u-boot/drivers/net/mtk_eth.c
Simon Glass 90526e9fba common: Drop net.h from common header
Move this header out of the common header. Network support is used in
quite a few places but it still does not warrant blanket inclusion.

Note that this net.h header itself has quite a lot in it. It could be
split into the driver-mode support, functions, structures, checksumming,
etc.

Signed-off-by: Simon Glass <sjg@chromium.org>
2020-05-18 17:33:31 -04:00

1566 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2018 MediaTek Inc.
*
* Author: Weijie Gao <weijie.gao@mediatek.com>
* Author: Mark Lee <mark-mc.lee@mediatek.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <dm.h>
#include <malloc.h>
#include <miiphy.h>
#include <net.h>
#include <regmap.h>
#include <reset.h>
#include <syscon.h>
#include <wait_bit.h>
#include <asm/cache.h>
#include <asm/gpio.h>
#include <asm/io.h>
#include <dm/device_compat.h>
#include <linux/err.h>
#include <linux/ioport.h>
#include <linux/mdio.h>
#include <linux/mii.h>
#include "mtk_eth.h"
#define NUM_TX_DESC 24
#define NUM_RX_DESC 24
#define TX_TOTAL_BUF_SIZE (NUM_TX_DESC * PKTSIZE_ALIGN)
#define RX_TOTAL_BUF_SIZE (NUM_RX_DESC * PKTSIZE_ALIGN)
#define TOTAL_PKT_BUF_SIZE (TX_TOTAL_BUF_SIZE + RX_TOTAL_BUF_SIZE)
#define MT753X_NUM_PHYS 5
#define MT753X_NUM_PORTS 7
#define MT753X_DFL_SMI_ADDR 31
#define MT753X_SMI_ADDR_MASK 0x1f
#define MT753X_PHY_ADDR(base, addr) \
(((base) + (addr)) & 0x1f)
#define GDMA_FWD_TO_CPU \
(0x20000000 | \
GDM_ICS_EN | \
GDM_TCS_EN | \
GDM_UCS_EN | \
STRP_CRC | \
(DP_PDMA << MYMAC_DP_S) | \
(DP_PDMA << BC_DP_S) | \
(DP_PDMA << MC_DP_S) | \
(DP_PDMA << UN_DP_S))
#define GDMA_FWD_DISCARD \
(0x20000000 | \
GDM_ICS_EN | \
GDM_TCS_EN | \
GDM_UCS_EN | \
STRP_CRC | \
(DP_DISCARD << MYMAC_DP_S) | \
(DP_DISCARD << BC_DP_S) | \
(DP_DISCARD << MC_DP_S) | \
(DP_DISCARD << UN_DP_S))
struct pdma_rxd_info1 {
u32 PDP0;
};
struct pdma_rxd_info2 {
u32 PLEN1 : 14;
u32 LS1 : 1;
u32 UN_USED : 1;
u32 PLEN0 : 14;
u32 LS0 : 1;
u32 DDONE : 1;
};
struct pdma_rxd_info3 {
u32 PDP1;
};
struct pdma_rxd_info4 {
u32 FOE_ENTRY : 14;
u32 CRSN : 5;
u32 SP : 3;
u32 L4F : 1;
u32 L4VLD : 1;
u32 TACK : 1;
u32 IP4F : 1;
u32 IP4 : 1;
u32 IP6 : 1;
u32 UN_USED : 4;
};
struct pdma_rxdesc {
struct pdma_rxd_info1 rxd_info1;
struct pdma_rxd_info2 rxd_info2;
struct pdma_rxd_info3 rxd_info3;
struct pdma_rxd_info4 rxd_info4;
};
struct pdma_txd_info1 {
u32 SDP0;
};
struct pdma_txd_info2 {
u32 SDL1 : 14;
u32 LS1 : 1;
u32 BURST : 1;
u32 SDL0 : 14;
u32 LS0 : 1;
u32 DDONE : 1;
};
struct pdma_txd_info3 {
u32 SDP1;
};
struct pdma_txd_info4 {
u32 VLAN_TAG : 16;
u32 INS : 1;
u32 RESV : 2;
u32 UDF : 6;
u32 FPORT : 3;
u32 TSO : 1;
u32 TUI_CO : 3;
};
struct pdma_txdesc {
struct pdma_txd_info1 txd_info1;
struct pdma_txd_info2 txd_info2;
struct pdma_txd_info3 txd_info3;
struct pdma_txd_info4 txd_info4;
};
enum mtk_switch {
SW_NONE,
SW_MT7530,
SW_MT7531
};
enum mtk_soc {
SOC_MT7623,
SOC_MT7629,
SOC_MT7622
};
struct mtk_eth_priv {
char pkt_pool[TOTAL_PKT_BUF_SIZE] __aligned(ARCH_DMA_MINALIGN);
struct pdma_txdesc *tx_ring_noc;
struct pdma_rxdesc *rx_ring_noc;
int rx_dma_owner_idx0;
int tx_cpu_owner_idx0;
void __iomem *fe_base;
void __iomem *gmac_base;
void __iomem *ethsys_base;
void __iomem *sgmii_base;
struct mii_dev *mdio_bus;
int (*mii_read)(struct mtk_eth_priv *priv, u8 phy, u8 reg);
int (*mii_write)(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 val);
int (*mmd_read)(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg);
int (*mmd_write)(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg,
u16 val);
enum mtk_soc soc;
int gmac_id;
int force_mode;
int speed;
int duplex;
struct phy_device *phydev;
int phy_interface;
int phy_addr;
enum mtk_switch sw;
int (*switch_init)(struct mtk_eth_priv *priv);
u32 mt753x_smi_addr;
u32 mt753x_phy_base;
struct gpio_desc rst_gpio;
int mcm;
struct reset_ctl rst_fe;
struct reset_ctl rst_mcm;
};
static void mtk_pdma_write(struct mtk_eth_priv *priv, u32 reg, u32 val)
{
writel(val, priv->fe_base + PDMA_BASE + reg);
}
static void mtk_pdma_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr,
u32 set)
{
clrsetbits_le32(priv->fe_base + PDMA_BASE + reg, clr, set);
}
static void mtk_gdma_write(struct mtk_eth_priv *priv, int no, u32 reg,
u32 val)
{
u32 gdma_base;
if (no == 1)
gdma_base = GDMA2_BASE;
else
gdma_base = GDMA1_BASE;
writel(val, priv->fe_base + gdma_base + reg);
}
static u32 mtk_gmac_read(struct mtk_eth_priv *priv, u32 reg)
{
return readl(priv->gmac_base + reg);
}
static void mtk_gmac_write(struct mtk_eth_priv *priv, u32 reg, u32 val)
{
writel(val, priv->gmac_base + reg);
}
static void mtk_gmac_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr, u32 set)
{
clrsetbits_le32(priv->gmac_base + reg, clr, set);
}
static void mtk_ethsys_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr,
u32 set)
{
clrsetbits_le32(priv->ethsys_base + reg, clr, set);
}
/* Direct MDIO clause 22/45 access via SoC */
static int mtk_mii_rw(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 data,
u32 cmd, u32 st)
{
int ret;
u32 val;
val = (st << MDIO_ST_S) |
((cmd << MDIO_CMD_S) & MDIO_CMD_M) |
(((u32)phy << MDIO_PHY_ADDR_S) & MDIO_PHY_ADDR_M) |
(((u32)reg << MDIO_REG_ADDR_S) & MDIO_REG_ADDR_M);
if (cmd == MDIO_CMD_WRITE)
val |= data & MDIO_RW_DATA_M;
mtk_gmac_write(priv, GMAC_PIAC_REG, val | PHY_ACS_ST);
ret = wait_for_bit_le32(priv->gmac_base + GMAC_PIAC_REG,
PHY_ACS_ST, 0, 5000, 0);
if (ret) {
pr_warn("MDIO access timeout\n");
return ret;
}
if (cmd == MDIO_CMD_READ) {
val = mtk_gmac_read(priv, GMAC_PIAC_REG);
return val & MDIO_RW_DATA_M;
}
return 0;
}
/* Direct MDIO clause 22 read via SoC */
static int mtk_mii_read(struct mtk_eth_priv *priv, u8 phy, u8 reg)
{
return mtk_mii_rw(priv, phy, reg, 0, MDIO_CMD_READ, MDIO_ST_C22);
}
/* Direct MDIO clause 22 write via SoC */
static int mtk_mii_write(struct mtk_eth_priv *priv, u8 phy, u8 reg, u16 data)
{
return mtk_mii_rw(priv, phy, reg, data, MDIO_CMD_WRITE, MDIO_ST_C22);
}
/* Direct MDIO clause 45 read via SoC */
static int mtk_mmd_read(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg)
{
int ret;
ret = mtk_mii_rw(priv, addr, devad, reg, MDIO_CMD_ADDR, MDIO_ST_C45);
if (ret)
return ret;
return mtk_mii_rw(priv, addr, devad, 0, MDIO_CMD_READ_C45,
MDIO_ST_C45);
}
/* Direct MDIO clause 45 write via SoC */
static int mtk_mmd_write(struct mtk_eth_priv *priv, u8 addr, u8 devad,
u16 reg, u16 val)
{
int ret;
ret = mtk_mii_rw(priv, addr, devad, reg, MDIO_CMD_ADDR, MDIO_ST_C45);
if (ret)
return ret;
return mtk_mii_rw(priv, addr, devad, val, MDIO_CMD_WRITE,
MDIO_ST_C45);
}
/* Indirect MDIO clause 45 read via MII registers */
static int mtk_mmd_ind_read(struct mtk_eth_priv *priv, u8 addr, u8 devad,
u16 reg)
{
int ret;
ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG,
(MMD_ADDR << MMD_CMD_S) |
((devad << MMD_DEVAD_S) & MMD_DEVAD_M));
if (ret)
return ret;
ret = priv->mii_write(priv, addr, MII_MMD_ADDR_DATA_REG, reg);
if (ret)
return ret;
ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG,
(MMD_DATA << MMD_CMD_S) |
((devad << MMD_DEVAD_S) & MMD_DEVAD_M));
if (ret)
return ret;
return priv->mii_read(priv, addr, MII_MMD_ADDR_DATA_REG);
}
/* Indirect MDIO clause 45 write via MII registers */
static int mtk_mmd_ind_write(struct mtk_eth_priv *priv, u8 addr, u8 devad,
u16 reg, u16 val)
{
int ret;
ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG,
(MMD_ADDR << MMD_CMD_S) |
((devad << MMD_DEVAD_S) & MMD_DEVAD_M));
if (ret)
return ret;
ret = priv->mii_write(priv, addr, MII_MMD_ADDR_DATA_REG, reg);
if (ret)
return ret;
ret = priv->mii_write(priv, addr, MII_MMD_ACC_CTL_REG,
(MMD_DATA << MMD_CMD_S) |
((devad << MMD_DEVAD_S) & MMD_DEVAD_M));
if (ret)
return ret;
return priv->mii_write(priv, addr, MII_MMD_ADDR_DATA_REG, val);
}
/*
* MT7530 Internal Register Address Bits
* -------------------------------------------------------------------
* | 15 14 13 12 11 10 9 8 7 6 | 5 4 3 2 | 1 0 |
* |----------------------------------------|---------------|--------|
* | Page Address | Reg Address | Unused |
* -------------------------------------------------------------------
*/
static int mt753x_reg_read(struct mtk_eth_priv *priv, u32 reg, u32 *data)
{
int ret, low_word, high_word;
/* Write page address */
ret = mtk_mii_write(priv, priv->mt753x_smi_addr, 0x1f, reg >> 6);
if (ret)
return ret;
/* Read low word */
low_word = mtk_mii_read(priv, priv->mt753x_smi_addr, (reg >> 2) & 0xf);
if (low_word < 0)
return low_word;
/* Read high word */
high_word = mtk_mii_read(priv, priv->mt753x_smi_addr, 0x10);
if (high_word < 0)
return high_word;
if (data)
*data = ((u32)high_word << 16) | (low_word & 0xffff);
return 0;
}
static int mt753x_reg_write(struct mtk_eth_priv *priv, u32 reg, u32 data)
{
int ret;
/* Write page address */
ret = mtk_mii_write(priv, priv->mt753x_smi_addr, 0x1f, reg >> 6);
if (ret)
return ret;
/* Write low word */
ret = mtk_mii_write(priv, priv->mt753x_smi_addr, (reg >> 2) & 0xf,
data & 0xffff);
if (ret)
return ret;
/* Write high word */
return mtk_mii_write(priv, priv->mt753x_smi_addr, 0x10, data >> 16);
}
static void mt753x_reg_rmw(struct mtk_eth_priv *priv, u32 reg, u32 clr,
u32 set)
{
u32 val;
mt753x_reg_read(priv, reg, &val);
val &= ~clr;
val |= set;
mt753x_reg_write(priv, reg, val);
}
/* Indirect MDIO clause 22/45 access */
static int mt7531_mii_rw(struct mtk_eth_priv *priv, int phy, int reg, u16 data,
u32 cmd, u32 st)
{
ulong timeout;
u32 val, timeout_ms;
int ret = 0;
val = (st << MDIO_ST_S) |
((cmd << MDIO_CMD_S) & MDIO_CMD_M) |
((phy << MDIO_PHY_ADDR_S) & MDIO_PHY_ADDR_M) |
((reg << MDIO_REG_ADDR_S) & MDIO_REG_ADDR_M);
if (cmd == MDIO_CMD_WRITE || cmd == MDIO_CMD_ADDR)
val |= data & MDIO_RW_DATA_M;
mt753x_reg_write(priv, MT7531_PHY_IAC, val | PHY_ACS_ST);
timeout_ms = 100;
timeout = get_timer(0);
while (1) {
mt753x_reg_read(priv, MT7531_PHY_IAC, &val);
if ((val & PHY_ACS_ST) == 0)
break;
if (get_timer(timeout) > timeout_ms)
return -ETIMEDOUT;
}
if (cmd == MDIO_CMD_READ || cmd == MDIO_CMD_READ_C45) {
mt753x_reg_read(priv, MT7531_PHY_IAC, &val);
ret = val & MDIO_RW_DATA_M;
}
return ret;
}
static int mt7531_mii_ind_read(struct mtk_eth_priv *priv, u8 phy, u8 reg)
{
u8 phy_addr;
if (phy >= MT753X_NUM_PHYS)
return -EINVAL;
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, phy);
return mt7531_mii_rw(priv, phy_addr, reg, 0, MDIO_CMD_READ,
MDIO_ST_C22);
}
static int mt7531_mii_ind_write(struct mtk_eth_priv *priv, u8 phy, u8 reg,
u16 val)
{
u8 phy_addr;
if (phy >= MT753X_NUM_PHYS)
return -EINVAL;
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, phy);
return mt7531_mii_rw(priv, phy_addr, reg, val, MDIO_CMD_WRITE,
MDIO_ST_C22);
}
int mt7531_mmd_ind_read(struct mtk_eth_priv *priv, u8 addr, u8 devad, u16 reg)
{
u8 phy_addr;
int ret;
if (addr >= MT753X_NUM_PHYS)
return -EINVAL;
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, addr);
ret = mt7531_mii_rw(priv, phy_addr, devad, reg, MDIO_CMD_ADDR,
MDIO_ST_C45);
if (ret)
return ret;
return mt7531_mii_rw(priv, phy_addr, devad, 0, MDIO_CMD_READ_C45,
MDIO_ST_C45);
}
static int mt7531_mmd_ind_write(struct mtk_eth_priv *priv, u8 addr, u8 devad,
u16 reg, u16 val)
{
u8 phy_addr;
int ret;
if (addr >= MT753X_NUM_PHYS)
return 0;
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, addr);
ret = mt7531_mii_rw(priv, phy_addr, devad, reg, MDIO_CMD_ADDR,
MDIO_ST_C45);
if (ret)
return ret;
return mt7531_mii_rw(priv, phy_addr, devad, val, MDIO_CMD_WRITE,
MDIO_ST_C45);
}
static int mtk_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct mtk_eth_priv *priv = bus->priv;
if (devad < 0)
return priv->mii_read(priv, addr, reg);
else
return priv->mmd_read(priv, addr, devad, reg);
}
static int mtk_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct mtk_eth_priv *priv = bus->priv;
if (devad < 0)
return priv->mii_write(priv, addr, reg, val);
else
return priv->mmd_write(priv, addr, devad, reg, val);
}
static int mtk_mdio_register(struct udevice *dev)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus = mdio_alloc();
int ret;
if (!mdio_bus)
return -ENOMEM;
/* Assign MDIO access APIs according to the switch/phy */
switch (priv->sw) {
case SW_MT7530:
priv->mii_read = mtk_mii_read;
priv->mii_write = mtk_mii_write;
priv->mmd_read = mtk_mmd_ind_read;
priv->mmd_write = mtk_mmd_ind_write;
break;
case SW_MT7531:
priv->mii_read = mt7531_mii_ind_read;
priv->mii_write = mt7531_mii_ind_write;
priv->mmd_read = mt7531_mmd_ind_read;
priv->mmd_write = mt7531_mmd_ind_write;
break;
default:
priv->mii_read = mtk_mii_read;
priv->mii_write = mtk_mii_write;
priv->mmd_read = mtk_mmd_read;
priv->mmd_write = mtk_mmd_write;
}
mdio_bus->read = mtk_mdio_read;
mdio_bus->write = mtk_mdio_write;
snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
mdio_bus->priv = (void *)priv;
ret = mdio_register(mdio_bus);
if (ret)
return ret;
priv->mdio_bus = mdio_bus;
return 0;
}
static int mt753x_core_reg_read(struct mtk_eth_priv *priv, u32 reg)
{
u8 phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, 0);
return priv->mmd_read(priv, phy_addr, 0x1f, reg);
}
static void mt753x_core_reg_write(struct mtk_eth_priv *priv, u32 reg, u32 val)
{
u8 phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, 0);
priv->mmd_write(priv, phy_addr, 0x1f, reg, val);
}
static int mt7530_pad_clk_setup(struct mtk_eth_priv *priv, int mode)
{
u32 ncpo1, ssc_delta;
switch (mode) {
case PHY_INTERFACE_MODE_RGMII:
ncpo1 = 0x0c80;
ssc_delta = 0x87;
break;
default:
printf("error: xMII mode %d not supported\n", mode);
return -EINVAL;
}
/* Disable MT7530 core clock */
mt753x_core_reg_write(priv, CORE_TRGMII_GSW_CLK_CG, 0);
/* Disable MT7530 PLL */
mt753x_core_reg_write(priv, CORE_GSWPLL_GRP1,
(2 << RG_GSWPLL_POSDIV_200M_S) |
(32 << RG_GSWPLL_FBKDIV_200M_S));
/* For MT7530 core clock = 500Mhz */
mt753x_core_reg_write(priv, CORE_GSWPLL_GRP2,
(1 << RG_GSWPLL_POSDIV_500M_S) |
(25 << RG_GSWPLL_FBKDIV_500M_S));
/* Enable MT7530 PLL */
mt753x_core_reg_write(priv, CORE_GSWPLL_GRP1,
(2 << RG_GSWPLL_POSDIV_200M_S) |
(32 << RG_GSWPLL_FBKDIV_200M_S) |
RG_GSWPLL_EN_PRE);
udelay(20);
mt753x_core_reg_write(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
/* Setup the MT7530 TRGMII Tx Clock */
mt753x_core_reg_write(priv, CORE_PLL_GROUP5, ncpo1);
mt753x_core_reg_write(priv, CORE_PLL_GROUP6, 0);
mt753x_core_reg_write(priv, CORE_PLL_GROUP10, ssc_delta);
mt753x_core_reg_write(priv, CORE_PLL_GROUP11, ssc_delta);
mt753x_core_reg_write(priv, CORE_PLL_GROUP4, RG_SYSPLL_DDSFBK_EN |
RG_SYSPLL_BIAS_EN | RG_SYSPLL_BIAS_LPF_EN);
mt753x_core_reg_write(priv, CORE_PLL_GROUP2,
RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
(1 << RG_SYSPLL_POSDIV_S));
mt753x_core_reg_write(priv, CORE_PLL_GROUP7,
RG_LCDDS_PCW_NCPO_CHG | (3 << RG_LCCDS_C_S) |
RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
/* Enable MT7530 core clock */
mt753x_core_reg_write(priv, CORE_TRGMII_GSW_CLK_CG,
REG_GSWCK_EN | REG_TRGMIICK_EN);
return 0;
}
static int mt7530_setup(struct mtk_eth_priv *priv)
{
u16 phy_addr, phy_val;
u32 val;
int i;
/* Select 250MHz clk for RGMII mode */
mtk_ethsys_rmw(priv, ETHSYS_CLKCFG0_REG,
ETHSYS_TRGMII_CLK_SEL362_5, 0);
/* Modify HWTRAP first to allow direct access to internal PHYs */
mt753x_reg_read(priv, HWTRAP_REG, &val);
val |= CHG_TRAP;
val &= ~C_MDIO_BPS;
mt753x_reg_write(priv, MHWTRAP_REG, val);
/* Calculate the phy base address */
val = ((val & SMI_ADDR_M) >> SMI_ADDR_S) << 3;
priv->mt753x_phy_base = (val | 0x7) + 1;
/* Turn off PHYs */
for (i = 0; i < MT753X_NUM_PHYS; i++) {
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i);
phy_val = priv->mii_read(priv, phy_addr, MII_BMCR);
phy_val |= BMCR_PDOWN;
priv->mii_write(priv, phy_addr, MII_BMCR, phy_val);
}
/* Force MAC link down before reset */
mt753x_reg_write(priv, PMCR_REG(5), FORCE_MODE);
mt753x_reg_write(priv, PMCR_REG(6), FORCE_MODE);
/* MT7530 reset */
mt753x_reg_write(priv, SYS_CTRL_REG, SW_SYS_RST | SW_REG_RST);
udelay(100);
val = (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) |
MAC_MODE | FORCE_MODE |
MAC_TX_EN | MAC_RX_EN |
BKOFF_EN | BACKPR_EN |
(SPEED_1000M << FORCE_SPD_S) |
FORCE_DPX | FORCE_LINK;
/* MT7530 Port6: Forced 1000M/FD, FC disabled */
mt753x_reg_write(priv, PMCR_REG(6), val);
/* MT7530 Port5: Forced link down */
mt753x_reg_write(priv, PMCR_REG(5), FORCE_MODE);
/* MT7530 Port6: Set to RGMII */
mt753x_reg_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_M, P6_INTF_MODE_RGMII);
/* Hardware Trap: Enable Port6, Disable Port5 */
mt753x_reg_read(priv, HWTRAP_REG, &val);
val |= CHG_TRAP | LOOPDET_DIS | P5_INTF_DIS |
(P5_INTF_SEL_GMAC5 << P5_INTF_SEL_S) |
(P5_INTF_MODE_RGMII << P5_INTF_MODE_S);
val &= ~(C_MDIO_BPS | P6_INTF_DIS);
mt753x_reg_write(priv, MHWTRAP_REG, val);
/* Setup switch core pll */
mt7530_pad_clk_setup(priv, priv->phy_interface);
/* Lower Tx Driving for TRGMII path */
for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
mt753x_reg_write(priv, MT7530_TRGMII_TD_ODT(i),
(8 << TD_DM_DRVP_S) | (8 << TD_DM_DRVN_S));
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mt753x_reg_rmw(priv, MT7530_TRGMII_RD(i), RD_TAP_M, 16);
/* Turn on PHYs */
for (i = 0; i < MT753X_NUM_PHYS; i++) {
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i);
phy_val = priv->mii_read(priv, phy_addr, MII_BMCR);
phy_val &= ~BMCR_PDOWN;
priv->mii_write(priv, phy_addr, MII_BMCR, phy_val);
}
return 0;
}
static void mt7531_core_pll_setup(struct mtk_eth_priv *priv, int mcm)
{
/* Step 1 : Disable MT7531 COREPLL */
mt753x_reg_rmw(priv, MT7531_PLLGP_EN, EN_COREPLL, 0);
/* Step 2: switch to XTAL output */
mt753x_reg_rmw(priv, MT7531_PLLGP_EN, SW_CLKSW, SW_CLKSW);
mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_EN, 0);
/* Step 3: disable PLLGP and enable program PLLGP */
mt753x_reg_rmw(priv, MT7531_PLLGP_EN, SW_PLLGP, SW_PLLGP);
/* Step 4: program COREPLL output frequency to 500MHz */
mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_POSDIV_M,
2 << RG_COREPLL_POSDIV_S);
udelay(25);
/* Currently, support XTAL 25Mhz only */
mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_SDM_PCW_M,
0x140000 << RG_COREPLL_SDM_PCW_S);
/* Set feedback divide ratio update signal to high */
mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_SDM_PCW_CHG,
RG_COREPLL_SDM_PCW_CHG);
/* Wait for at least 16 XTAL clocks */
udelay(10);
/* Step 5: set feedback divide ratio update signal to low */
mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_SDM_PCW_CHG, 0);
/* add enable 325M clock for SGMII */
mt753x_reg_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
/* add enable 250SSC clock for RGMII */
mt753x_reg_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
/*Step 6: Enable MT7531 PLL */
mt753x_reg_rmw(priv, MT7531_PLLGP_CR0, RG_COREPLL_EN, RG_COREPLL_EN);
mt753x_reg_rmw(priv, MT7531_PLLGP_EN, EN_COREPLL, EN_COREPLL);
udelay(25);
}
static int mt7531_port_sgmii_init(struct mtk_eth_priv *priv,
u32 port)
{
if (port != 5 && port != 6) {
printf("mt7531: port %d is not a SGMII port\n", port);
return -EINVAL;
}
/* Set SGMII GEN2 speed(2.5G) */
mt753x_reg_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
SGMSYS_SPEED_2500, SGMSYS_SPEED_2500);
/* Disable SGMII AN */
mt753x_reg_rmw(priv, MT7531_PCS_CONTROL_1(port),
SGMII_AN_ENABLE, 0);
/* SGMII force mode setting */
mt753x_reg_write(priv, MT7531_SGMII_MODE(port), SGMII_FORCE_MODE);
/* Release PHYA power down state */
mt753x_reg_rmw(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
SGMII_PHYA_PWD, 0);
return 0;
}
static int mt7531_port_rgmii_init(struct mtk_eth_priv *priv, u32 port)
{
u32 val;
if (port != 5) {
printf("error: RGMII mode is not available for port %d\n",
port);
return -EINVAL;
}
mt753x_reg_read(priv, MT7531_CLKGEN_CTRL, &val);
val |= GP_CLK_EN;
val &= ~GP_MODE_M;
val |= GP_MODE_RGMII << GP_MODE_S;
val |= TXCLK_NO_REVERSE;
val |= RXCLK_NO_DELAY;
val &= ~CLK_SKEW_IN_M;
val |= CLK_SKEW_IN_NO_CHANGE << CLK_SKEW_IN_S;
val &= ~CLK_SKEW_OUT_M;
val |= CLK_SKEW_OUT_NO_CHANGE << CLK_SKEW_OUT_S;
mt753x_reg_write(priv, MT7531_CLKGEN_CTRL, val);
return 0;
}
static void mt7531_phy_setting(struct mtk_eth_priv *priv)
{
int i;
u32 val;
for (i = 0; i < MT753X_NUM_PHYS; i++) {
/* Enable HW auto downshift */
priv->mii_write(priv, i, 0x1f, 0x1);
val = priv->mii_read(priv, i, PHY_EXT_REG_14);
val |= PHY_EN_DOWN_SHFIT;
priv->mii_write(priv, i, PHY_EXT_REG_14, val);
/* PHY link down power saving enable */
val = priv->mii_read(priv, i, PHY_EXT_REG_17);
val |= PHY_LINKDOWN_POWER_SAVING_EN;
priv->mii_write(priv, i, PHY_EXT_REG_17, val);
val = priv->mmd_read(priv, i, 0x1e, PHY_DEV1E_REG_0C6);
val &= ~PHY_POWER_SAVING_M;
val |= PHY_POWER_SAVING_TX << PHY_POWER_SAVING_S;
priv->mmd_write(priv, i, 0x1e, PHY_DEV1E_REG_0C6, val);
}
}
static int mt7531_setup(struct mtk_eth_priv *priv)
{
u16 phy_addr, phy_val;
u32 val;
u32 pmcr;
u32 port5_sgmii;
int i;
priv->mt753x_phy_base = (priv->mt753x_smi_addr + 1) &
MT753X_SMI_ADDR_MASK;
/* Turn off PHYs */
for (i = 0; i < MT753X_NUM_PHYS; i++) {
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i);
phy_val = priv->mii_read(priv, phy_addr, MII_BMCR);
phy_val |= BMCR_PDOWN;
priv->mii_write(priv, phy_addr, MII_BMCR, phy_val);
}
/* Force MAC link down before reset */
mt753x_reg_write(priv, PMCR_REG(5), FORCE_MODE_LNK);
mt753x_reg_write(priv, PMCR_REG(6), FORCE_MODE_LNK);
/* Switch soft reset */
mt753x_reg_write(priv, SYS_CTRL_REG, SW_SYS_RST | SW_REG_RST);
udelay(100);
/* Enable MDC input Schmitt Trigger */
mt753x_reg_rmw(priv, MT7531_SMT0_IOLB, SMT_IOLB_5_SMI_MDC_EN,
SMT_IOLB_5_SMI_MDC_EN);
mt7531_core_pll_setup(priv, priv->mcm);
mt753x_reg_read(priv, MT7531_TOP_SIG_SR, &val);
port5_sgmii = !!(val & PAD_DUAL_SGMII_EN);
/* port5 support either RGMII or SGMII, port6 only support SGMII. */
switch (priv->phy_interface) {
case PHY_INTERFACE_MODE_RGMII:
if (!port5_sgmii)
mt7531_port_rgmii_init(priv, 5);
break;
case PHY_INTERFACE_MODE_SGMII:
mt7531_port_sgmii_init(priv, 6);
if (port5_sgmii)
mt7531_port_sgmii_init(priv, 5);
break;
default:
break;
}
pmcr = MT7531_FORCE_MODE |
(IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) |
MAC_MODE | MAC_TX_EN | MAC_RX_EN |
BKOFF_EN | BACKPR_EN |
FORCE_RX_FC | FORCE_TX_FC |
(SPEED_1000M << FORCE_SPD_S) | FORCE_DPX |
FORCE_LINK;
mt753x_reg_write(priv, PMCR_REG(5), pmcr);
mt753x_reg_write(priv, PMCR_REG(6), pmcr);
/* Turn on PHYs */
for (i = 0; i < MT753X_NUM_PHYS; i++) {
phy_addr = MT753X_PHY_ADDR(priv->mt753x_phy_base, i);
phy_val = priv->mii_read(priv, phy_addr, MII_BMCR);
phy_val &= ~BMCR_PDOWN;
priv->mii_write(priv, phy_addr, MII_BMCR, phy_val);
}
mt7531_phy_setting(priv);
/* Enable Internal PHYs */
val = mt753x_core_reg_read(priv, CORE_PLL_GROUP4);
val |= MT7531_BYPASS_MODE;
val &= ~MT7531_POWER_ON_OFF;
mt753x_core_reg_write(priv, CORE_PLL_GROUP4, val);
return 0;
}
int mt753x_switch_init(struct mtk_eth_priv *priv)
{
int ret;
int i;
/* Global reset switch */
if (priv->mcm) {
reset_assert(&priv->rst_mcm);
udelay(1000);
reset_deassert(&priv->rst_mcm);
mdelay(1000);
} else if (dm_gpio_is_valid(&priv->rst_gpio)) {
dm_gpio_set_value(&priv->rst_gpio, 0);
udelay(1000);
dm_gpio_set_value(&priv->rst_gpio, 1);
mdelay(1000);
}
ret = priv->switch_init(priv);
if (ret)
return ret;
/* Set port isolation */
for (i = 0; i < MT753X_NUM_PORTS; i++) {
/* Set port matrix mode */
if (i != 6)
mt753x_reg_write(priv, PCR_REG(i),
(0x40 << PORT_MATRIX_S));
else
mt753x_reg_write(priv, PCR_REG(i),
(0x3f << PORT_MATRIX_S));
/* Set port mode to user port */
mt753x_reg_write(priv, PVC_REG(i),
(0x8100 << STAG_VPID_S) |
(VLAN_ATTR_USER << VLAN_ATTR_S));
}
return 0;
}
static void mtk_phy_link_adjust(struct mtk_eth_priv *priv)
{
u16 lcl_adv = 0, rmt_adv = 0;
u8 flowctrl;
u32 mcr;
mcr = (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) |
(MAC_RX_PKT_LEN_1536 << MAC_RX_PKT_LEN_S) |
MAC_MODE | FORCE_MODE |
MAC_TX_EN | MAC_RX_EN |
BKOFF_EN | BACKPR_EN;
switch (priv->phydev->speed) {
case SPEED_10:
mcr |= (SPEED_10M << FORCE_SPD_S);
break;
case SPEED_100:
mcr |= (SPEED_100M << FORCE_SPD_S);
break;
case SPEED_1000:
mcr |= (SPEED_1000M << FORCE_SPD_S);
break;
};
if (priv->phydev->link)
mcr |= FORCE_LINK;
if (priv->phydev->duplex) {
mcr |= FORCE_DPX;
if (priv->phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (priv->phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
if (priv->phydev->advertising & ADVERTISED_Pause)
lcl_adv |= ADVERTISE_PAUSE_CAP;
if (priv->phydev->advertising & ADVERTISED_Asym_Pause)
lcl_adv |= ADVERTISE_PAUSE_ASYM;
flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (flowctrl & FLOW_CTRL_TX)
mcr |= FORCE_TX_FC;
if (flowctrl & FLOW_CTRL_RX)
mcr |= FORCE_RX_FC;
debug("rx pause %s, tx pause %s\n",
flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled",
flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled");
}
mtk_gmac_write(priv, GMAC_PORT_MCR(priv->gmac_id), mcr);
}
static int mtk_phy_start(struct mtk_eth_priv *priv)
{
struct phy_device *phydev = priv->phydev;
int ret;
ret = phy_startup(phydev);
if (ret) {
debug("Could not initialize PHY %s\n", phydev->dev->name);
return ret;
}
if (!phydev->link) {
debug("%s: link down.\n", phydev->dev->name);
return 0;
}
mtk_phy_link_adjust(priv);
debug("Speed: %d, %s duplex%s\n", phydev->speed,
(phydev->duplex) ? "full" : "half",
(phydev->port == PORT_FIBRE) ? ", fiber mode" : "");
return 0;
}
static int mtk_phy_probe(struct udevice *dev)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
struct phy_device *phydev;
phydev = phy_connect(priv->mdio_bus, priv->phy_addr, dev,
priv->phy_interface);
if (!phydev)
return -ENODEV;
phydev->supported &= PHY_GBIT_FEATURES;
phydev->advertising = phydev->supported;
priv->phydev = phydev;
phy_config(phydev);
return 0;
}
static void mtk_sgmii_init(struct mtk_eth_priv *priv)
{
/* Set SGMII GEN2 speed(2.5G) */
clrsetbits_le32(priv->sgmii_base + SGMSYS_GEN2_SPEED,
SGMSYS_SPEED_2500, SGMSYS_SPEED_2500);
/* Disable SGMII AN */
clrsetbits_le32(priv->sgmii_base + SGMSYS_PCS_CONTROL_1,
SGMII_AN_ENABLE, 0);
/* SGMII force mode setting */
writel(SGMII_FORCE_MODE, priv->sgmii_base + SGMSYS_SGMII_MODE);
/* Release PHYA power down state */
clrsetbits_le32(priv->sgmii_base + SGMSYS_QPHY_PWR_STATE_CTRL,
SGMII_PHYA_PWD, 0);
}
static void mtk_mac_init(struct mtk_eth_priv *priv)
{
int i, ge_mode = 0;
u32 mcr;
switch (priv->phy_interface) {
case PHY_INTERFACE_MODE_RGMII_RXID:
case PHY_INTERFACE_MODE_RGMII:
ge_mode = GE_MODE_RGMII;
break;
case PHY_INTERFACE_MODE_SGMII:
ge_mode = GE_MODE_RGMII;
mtk_ethsys_rmw(priv, ETHSYS_SYSCFG0_REG, SYSCFG0_SGMII_SEL_M,
SYSCFG0_SGMII_SEL(priv->gmac_id));
mtk_sgmii_init(priv);
break;
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_GMII:
ge_mode = GE_MODE_MII;
break;
case PHY_INTERFACE_MODE_RMII:
ge_mode = GE_MODE_RMII;
break;
default:
break;
}
/* set the gmac to the right mode */
mtk_ethsys_rmw(priv, ETHSYS_SYSCFG0_REG,
SYSCFG0_GE_MODE_M << SYSCFG0_GE_MODE_S(priv->gmac_id),
ge_mode << SYSCFG0_GE_MODE_S(priv->gmac_id));
if (priv->force_mode) {
mcr = (IPG_96BIT_WITH_SHORT_IPG << IPG_CFG_S) |
(MAC_RX_PKT_LEN_1536 << MAC_RX_PKT_LEN_S) |
MAC_MODE | FORCE_MODE |
MAC_TX_EN | MAC_RX_EN |
BKOFF_EN | BACKPR_EN |
FORCE_LINK;
switch (priv->speed) {
case SPEED_10:
mcr |= SPEED_10M << FORCE_SPD_S;
break;
case SPEED_100:
mcr |= SPEED_100M << FORCE_SPD_S;
break;
case SPEED_1000:
mcr |= SPEED_1000M << FORCE_SPD_S;
break;
}
if (priv->duplex)
mcr |= FORCE_DPX;
mtk_gmac_write(priv, GMAC_PORT_MCR(priv->gmac_id), mcr);
}
if (priv->soc == SOC_MT7623) {
/* Lower Tx Driving for TRGMII path */
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mtk_gmac_write(priv, GMAC_TRGMII_TD_ODT(i),
(8 << TD_DM_DRVP_S) |
(8 << TD_DM_DRVN_S));
mtk_gmac_rmw(priv, GMAC_TRGMII_RCK_CTRL, 0,
RX_RST | RXC_DQSISEL);
mtk_gmac_rmw(priv, GMAC_TRGMII_RCK_CTRL, RX_RST, 0);
}
}
static void mtk_eth_fifo_init(struct mtk_eth_priv *priv)
{
char *pkt_base = priv->pkt_pool;
int i;
mtk_pdma_rmw(priv, PDMA_GLO_CFG_REG, 0xffff0000, 0);
udelay(500);
memset(priv->tx_ring_noc, 0, NUM_TX_DESC * sizeof(struct pdma_txdesc));
memset(priv->rx_ring_noc, 0, NUM_RX_DESC * sizeof(struct pdma_rxdesc));
memset(priv->pkt_pool, 0, TOTAL_PKT_BUF_SIZE);
flush_dcache_range((ulong)pkt_base,
(ulong)(pkt_base + TOTAL_PKT_BUF_SIZE));
priv->rx_dma_owner_idx0 = 0;
priv->tx_cpu_owner_idx0 = 0;
for (i = 0; i < NUM_TX_DESC; i++) {
priv->tx_ring_noc[i].txd_info2.LS0 = 1;
priv->tx_ring_noc[i].txd_info2.DDONE = 1;
priv->tx_ring_noc[i].txd_info4.FPORT = priv->gmac_id + 1;
priv->tx_ring_noc[i].txd_info1.SDP0 = virt_to_phys(pkt_base);
pkt_base += PKTSIZE_ALIGN;
}
for (i = 0; i < NUM_RX_DESC; i++) {
priv->rx_ring_noc[i].rxd_info2.PLEN0 = PKTSIZE_ALIGN;
priv->rx_ring_noc[i].rxd_info1.PDP0 = virt_to_phys(pkt_base);
pkt_base += PKTSIZE_ALIGN;
}
mtk_pdma_write(priv, TX_BASE_PTR_REG(0),
virt_to_phys(priv->tx_ring_noc));
mtk_pdma_write(priv, TX_MAX_CNT_REG(0), NUM_TX_DESC);
mtk_pdma_write(priv, TX_CTX_IDX_REG(0), priv->tx_cpu_owner_idx0);
mtk_pdma_write(priv, RX_BASE_PTR_REG(0),
virt_to_phys(priv->rx_ring_noc));
mtk_pdma_write(priv, RX_MAX_CNT_REG(0), NUM_RX_DESC);
mtk_pdma_write(priv, RX_CRX_IDX_REG(0), NUM_RX_DESC - 1);
mtk_pdma_write(priv, PDMA_RST_IDX_REG, RST_DTX_IDX0 | RST_DRX_IDX0);
}
static int mtk_eth_start(struct udevice *dev)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
int ret;
/* Reset FE */
reset_assert(&priv->rst_fe);
udelay(1000);
reset_deassert(&priv->rst_fe);
mdelay(10);
/* Packets forward to PDMA */
mtk_gdma_write(priv, priv->gmac_id, GDMA_IG_CTRL_REG, GDMA_FWD_TO_CPU);
if (priv->gmac_id == 0)
mtk_gdma_write(priv, 1, GDMA_IG_CTRL_REG, GDMA_FWD_DISCARD);
else
mtk_gdma_write(priv, 0, GDMA_IG_CTRL_REG, GDMA_FWD_DISCARD);
udelay(500);
mtk_eth_fifo_init(priv);
/* Start PHY */
if (priv->sw == SW_NONE) {
ret = mtk_phy_start(priv);
if (ret)
return ret;
}
mtk_pdma_rmw(priv, PDMA_GLO_CFG_REG, 0,
TX_WB_DDONE | RX_DMA_EN | TX_DMA_EN);
udelay(500);
return 0;
}
static void mtk_eth_stop(struct udevice *dev)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
mtk_pdma_rmw(priv, PDMA_GLO_CFG_REG,
TX_WB_DDONE | RX_DMA_EN | TX_DMA_EN, 0);
udelay(500);
wait_for_bit_le32(priv->fe_base + PDMA_BASE + PDMA_GLO_CFG_REG,
RX_DMA_BUSY | TX_DMA_BUSY, 0, 5000, 0);
}
static int mtk_eth_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct mtk_eth_priv *priv = dev_get_priv(dev);
unsigned char *mac = pdata->enetaddr;
u32 macaddr_lsb, macaddr_msb;
macaddr_msb = ((u32)mac[0] << 8) | (u32)mac[1];
macaddr_lsb = ((u32)mac[2] << 24) | ((u32)mac[3] << 16) |
((u32)mac[4] << 8) | (u32)mac[5];
mtk_gdma_write(priv, priv->gmac_id, GDMA_MAC_MSB_REG, macaddr_msb);
mtk_gdma_write(priv, priv->gmac_id, GDMA_MAC_LSB_REG, macaddr_lsb);
return 0;
}
static int mtk_eth_send(struct udevice *dev, void *packet, int length)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
u32 idx = priv->tx_cpu_owner_idx0;
void *pkt_base;
if (!priv->tx_ring_noc[idx].txd_info2.DDONE) {
debug("mtk-eth: TX DMA descriptor ring is full\n");
return -EPERM;
}
pkt_base = (void *)phys_to_virt(priv->tx_ring_noc[idx].txd_info1.SDP0);
memcpy(pkt_base, packet, length);
flush_dcache_range((ulong)pkt_base, (ulong)pkt_base +
roundup(length, ARCH_DMA_MINALIGN));
priv->tx_ring_noc[idx].txd_info2.SDL0 = length;
priv->tx_ring_noc[idx].txd_info2.DDONE = 0;
priv->tx_cpu_owner_idx0 = (priv->tx_cpu_owner_idx0 + 1) % NUM_TX_DESC;
mtk_pdma_write(priv, TX_CTX_IDX_REG(0), priv->tx_cpu_owner_idx0);
return 0;
}
static int mtk_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
u32 idx = priv->rx_dma_owner_idx0;
uchar *pkt_base;
u32 length;
if (!priv->rx_ring_noc[idx].rxd_info2.DDONE) {
debug("mtk-eth: RX DMA descriptor ring is empty\n");
return -EAGAIN;
}
length = priv->rx_ring_noc[idx].rxd_info2.PLEN0;
pkt_base = (void *)phys_to_virt(priv->rx_ring_noc[idx].rxd_info1.PDP0);
invalidate_dcache_range((ulong)pkt_base, (ulong)pkt_base +
roundup(length, ARCH_DMA_MINALIGN));
if (packetp)
*packetp = pkt_base;
return length;
}
static int mtk_eth_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
u32 idx = priv->rx_dma_owner_idx0;
priv->rx_ring_noc[idx].rxd_info2.DDONE = 0;
priv->rx_ring_noc[idx].rxd_info2.LS0 = 0;
priv->rx_ring_noc[idx].rxd_info2.PLEN0 = PKTSIZE_ALIGN;
mtk_pdma_write(priv, RX_CRX_IDX_REG(0), idx);
priv->rx_dma_owner_idx0 = (priv->rx_dma_owner_idx0 + 1) % NUM_RX_DESC;
return 0;
}
static int mtk_eth_probe(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct mtk_eth_priv *priv = dev_get_priv(dev);
ulong iobase = pdata->iobase;
int ret;
/* Frame Engine Register Base */
priv->fe_base = (void *)iobase;
/* GMAC Register Base */
priv->gmac_base = (void *)(iobase + GMAC_BASE);
/* MDIO register */
ret = mtk_mdio_register(dev);
if (ret)
return ret;
/* Prepare for tx/rx rings */
priv->tx_ring_noc = (struct pdma_txdesc *)
noncached_alloc(sizeof(struct pdma_txdesc) * NUM_TX_DESC,
ARCH_DMA_MINALIGN);
priv->rx_ring_noc = (struct pdma_rxdesc *)
noncached_alloc(sizeof(struct pdma_rxdesc) * NUM_RX_DESC,
ARCH_DMA_MINALIGN);
/* Set MAC mode */
mtk_mac_init(priv);
/* Probe phy if switch is not specified */
if (priv->sw == SW_NONE)
return mtk_phy_probe(dev);
/* Initialize switch */
return mt753x_switch_init(priv);
}
static int mtk_eth_remove(struct udevice *dev)
{
struct mtk_eth_priv *priv = dev_get_priv(dev);
/* MDIO unregister */
mdio_unregister(priv->mdio_bus);
mdio_free(priv->mdio_bus);
/* Stop possibly started DMA */
mtk_eth_stop(dev);
return 0;
}
static int mtk_eth_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
struct mtk_eth_priv *priv = dev_get_priv(dev);
struct ofnode_phandle_args args;
struct regmap *regmap;
const char *str;
ofnode subnode;
int ret;
priv->soc = dev_get_driver_data(dev);
pdata->iobase = devfdt_get_addr(dev);
/* get corresponding ethsys phandle */
ret = dev_read_phandle_with_args(dev, "mediatek,ethsys", NULL, 0, 0,
&args);
if (ret)
return ret;
regmap = syscon_node_to_regmap(args.node);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
priv->ethsys_base = regmap_get_range(regmap, 0);
if (!priv->ethsys_base) {
dev_err(dev, "Unable to find ethsys\n");
return -ENODEV;
}
/* Reset controllers */
ret = reset_get_by_name(dev, "fe", &priv->rst_fe);
if (ret) {
printf("error: Unable to get reset ctrl for frame engine\n");
return ret;
}
priv->gmac_id = dev_read_u32_default(dev, "mediatek,gmac-id", 0);
/* Interface mode is required */
str = dev_read_string(dev, "phy-mode");
if (str) {
pdata->phy_interface = phy_get_interface_by_name(str);
priv->phy_interface = pdata->phy_interface;
} else {
printf("error: phy-mode is not set\n");
return -EINVAL;
}
/* Force mode or autoneg */
subnode = ofnode_find_subnode(dev_ofnode(dev), "fixed-link");
if (ofnode_valid(subnode)) {
priv->force_mode = 1;
priv->speed = ofnode_read_u32_default(subnode, "speed", 0);
priv->duplex = ofnode_read_bool(subnode, "full-duplex");
if (priv->speed != SPEED_10 && priv->speed != SPEED_100 &&
priv->speed != SPEED_1000) {
printf("error: no valid speed set in fixed-link\n");
return -EINVAL;
}
}
if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII) {
/* get corresponding sgmii phandle */
ret = dev_read_phandle_with_args(dev, "mediatek,sgmiisys",
NULL, 0, 0, &args);
if (ret)
return ret;
regmap = syscon_node_to_regmap(args.node);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
priv->sgmii_base = regmap_get_range(regmap, 0);
if (!priv->sgmii_base) {
dev_err(dev, "Unable to find sgmii\n");
return -ENODEV;
}
}
/* check for switch first, otherwise phy will be used */
priv->sw = SW_NONE;
priv->switch_init = NULL;
str = dev_read_string(dev, "mediatek,switch");
if (str) {
if (!strcmp(str, "mt7530")) {
priv->sw = SW_MT7530;
priv->switch_init = mt7530_setup;
priv->mt753x_smi_addr = MT753X_DFL_SMI_ADDR;
} else if (!strcmp(str, "mt7531")) {
priv->sw = SW_MT7531;
priv->switch_init = mt7531_setup;
priv->mt753x_smi_addr = MT753X_DFL_SMI_ADDR;
} else {
printf("error: unsupported switch\n");
return -EINVAL;
}
priv->mcm = dev_read_bool(dev, "mediatek,mcm");
if (priv->mcm) {
ret = reset_get_by_name(dev, "mcm", &priv->rst_mcm);
if (ret) {
printf("error: no reset ctrl for mcm\n");
return ret;
}
} else {
gpio_request_by_name(dev, "reset-gpios", 0,
&priv->rst_gpio, GPIOD_IS_OUT);
}
} else {
ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0,
0, &args);
if (ret) {
printf("error: phy-handle is not specified\n");
return ret;
}
priv->phy_addr = ofnode_read_s32_default(args.node, "reg", -1);
if (priv->phy_addr < 0) {
printf("error: phy address is not specified\n");
return ret;
}
}
return 0;
}
static const struct udevice_id mtk_eth_ids[] = {
{ .compatible = "mediatek,mt7629-eth", .data = SOC_MT7629 },
{ .compatible = "mediatek,mt7623-eth", .data = SOC_MT7623 },
{ .compatible = "mediatek,mt7622-eth", .data = SOC_MT7622 },
{}
};
static const struct eth_ops mtk_eth_ops = {
.start = mtk_eth_start,
.stop = mtk_eth_stop,
.send = mtk_eth_send,
.recv = mtk_eth_recv,
.free_pkt = mtk_eth_free_pkt,
.write_hwaddr = mtk_eth_write_hwaddr,
};
U_BOOT_DRIVER(mtk_eth) = {
.name = "mtk-eth",
.id = UCLASS_ETH,
.of_match = mtk_eth_ids,
.ofdata_to_platdata = mtk_eth_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.probe = mtk_eth_probe,
.remove = mtk_eth_remove,
.ops = &mtk_eth_ops,
.priv_auto_alloc_size = sizeof(struct mtk_eth_priv),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};