum */
};
#define IP_UDP_HDR_SIZE (sizeof(struct ip_udp_hdr))
#define UDP_HDR_SIZE (IP_UDP_HDR_SIZE - IP_HDR_SIZE)
/*
* Address Resolution Protocol (ARP) header.
*/
struct arp_hdr {
u16 ar_hrd; /* Format of hardware address */
# define ARP_ETHER 1 /* Ethernet hardware address */
u16 ar_pro; /* Format of protocol address */
u8 ar_hln; /* Length of hardware address */
u8 ar_pln; /* Length of protocol address */
# define ARP_PLEN 4
u16 ar_op; /* Operation */
# define ARPOP_REQUEST 1 /* Request to resolve address */
# define ARPOP_REPLY 2 /* Response to previous request */
# define RARPOP_REQUEST 3 /* Request to resolve address */
# define RARPOP_REPLY 4 /* Response to previous request */
/*
* The remaining fields are variable in size, according to
* the sizes above, and are defined as appropriate for
* specific hardware/protocol combinations.
*/
u8 ar_data[0];
#define ar_sha ar_data[0]
#define ar_spa ar_data[ARP_HLEN]
#define ar_tha ar_data[ARP_HLEN + ARP_PLEN]
#define ar_tpa ar_data[ARP_HLEN + ARP_PLEN + ARP_HLEN]
#if 0
u8 ar_sha[]; /* Sender hardware address */
u8 ar_spa[]; /* Sender protocol address */
u8 ar_tha[]; /* Target hardware address */
u8 ar_tpa[]; /* Target protocol address */
#endif /* 0 */
};
#define ARP_HDR_SIZE (8+20) /* Size assuming ethernet */
/*
* ICMP stuff (just enough to handle (host) redirect messages)
*/
#define ICMP_ECHO_REPLY 0 /* Echo reply */
#define ICMP_NOT_REACH 3 /* Detination unreachable */
#define ICMP_REDIRECT 5 /* Redirect (change route) */
#define ICMP_ECHO_REQUEST 8 /* Echo request */
/* Codes for REDIRECT. */
#define ICMP_REDIR_NET 0 /* Redirect Net */
#define ICMP_REDIR_HOST 1 /* Redirect Host */
/* Codes for NOT_REACH */
#define ICMP_NOT_REACH_PORT 3 /* Port unreachable */
struct icmp_hdr {
u8 type;
u8 code;
u16 checksum;
union {
struct {
u16 id;
u16 sequence;
} echo;
u32 gateway;
struct {
u16 unused;
u16 mtu;
} frag;
u8 data[0];
} un;
};
#define ICMP_HDR_SIZE (sizeof(struct icmp_hdr))
#define IP_ICMP_HDR_SIZE (IP_HDR_SIZE + ICMP_HDR_SIZE)
/*
* Maximum packet size; used to allocate packet storage. Use
* the maxium Ethernet frame size as specified by the Ethernet
* standard including the 802.1Q tag (VLAN tagging).
* maximum packet size = 1522
* maximum packet size and multiple of 32 bytes = 1536
*/
#define PKTSIZE 1522
#define PKTSIZE_ALIGN 1536
/*
* Maximum receive ring size; that is, the number of packets
* we can buffer before overflow happens. Basically, this just
* needs to be enough to prevent a packet being discarded while
* we are processing the previous one.
*/
#define RINGSZ 4
#define RINGSZ_LOG2 2
/**********************************************************************/
/*
* Globals.
*
* Note:
*
* All variables of type struct in_addr are stored in NETWORK byte order
* (big endian).
*/
/* net.c */
/** BOOTP EXTENTIONS **/
extern struct in_addr net_gateway; /* Our gateway IP address */
extern struct in_addr net_netmask; /* Our subnet mask (0 = unknown) */
/* Our Domain Name Server (0 = unknown) */
extern struct in_addr net_dns_server;
#if defined(CONFIG_BOOTP_DNS2)
/* Our 2nd Domain Name Server (0 = unknown) */
extern struct in_addr net_dns_server2;
#endif
extern char net_nis_domain[32]; /* Our IS domain */
extern char net_hostname[32]; /* Our hostname */
extern char net_root_path[64]; /* Our root path */
/** END OF BOOTP EXTENTIONS **/
extern u8 net_ethaddr[ARP_HLEN]; /* Our ethernet address */
extern u8 net_server_ethaddr[ARP_HLEN]; /* Boot server enet address */
extern struct in_addr net_ip; /* Our IP addr (0 = unknown) */
extern struct in_addr net_server_ip; /* Server IP addr (0 = unknown) */
extern uchar *net_tx_packet; /* THE transmit packet */
extern uchar *net_rx_packets[PKTBUFSRX]; /* Receive packets */
extern uchar *net_rx_packet; /* Current receive packet */
extern int net_rx_packet_len; /* Current rx packet length */
extern const u8 net_bcast_ethaddr[ARP_HLEN]; /* Ethernet broadcast address */
extern const u8 net_null_ethaddr[ARP_HLEN];
#define VLAN_NONE 4095 /* untagged */
#define VLAN_IDMASK 0x0fff /* mask of valid vlan id */
extern ushort net_our_vlan; /* Our VLAN */
extern ushort net_native_vlan; /* Our Native VLAN */
extern int net_restart_wrap; /* Tried all network devices */
enum proto_t {
BOOTP, RARP, ARP, TFTPGET, DHCP, PING, DNS, NFS, CDP, NETCONS, SNTP,
TFTPSRV, TFTPPUT, LINKLOCAL
};
extern char net_boot_file_name[1024];/* Boot File name */
/* The actual transferred size of the bootfile (in bytes) */
extern u32 net_boot_file_size;
/* Boot file size in blocks as reported by the DHCP server */
extern u32 net_boot_file_expected_size_in_blocks;
#if defined(CONFIG_CMD_DNS)
extern char *net_dns_resolve; /* The host to resolve */
extern char *net_dns_env_var; /* the env var to put the ip into */
#endif
#if defined(CONFIG_CMD_PING)
extern struct in_addr net_ping_ip; /* the ip address to ping */
#endif
#if defined(CONFIG_CMD_CDP)
/* when CDP completes these hold the return values */
extern ushort cdp_native_vlan; /* CDP returned native VLAN */
extern ushort cdp_appliance_vlan; /* CDP returned appliance VLAN */
/*
* Check for a CDP packet by examining the received MAC address field
*/
static inline int is_cdp_packet(const uchar *ethaddr)
{
extern const u8 net_cdp_ethaddr[ARP_HLEN];
return memcmp(ethaddr, net_cdp_ethaddr, ARP_HLEN) == 0;
}
#endif
#if defined(CONFIG_CMD_SNTP)
extern struct in_addr net_ntp_server; /* the ip address to NTP */
extern int net_ntp_time_offset; /* offset time from UTC */
#endif
#if defined(CONFIG_MCAST_TFTP)
extern struct in_addr net_mcast_addr;
#endif
/* Initialize the network adapter */
void net_init(void);
int net_loop(enum proto_t);
/* Load failed. Start again. */
int net_start_again(void);
/* Get size of the ethernet header when we send */
int net_eth_hdr_size(void);
/* Set ethernet header; returns the size of the header */
int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot);
int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot);
/* Set IP header */
void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source);
void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport,
int sport, int len);
/**
* compute_ip_checksum() - Compute IP checksum
*
* @addr: Address to check (must be 16-bit aligned)
* @nbytes: Number of bytes to check (normally a multiple of 2)
* @return 16-bit IP checksum
*/
unsigned compute_ip_checksum(const void *addr, unsigned nbytes);
/**
* add_ip_checksums() - add two IP checksums
*
* @offset: Offset of first sum (if odd we do a byte-swap)
* @sum: First checksum
* @new_sum: New checksum to add
* @return updated 16-bit IP checksum
*/
unsigned add_ip_checksums(unsigned offset, unsigned sum, unsigned new_sum);
/**
* ip_checksum_ok() - check if a checksum is correct
*
* This works by making sure the checksum sums to 0
*
* @addr: Address to check (must be 16-bit aligned)
* @nbytes: Number of bytes to check (normally a multiple of 2)
* @return true if the checksum matches, false if not
*/
int ip_checksum_ok(const void *addr, unsigned nbytes);
/* Callbacks */
rxhand_f *net_get_udp_handler(void); /* Get UDP RX packet handler */
void net_set_udp_handler(rxhand_f *); /* Set UDP RX packet handler */
rxhand_f *net_get_arp_handler(void); /* Get ARP RX packet handler */
void net_set_arp_handler(rxhand_f *); /* Set ARP RX packet handler */
void net_set_icmp_handler(rxhand_icmp_f *f); /* Set ICMP RX handler */
void net_set_timeout_handler(ulong, thand_f *);/* Set timeout handler */
/* Network loop state */
enum net_loop_state {
NETLOOP_CONTINUE,
NETLOOP_RESTART,
NETLOOP_SUCCESS,
NETLOOP_FAIL
};
extern enum net_loop_state net_state;
static inline void net_set_state(enum net_loop_state state)
{
debug_cond(DEBUG_INT_STATE, "--- NetState set to %d\n", state);
net_state = state;
}
/* Transmit a packet */
static inline void net_send_packet(uchar *pkt, int len)
{
/* Currently no way to return errors from eth_send() */
(void) eth_send(pkt, len);
}
/*
* Transmit "net_tx_packet" as UDP packet, performing ARP request if needed
* (ether will be populated)
*
* @param ether Raw packet buffer
* @param dest IP address to send the datagram to
* @param dport Destination UDP port
* @param sport Source UDP port
* @param payload_len Length of data after the UDP header
*/
int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport,
int sport, int payload_len);
/* Processes a received packet */
void net_process_received_packet(uchar *in_packet, int len);
#ifdef CONFIG_NETCONSOLE
void nc_start(void);
int nc_input_packet(uchar *pkt, struct in_addr src_ip, unsigned dest_port,
unsigned src_port, unsigned len);
#endif
static __always_inline int eth_is_on_demand_init(void)
{
#ifdef CONFIG_NETCONSOLE
extern enum proto_t net_loop_last_protocol;
return net_loop_last_protocol != NETCONS;
#else
return 1;
#endif
}
static inline void eth_set_last_protocol(int protocol)
{
#ifdef CONFIG_NETCONSOLE
extern enum proto_t net_loop_last_protocol;
net_loop_last_protocol = protocol;
#endif
}
/*
* Check if autoload is enabled. If so, use either NFS or TFTP to download
* the boot file.
*/
void net_auto_load(void);
/*
* The following functions are a bit ugly, but necessary to deal with
* alignment restrictions on ARM.
*
* We're using inline functions, which had the smallest memory
* footprint in our tests.
*/
/* return IP *in network byteorder* */
static inline struct in_addr net_read_ip(void *from)
{
struct in_addr ip;
memcpy((void *)&ip, (void *)from, sizeof(ip));
return ip;
}
/* return ulong *in network byteorder* */
static inline u32 net_read_u32(u32 *from)
{
u32 l;
memcpy((void *)&l, (void *)from, sizeof(l));
return l;
}
/* write IP *in network byteorder* */
static inline void net_write_ip(void *to, struct in_addr ip)
{
memcpy(to, (void *)&ip, sizeof(ip));
}
/* copy IP */
static inline void net_copy_ip(void *to, void *from)
{
memcpy((void *)to, from, sizeof(struct in_addr));
}
/* copy ulong */
static inline void net_copy_u32(u32 *to, u32 *from)
{
memcpy((void *)to, (void *)from, sizeof(u32));
}
/**
* is_zero_ethaddr - Determine if give Ethernet address is all zeros.
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is all zeroes.
*/
static inline int is_zero_ethaddr(const u8 *addr)
{
return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]);
}
/**
* is_multicast_ethaddr - Determine if the Ethernet address is a multicast.
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is a multicast address.
* By definition the broadcast address is also a multicast address.
*/
static inline int is_multicast_ethaddr(const u8 *addr)
{
return 0x01 & addr[0];
}
/*
* is_broadcast_ethaddr - Determine if the Ethernet address is broadcast
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Return true if the address is the broadcast address.
*/
static inline int is_broadcast_ethaddr(const u8 *addr)
{
return (addr[0] & addr[1] & addr[2] & addr[3] & addr[4] & addr[5]) ==
0xff;
}
/*
* is_valid_ethaddr - Determine if the given Ethernet address is valid
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not
* a multicast address, and is not FF:FF:FF:FF:FF:FF.
*
* Return true if the address is valid.
*/
static inline int is_valid_ethaddr(const u8 *addr)
{
/* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to
* explicitly check for it here. */
return !is_multicast_ethaddr(addr) && !is_zero_ethaddr(addr);
}
/**
* net_random_ethaddr - Generate software assigned random Ethernet address
* @addr: Pointer to a six-byte array containing the Ethernet address
*
* Generate a random Ethernet address (MAC) that is not multicast
* and has the local assigned bit set.
*/
static inline void net_random_ethaddr(uchar *addr)
{
int i;
unsigned int seed = get_timer(0);
for (i = 0; i < 6; i++)
addr[i] = rand_r(&seed);
addr[0] &= 0xfe; /* clear multicast bit */
addr[0] |= 0x02; /* set local assignment bit (IEEE802) */
}
/* Convert an IP address to a string */
void ip_to_string(struct in_addr x, char *s);
/* Convert a string to ip address */
struct in_addr string_to_ip(const char *s);
/* Convert a VLAN id to a string */
void vlan_to_string(ushort x, char *s);
/* Convert a string to a vlan id */
ushort string_to_vlan(const char *s);
/* read a VLAN id from an environment variable */
ushort getenv_vlan(char *);
/* copy a filename (allow for "..." notation, limit length) */
void copy_filename(char *dst, const char *src, int size);
/* get a random source port */
unsigned int random_port(void);
/**
* update_tftp - Update firmware over TFTP (via DFU)
*
* This function updates board's firmware via TFTP
*
* @param addr - memory address where data is stored
* @param interface - the DFU medium name - e.g. "mmc"
* @param devstring - the DFU medium number - e.g. "1"
*
* @return - 0 on success, other value on failure
*/
int update_tftp(ulong addr, char *interface, char *devstring);
/**********************************************************************/
#endif /* __NET_H__ */