5b8031ccb4
In a number of places we had wordings of the GPL (or LGPL in a few cases) license text that were split in such a way that it wasn't caught previously. Convert all of these to the correct SPDX-License-Identifier tag. Signed-off-by: Tom Rini <trini@konsulko.com>
772 lines
20 KiB
C
772 lines
20 KiB
C
/*
|
|
* Copyright 2009-2015 Freescale Semiconductor, Inc. and others
|
|
*
|
|
* Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
|
|
* Ported to U-Boot by Stefan Agner
|
|
* Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
|
|
* Jason ported to M54418TWR and MVFA5.
|
|
* Authors: Stefan Agner <stefan.agner@toradex.com>
|
|
* Bill Pringlemeir <bpringlemeir@nbsps.com>
|
|
* Shaohui Xie <b21989@freescale.com>
|
|
* Jason Jin <Jason.jin@freescale.com>
|
|
*
|
|
* Based on original driver mpc5121_nfc.c.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0+
|
|
*
|
|
* Limitations:
|
|
* - Untested on MPC5125 and M54418.
|
|
* - DMA and pipelining not used.
|
|
* - 2K pages or less.
|
|
* - HW ECC: Only 2K page with 64+ OOB.
|
|
* - HW ECC: Only 24 and 32-bit error correction implemented.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <malloc.h>
|
|
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
|
|
#include <nand.h>
|
|
#include <errno.h>
|
|
#include <asm/io.h>
|
|
|
|
/* Register Offsets */
|
|
#define NFC_FLASH_CMD1 0x3F00
|
|
#define NFC_FLASH_CMD2 0x3F04
|
|
#define NFC_COL_ADDR 0x3F08
|
|
#define NFC_ROW_ADDR 0x3F0c
|
|
#define NFC_ROW_ADDR_INC 0x3F14
|
|
#define NFC_FLASH_STATUS1 0x3F18
|
|
#define NFC_FLASH_STATUS2 0x3F1c
|
|
#define NFC_CACHE_SWAP 0x3F28
|
|
#define NFC_SECTOR_SIZE 0x3F2c
|
|
#define NFC_FLASH_CONFIG 0x3F30
|
|
#define NFC_IRQ_STATUS 0x3F38
|
|
|
|
/* Addresses for NFC MAIN RAM BUFFER areas */
|
|
#define NFC_MAIN_AREA(n) ((n) * 0x1000)
|
|
|
|
#define PAGE_2K 0x0800
|
|
#define OOB_64 0x0040
|
|
#define OOB_MAX 0x0100
|
|
|
|
/*
|
|
* NFC_CMD2[CODE] values. See section:
|
|
* - 31.4.7 Flash Command Code Description, Vybrid manual
|
|
* - 23.8.6 Flash Command Sequencer, MPC5125 manual
|
|
*
|
|
* Briefly these are bitmasks of controller cycles.
|
|
*/
|
|
#define READ_PAGE_CMD_CODE 0x7EE0
|
|
#define READ_ONFI_PARAM_CMD_CODE 0x4860
|
|
#define PROGRAM_PAGE_CMD_CODE 0x7FC0
|
|
#define ERASE_CMD_CODE 0x4EC0
|
|
#define READ_ID_CMD_CODE 0x4804
|
|
#define RESET_CMD_CODE 0x4040
|
|
#define STATUS_READ_CMD_CODE 0x4068
|
|
|
|
/* NFC ECC mode define */
|
|
#define ECC_BYPASS 0
|
|
#define ECC_45_BYTE 6
|
|
#define ECC_60_BYTE 7
|
|
|
|
/*** Register Mask and bit definitions */
|
|
|
|
/* NFC_FLASH_CMD1 Field */
|
|
#define CMD_BYTE2_MASK 0xFF000000
|
|
#define CMD_BYTE2_SHIFT 24
|
|
|
|
/* NFC_FLASH_CM2 Field */
|
|
#define CMD_BYTE1_MASK 0xFF000000
|
|
#define CMD_BYTE1_SHIFT 24
|
|
#define CMD_CODE_MASK 0x00FFFF00
|
|
#define CMD_CODE_SHIFT 8
|
|
#define BUFNO_MASK 0x00000006
|
|
#define BUFNO_SHIFT 1
|
|
#define START_BIT (1<<0)
|
|
|
|
/* NFC_COL_ADDR Field */
|
|
#define COL_ADDR_MASK 0x0000FFFF
|
|
#define COL_ADDR_SHIFT 0
|
|
|
|
/* NFC_ROW_ADDR Field */
|
|
#define ROW_ADDR_MASK 0x00FFFFFF
|
|
#define ROW_ADDR_SHIFT 0
|
|
#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000
|
|
#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28
|
|
#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000
|
|
#define ROW_ADDR_CHIP_SEL_SHIFT 24
|
|
|
|
/* NFC_FLASH_STATUS2 Field */
|
|
#define STATUS_BYTE1_MASK 0x000000FF
|
|
|
|
/* NFC_FLASH_CONFIG Field */
|
|
#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000
|
|
#define CONFIG_ECC_SRAM_ADDR_SHIFT 22
|
|
#define CONFIG_ECC_SRAM_REQ_BIT (1<<21)
|
|
#define CONFIG_DMA_REQ_BIT (1<<20)
|
|
#define CONFIG_ECC_MODE_MASK 0x000E0000
|
|
#define CONFIG_ECC_MODE_SHIFT 17
|
|
#define CONFIG_FAST_FLASH_BIT (1<<16)
|
|
#define CONFIG_16BIT (1<<7)
|
|
#define CONFIG_BOOT_MODE_BIT (1<<6)
|
|
#define CONFIG_ADDR_AUTO_INCR_BIT (1<<5)
|
|
#define CONFIG_BUFNO_AUTO_INCR_BIT (1<<4)
|
|
#define CONFIG_PAGE_CNT_MASK 0xF
|
|
#define CONFIG_PAGE_CNT_SHIFT 0
|
|
|
|
/* NFC_IRQ_STATUS Field */
|
|
#define IDLE_IRQ_BIT (1<<29)
|
|
#define IDLE_EN_BIT (1<<20)
|
|
#define CMD_DONE_CLEAR_BIT (1<<18)
|
|
#define IDLE_CLEAR_BIT (1<<17)
|
|
|
|
#define NFC_TIMEOUT (1000)
|
|
|
|
/*
|
|
* ECC status - seems to consume 8 bytes (double word). The documented
|
|
* status byte is located in the lowest byte of the second word (which is
|
|
* the 4th or 7th byte depending on endianness).
|
|
* Calculate an offset to store the ECC status at the end of the buffer.
|
|
*/
|
|
#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8)
|
|
|
|
#define ECC_STATUS 0x4
|
|
#define ECC_STATUS_MASK 0x80
|
|
#define ECC_STATUS_ERR_COUNT 0x3F
|
|
|
|
enum vf610_nfc_alt_buf {
|
|
ALT_BUF_DATA = 0,
|
|
ALT_BUF_ID = 1,
|
|
ALT_BUF_STAT = 2,
|
|
ALT_BUF_ONFI = 3,
|
|
};
|
|
|
|
struct vf610_nfc {
|
|
struct mtd_info *mtd;
|
|
struct nand_chip chip;
|
|
void __iomem *regs;
|
|
uint buf_offset;
|
|
int write_sz;
|
|
/* Status and ID are in alternate locations. */
|
|
enum vf610_nfc_alt_buf alt_buf;
|
|
};
|
|
|
|
#define mtd_to_nfc(_mtd) \
|
|
(struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv
|
|
|
|
#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
|
|
#define ECC_HW_MODE ECC_45_BYTE
|
|
|
|
static struct nand_ecclayout vf610_nfc_ecc = {
|
|
.eccbytes = 45,
|
|
.eccpos = {19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31,
|
|
32, 33, 34, 35, 36, 37, 38, 39,
|
|
40, 41, 42, 43, 44, 45, 46, 47,
|
|
48, 49, 50, 51, 52, 53, 54, 55,
|
|
56, 57, 58, 59, 60, 61, 62, 63},
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 17} }
|
|
};
|
|
#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
|
|
#define ECC_HW_MODE ECC_60_BYTE
|
|
|
|
static struct nand_ecclayout vf610_nfc_ecc = {
|
|
.eccbytes = 60,
|
|
.eccpos = { 4, 5, 6, 7, 8, 9, 10, 11,
|
|
12, 13, 14, 15, 16, 17, 18, 19,
|
|
20, 21, 22, 23, 24, 25, 26, 27,
|
|
28, 29, 30, 31, 32, 33, 34, 35,
|
|
36, 37, 38, 39, 40, 41, 42, 43,
|
|
44, 45, 46, 47, 48, 49, 50, 51,
|
|
52, 53, 54, 55, 56, 57, 58, 59,
|
|
60, 61, 62, 63 },
|
|
.oobfree = {
|
|
{.offset = 2,
|
|
.length = 2} }
|
|
};
|
|
#endif
|
|
|
|
static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
return readl(nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
writel(val, nfc->regs + reg);
|
|
}
|
|
|
|
static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
|
|
{
|
|
vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
|
|
}
|
|
|
|
static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
|
|
u32 mask, u32 shift, u32 val)
|
|
{
|
|
vf610_nfc_write(mtd, reg,
|
|
(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
|
|
}
|
|
|
|
static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
|
|
{
|
|
/*
|
|
* Use this accessor for the internal SRAM buffers. On the ARM
|
|
* Freescale Vybrid SoC it's known that the driver can treat
|
|
* the SRAM buffer as if it's memory. Other platform might need
|
|
* to treat the buffers differently.
|
|
*
|
|
* For the time being, use memcpy
|
|
*/
|
|
memcpy(dst, src, n);
|
|
}
|
|
|
|
/* Clear flags for upcoming command */
|
|
static inline void vf610_nfc_clear_status(void __iomem *regbase)
|
|
{
|
|
void __iomem *reg = regbase + NFC_IRQ_STATUS;
|
|
u32 tmp = __raw_readl(reg);
|
|
tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
|
|
__raw_writel(tmp, reg);
|
|
}
|
|
|
|
/* Wait for complete operation */
|
|
static void vf610_nfc_done(struct mtd_info *mtd)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint start;
|
|
|
|
/*
|
|
* Barrier is needed after this write. This write need
|
|
* to be done before reading the next register the first
|
|
* time.
|
|
* vf610_nfc_set implicates such a barrier by using writel
|
|
* to write to the register.
|
|
*/
|
|
vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);
|
|
|
|
start = get_timer(0);
|
|
|
|
while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
|
|
if (get_timer(start) > NFC_TIMEOUT) {
|
|
printf("Timeout while waiting for IDLE.\n");
|
|
return;
|
|
}
|
|
}
|
|
vf610_nfc_clear_status(nfc->regs);
|
|
}
|
|
|
|
static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
|
|
{
|
|
u32 flash_id;
|
|
|
|
if (col < 4) {
|
|
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
|
|
flash_id >>= (3 - col) * 8;
|
|
} else {
|
|
flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
|
|
flash_id >>= 24;
|
|
}
|
|
|
|
return flash_id & 0xff;
|
|
}
|
|
|
|
static u8 vf610_nfc_get_status(struct mtd_info *mtd)
|
|
{
|
|
return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
|
|
}
|
|
|
|
/* Single command */
|
|
static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
|
|
u32 cmd_code)
|
|
{
|
|
void __iomem *reg = regbase + NFC_FLASH_CMD2;
|
|
u32 tmp;
|
|
vf610_nfc_clear_status(regbase);
|
|
|
|
tmp = __raw_readl(reg);
|
|
tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
|
|
tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
|
|
tmp |= cmd_code << CMD_CODE_SHIFT;
|
|
__raw_writel(tmp, reg);
|
|
}
|
|
|
|
/* Two commands */
|
|
static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
|
|
u32 cmd_byte2, u32 cmd_code)
|
|
{
|
|
void __iomem *reg = regbase + NFC_FLASH_CMD1;
|
|
u32 tmp;
|
|
vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);
|
|
|
|
tmp = __raw_readl(reg);
|
|
tmp &= ~CMD_BYTE2_MASK;
|
|
tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
|
|
__raw_writel(tmp, reg);
|
|
}
|
|
|
|
static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
|
|
{
|
|
if (column != -1) {
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
if (nfc->chip.options & NAND_BUSWIDTH_16)
|
|
column = column / 2;
|
|
vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
|
|
COL_ADDR_SHIFT, column);
|
|
}
|
|
if (page != -1)
|
|
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, page);
|
|
}
|
|
|
|
static inline void vf610_nfc_ecc_mode(struct mtd_info *mtd, int ecc_mode)
|
|
{
|
|
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
|
|
CONFIG_ECC_MODE_MASK,
|
|
CONFIG_ECC_MODE_SHIFT, ecc_mode);
|
|
}
|
|
|
|
static inline void vf610_nfc_transfer_size(void __iomem *regbase, int size)
|
|
{
|
|
__raw_writel(size, regbase + NFC_SECTOR_SIZE);
|
|
}
|
|
|
|
/* Send command to NAND chip */
|
|
static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
|
|
int column, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0;
|
|
|
|
nfc->buf_offset = max(column, 0);
|
|
nfc->alt_buf = ALT_BUF_DATA;
|
|
|
|
switch (command) {
|
|
case NAND_CMD_SEQIN:
|
|
/* Use valid column/page from preread... */
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
nfc->buf_offset = 0;
|
|
|
|
/*
|
|
* SEQIN => data => PAGEPROG sequence is done by the controller
|
|
* hence we do not need to issue the command here...
|
|
*/
|
|
return;
|
|
case NAND_CMD_PAGEPROG:
|
|
trfr_sz += nfc->write_sz;
|
|
vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
|
|
command, PROGRAM_PAGE_CMD_CODE);
|
|
break;
|
|
|
|
case NAND_CMD_RESET:
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
|
|
break;
|
|
|
|
case NAND_CMD_READOOB:
|
|
trfr_sz += mtd->oobsize;
|
|
column = mtd->writesize;
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
|
|
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_READ0:
|
|
trfr_sz += mtd->writesize + mtd->oobsize;
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_ecc_mode(mtd, ECC_HW_MODE);
|
|
vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
|
|
NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
break;
|
|
|
|
case NAND_CMD_PARAM:
|
|
nfc->alt_buf = ALT_BUF_ONFI;
|
|
trfr_sz = 3 * sizeof(struct nand_onfi_params);
|
|
vf610_nfc_transfer_size(nfc->regs, trfr_sz);
|
|
vf610_nfc_send_command(nfc->regs, NAND_CMD_PARAM,
|
|
READ_ONFI_PARAM_CMD_CODE);
|
|
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, column);
|
|
vf610_nfc_ecc_mode(mtd, ECC_BYPASS);
|
|
break;
|
|
|
|
case NAND_CMD_ERASE1:
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_commands(nfc->regs, command,
|
|
NAND_CMD_ERASE2, ERASE_CMD_CODE);
|
|
vf610_nfc_addr_cycle(mtd, column, page);
|
|
break;
|
|
|
|
case NAND_CMD_READID:
|
|
nfc->alt_buf = ALT_BUF_ID;
|
|
nfc->buf_offset = 0;
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
|
|
vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
|
|
ROW_ADDR_SHIFT, column);
|
|
break;
|
|
|
|
case NAND_CMD_STATUS:
|
|
nfc->alt_buf = ALT_BUF_STAT;
|
|
vf610_nfc_transfer_size(nfc->regs, 0);
|
|
vf610_nfc_send_command(nfc->regs, command, STATUS_READ_CMD_CODE);
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
vf610_nfc_done(mtd);
|
|
|
|
nfc->write_sz = 0;
|
|
}
|
|
|
|
/* Read data from NFC buffers */
|
|
static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint c = nfc->buf_offset;
|
|
|
|
/* Alternate buffers are only supported through read_byte */
|
|
if (nfc->alt_buf)
|
|
return;
|
|
|
|
vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len);
|
|
|
|
nfc->buf_offset += len;
|
|
}
|
|
|
|
/* Write data to NFC buffers */
|
|
static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
|
|
int len)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
uint c = nfc->buf_offset;
|
|
uint l;
|
|
|
|
l = min_t(uint, len, mtd->writesize + mtd->oobsize - c);
|
|
vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
|
|
|
|
nfc->write_sz += l;
|
|
nfc->buf_offset += l;
|
|
}
|
|
|
|
/* Read byte from NFC buffers */
|
|
static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u8 tmp;
|
|
uint c = nfc->buf_offset;
|
|
|
|
switch (nfc->alt_buf) {
|
|
case ALT_BUF_ID:
|
|
tmp = vf610_nfc_get_id(mtd, c);
|
|
break;
|
|
case ALT_BUF_STAT:
|
|
tmp = vf610_nfc_get_status(mtd);
|
|
break;
|
|
#ifdef __LITTLE_ENDIAN
|
|
case ALT_BUF_ONFI:
|
|
/* Reverse byte since the controller uses big endianness */
|
|
c = nfc->buf_offset ^ 0x3;
|
|
/* fall-through */
|
|
#endif
|
|
default:
|
|
tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c));
|
|
break;
|
|
}
|
|
nfc->buf_offset++;
|
|
return tmp;
|
|
}
|
|
|
|
/* Read word from NFC buffers */
|
|
static u16 vf610_nfc_read_word(struct mtd_info *mtd)
|
|
{
|
|
u16 tmp;
|
|
|
|
vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
|
|
return tmp;
|
|
}
|
|
|
|
/* If not provided, upper layers apply a fixed delay. */
|
|
static int vf610_nfc_dev_ready(struct mtd_info *mtd)
|
|
{
|
|
/* NFC handles R/B internally; always ready. */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This function supports Vybrid only (MPC5125 would have full RB and four CS)
|
|
*/
|
|
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
#ifdef CONFIG_VF610
|
|
u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
|
|
tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
|
|
|
|
if (chip >= 0) {
|
|
tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;
|
|
tmp |= (1 << chip) << ROW_ADDR_CHIP_SEL_SHIFT;
|
|
}
|
|
|
|
vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
|
|
#endif
|
|
}
|
|
|
|
/* Count the number of 0's in buff upto max_bits */
|
|
static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
|
|
{
|
|
uint32_t *buff32 = (uint32_t *)buff;
|
|
int k, written_bits = 0;
|
|
|
|
for (k = 0; k < (size / 4); k++) {
|
|
written_bits += hweight32(~buff32[k]);
|
|
if (written_bits > max_bits)
|
|
break;
|
|
}
|
|
|
|
return written_bits;
|
|
}
|
|
|
|
static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat,
|
|
uint8_t *oob, int page)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS;
|
|
u8 ecc_status;
|
|
u8 ecc_count;
|
|
int flips;
|
|
int flips_threshold = nfc->chip.ecc.strength / 2;
|
|
|
|
ecc_status = vf610_nfc_read(mtd, ecc_status_off) & 0xff;
|
|
ecc_count = ecc_status & ECC_STATUS_ERR_COUNT;
|
|
|
|
if (!(ecc_status & ECC_STATUS_MASK))
|
|
return ecc_count;
|
|
|
|
/* Read OOB without ECC unit enabled */
|
|
vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page);
|
|
vf610_nfc_read_buf(mtd, oob, mtd->oobsize);
|
|
|
|
/*
|
|
* On an erased page, bit count (including OOB) should be zero or
|
|
* at least less then half of the ECC strength.
|
|
*/
|
|
flips = count_written_bits(dat, nfc->chip.ecc.size, flips_threshold);
|
|
flips += count_written_bits(oob, mtd->oobsize, flips_threshold);
|
|
|
|
if (unlikely(flips > flips_threshold))
|
|
return -EINVAL;
|
|
|
|
/* Erased page. */
|
|
memset(dat, 0xff, nfc->chip.ecc.size);
|
|
memset(oob, 0xff, mtd->oobsize);
|
|
return flips;
|
|
}
|
|
|
|
static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
int eccsize = chip->ecc.size;
|
|
int stat;
|
|
|
|
vf610_nfc_read_buf(mtd, buf, eccsize);
|
|
if (oob_required)
|
|
vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page);
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
return 0;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
return stat;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ECC will be calculated automatically
|
|
*/
|
|
static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required)
|
|
{
|
|
struct vf610_nfc *nfc = mtd_to_nfc(mtd);
|
|
|
|
vf610_nfc_write_buf(mtd, buf, mtd->writesize);
|
|
if (oob_required)
|
|
vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
/* Always write whole page including OOB due to HW ECC */
|
|
nfc->write_sz = mtd->writesize + mtd->oobsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct vf610_nfc_config {
|
|
int hardware_ecc;
|
|
int width;
|
|
int flash_bbt;
|
|
};
|
|
|
|
static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
|
|
{
|
|
struct mtd_info *mtd = &nand_info[devnum];
|
|
struct nand_chip *chip;
|
|
struct vf610_nfc *nfc;
|
|
int err = 0;
|
|
struct vf610_nfc_config cfg = {
|
|
.hardware_ecc = 1,
|
|
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
|
|
.width = 16,
|
|
#else
|
|
.width = 8,
|
|
#endif
|
|
.flash_bbt = 1,
|
|
};
|
|
|
|
nfc = malloc(sizeof(*nfc));
|
|
if (!nfc) {
|
|
printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
chip = &nfc->chip;
|
|
nfc->regs = addr;
|
|
|
|
mtd->priv = chip;
|
|
chip->priv = nfc;
|
|
|
|
if (cfg.width == 16)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
chip->dev_ready = vf610_nfc_dev_ready;
|
|
chip->cmdfunc = vf610_nfc_command;
|
|
chip->read_byte = vf610_nfc_read_byte;
|
|
chip->read_word = vf610_nfc_read_word;
|
|
chip->read_buf = vf610_nfc_read_buf;
|
|
chip->write_buf = vf610_nfc_write_buf;
|
|
chip->select_chip = vf610_nfc_select_chip;
|
|
|
|
chip->options |= NAND_NO_SUBPAGE_WRITE;
|
|
|
|
chip->ecc.size = PAGE_2K;
|
|
|
|
/* Set configuration register. */
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
|
|
vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
|
|
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);
|
|
|
|
/* Disable virtual pages, only one elementary transfer unit */
|
|
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
|
|
CONFIG_PAGE_CNT_SHIFT, 1);
|
|
|
|
/* first scan to find the device and get the page size */
|
|
if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (cfg.width == 16)
|
|
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
|
|
|
|
/* Bad block options. */
|
|
if (cfg.flash_bbt)
|
|
chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB |
|
|
NAND_BBT_CREATE;
|
|
|
|
/* Single buffer only, max 256 OOB minus ECC status */
|
|
if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) {
|
|
dev_err(nfc->dev, "Unsupported flash page size\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (cfg.hardware_ecc) {
|
|
if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
|
|
dev_err(nfc->dev, "Unsupported flash with hwecc\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
if (chip->ecc.size != mtd->writesize) {
|
|
dev_err(nfc->dev, "ecc size: %d\n", chip->ecc.size);
|
|
dev_err(nfc->dev, "Step size needs to be page size\n");
|
|
err = -ENXIO;
|
|
goto error;
|
|
}
|
|
|
|
/* Current HW ECC layouts only use 64 bytes of OOB */
|
|
if (mtd->oobsize > 64)
|
|
mtd->oobsize = 64;
|
|
|
|
/* propagate ecc.layout to mtd_info */
|
|
mtd->ecclayout = chip->ecc.layout;
|
|
chip->ecc.read_page = vf610_nfc_read_page;
|
|
chip->ecc.write_page = vf610_nfc_write_page;
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
|
|
chip->ecc.size = PAGE_2K;
|
|
chip->ecc.layout = &vf610_nfc_ecc;
|
|
#if defined(CONFIG_SYS_NAND_VF610_NFC_45_ECC_BYTES)
|
|
chip->ecc.strength = 24;
|
|
chip->ecc.bytes = 45;
|
|
#elif defined(CONFIG_SYS_NAND_VF610_NFC_60_ECC_BYTES)
|
|
chip->ecc.strength = 32;
|
|
chip->ecc.bytes = 60;
|
|
#endif
|
|
|
|
/* Set ECC_STATUS offset */
|
|
vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
|
|
CONFIG_ECC_SRAM_ADDR_MASK,
|
|
CONFIG_ECC_SRAM_ADDR_SHIFT,
|
|
ECC_SRAM_ADDR >> 3);
|
|
|
|
/* Enable ECC status in SRAM */
|
|
vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
|
|
}
|
|
|
|
/* second phase scan */
|
|
err = nand_scan_tail(mtd);
|
|
if (err)
|
|
return err;
|
|
|
|
err = nand_register(devnum);
|
|
if (err)
|
|
return err;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
return err;
|
|
}
|
|
|
|
void board_nand_init(void)
|
|
{
|
|
int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
|
|
if (err)
|
|
printf("VF610 NAND init failed (err %d)\n", err);
|
|
}
|