u-boot/drivers/net/sh_eth.c
Alex Kiernan 9925f1dbc3 net: Move enetaddr env access code to env config instead of net config
In order that we can use eth_env_* even when CONFIG_NET isn't set, move
these functions to environment code from net code.

This fixes failures such as:

  board/ti/am335x/built-in.o: In function `board_late_init':
  board/ti/am335x/board.c:752: undefined reference to `eth_env_set_enetaddr'
  u-boot/board/ti/am335x/board.c:766: undefined reference to `eth_env_set_enetaddr'

which caters for use cases such as:

commit f411b5cca4 ("board: am335x: Always set eth/eth1addr environment
variable")

when Ethernet is required in Linux, but not U-Boot.

Signed-off-by: Alex Kiernan <alex.kiernan@gmail.com>
2018-04-08 23:00:58 -04:00

1014 lines
24 KiB
C

/*
* sh_eth.c - Driver for Renesas ethernet controller.
*
* Copyright (C) 2008, 2011 Renesas Solutions Corp.
* Copyright (c) 2008, 2011, 2014 2014 Nobuhiro Iwamatsu
* Copyright (c) 2007 Carlos Munoz <carlos@kenati.com>
* Copyright (C) 2013, 2014 Renesas Electronics Corporation
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <config.h>
#include <common.h>
#include <environment.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <miiphy.h>
#include <linux/errno.h>
#include <asm/io.h>
#ifdef CONFIG_DM_ETH
#include <clk.h>
#include <dm.h>
#include <linux/mii.h>
#include <asm/gpio.h>
#endif
#include "sh_eth.h"
#ifndef CONFIG_SH_ETHER_USE_PORT
# error "Please define CONFIG_SH_ETHER_USE_PORT"
#endif
#ifndef CONFIG_SH_ETHER_PHY_ADDR
# error "Please define CONFIG_SH_ETHER_PHY_ADDR"
#endif
#if defined(CONFIG_SH_ETHER_CACHE_WRITEBACK) && !defined(CONFIG_SYS_DCACHE_OFF)
#define flush_cache_wback(addr, len) \
flush_dcache_range((u32)addr, \
(u32)(addr + ALIGN(len, CONFIG_SH_ETHER_ALIGNE_SIZE)))
#else
#define flush_cache_wback(...)
#endif
#if defined(CONFIG_SH_ETHER_CACHE_INVALIDATE) && defined(CONFIG_ARM)
#define invalidate_cache(addr, len) \
{ \
u32 line_size = CONFIG_SH_ETHER_ALIGNE_SIZE; \
u32 start, end; \
\
start = (u32)addr; \
end = start + len; \
start &= ~(line_size - 1); \
end = ((end + line_size - 1) & ~(line_size - 1)); \
\
invalidate_dcache_range(start, end); \
}
#else
#define invalidate_cache(...)
#endif
#define TIMEOUT_CNT 1000
static int sh_eth_send_common(struct sh_eth_dev *eth, void *packet, int len)
{
int ret = 0, timeout;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
if (!packet || len > 0xffff) {
printf(SHETHER_NAME ": %s: Invalid argument\n", __func__);
ret = -EINVAL;
goto err;
}
/* packet must be a 4 byte boundary */
if ((int)packet & 3) {
printf(SHETHER_NAME ": %s: packet not 4 byte aligned\n"
, __func__);
ret = -EFAULT;
goto err;
}
/* Update tx descriptor */
flush_cache_wback(packet, len);
port_info->tx_desc_cur->td2 = ADDR_TO_PHY(packet);
port_info->tx_desc_cur->td1 = len << 16;
/* Must preserve the end of descriptor list indication */
if (port_info->tx_desc_cur->td0 & TD_TDLE)
port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP | TD_TDLE;
else
port_info->tx_desc_cur->td0 = TD_TACT | TD_TFP;
flush_cache_wback(port_info->tx_desc_cur, sizeof(struct tx_desc_s));
/* Restart the transmitter if disabled */
if (!(sh_eth_read(port_info, EDTRR) & EDTRR_TRNS))
sh_eth_write(port_info, EDTRR_TRNS, EDTRR);
/* Wait until packet is transmitted */
timeout = TIMEOUT_CNT;
do {
invalidate_cache(port_info->tx_desc_cur,
sizeof(struct tx_desc_s));
udelay(100);
} while (port_info->tx_desc_cur->td0 & TD_TACT && timeout--);
if (timeout < 0) {
printf(SHETHER_NAME ": transmit timeout\n");
ret = -ETIMEDOUT;
goto err;
}
port_info->tx_desc_cur++;
if (port_info->tx_desc_cur >= port_info->tx_desc_base + NUM_TX_DESC)
port_info->tx_desc_cur = port_info->tx_desc_base;
err:
return ret;
}
static int sh_eth_recv_start(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
/* Check if the rx descriptor is ready */
invalidate_cache(port_info->rx_desc_cur, sizeof(struct rx_desc_s));
if (port_info->rx_desc_cur->rd0 & RD_RACT)
return -EINVAL;
/* Check for errors */
if (port_info->rx_desc_cur->rd0 & RD_RFE)
return -EINVAL;
return port_info->rx_desc_cur->rd1 & 0xffff;
}
static void sh_eth_recv_finish(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
/* Make current descriptor available again */
if (port_info->rx_desc_cur->rd0 & RD_RDLE)
port_info->rx_desc_cur->rd0 = RD_RACT | RD_RDLE;
else
port_info->rx_desc_cur->rd0 = RD_RACT;
flush_cache_wback(port_info->rx_desc_cur,
sizeof(struct rx_desc_s));
/* Point to the next descriptor */
port_info->rx_desc_cur++;
if (port_info->rx_desc_cur >=
port_info->rx_desc_base + NUM_RX_DESC)
port_info->rx_desc_cur = port_info->rx_desc_base;
}
static int sh_eth_reset(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
int ret = 0, i;
/* Start e-dmac transmitter and receiver */
sh_eth_write(port_info, EDSR_ENALL, EDSR);
/* Perform a software reset and wait for it to complete */
sh_eth_write(port_info, EDMR_SRST, EDMR);
for (i = 0; i < TIMEOUT_CNT; i++) {
if (!(sh_eth_read(port_info, EDMR) & EDMR_SRST))
break;
udelay(1000);
}
if (i == TIMEOUT_CNT) {
printf(SHETHER_NAME ": Software reset timeout\n");
ret = -EIO;
}
return ret;
#else
sh_eth_write(port_info, sh_eth_read(port_info, EDMR) | EDMR_SRST, EDMR);
mdelay(3);
sh_eth_write(port_info,
sh_eth_read(port_info, EDMR) & ~EDMR_SRST, EDMR);
return 0;
#endif
}
static int sh_eth_tx_desc_init(struct sh_eth_dev *eth)
{
int i, ret = 0;
u32 alloc_desc_size = NUM_TX_DESC * sizeof(struct tx_desc_s);
struct sh_eth_info *port_info = &eth->port_info[eth->port];
struct tx_desc_s *cur_tx_desc;
/*
* Allocate rx descriptors. They must be aligned to size of struct
* tx_desc_s.
*/
port_info->tx_desc_alloc =
memalign(sizeof(struct tx_desc_s), alloc_desc_size);
if (!port_info->tx_desc_alloc) {
printf(SHETHER_NAME ": memalign failed\n");
ret = -ENOMEM;
goto err;
}
flush_cache_wback(port_info->tx_desc_alloc, alloc_desc_size);
/* Make sure we use a P2 address (non-cacheable) */
port_info->tx_desc_base =
(struct tx_desc_s *)ADDR_TO_P2((u32)port_info->tx_desc_alloc);
port_info->tx_desc_cur = port_info->tx_desc_base;
/* Initialize all descriptors */
for (cur_tx_desc = port_info->tx_desc_base, i = 0; i < NUM_TX_DESC;
cur_tx_desc++, i++) {
cur_tx_desc->td0 = 0x00;
cur_tx_desc->td1 = 0x00;
cur_tx_desc->td2 = 0x00;
}
/* Mark the end of the descriptors */
cur_tx_desc--;
cur_tx_desc->td0 |= TD_TDLE;
/*
* Point the controller to the tx descriptor list. Must use physical
* addresses
*/
sh_eth_write(port_info, ADDR_TO_PHY(port_info->tx_desc_base), TDLAR);
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(port_info, ADDR_TO_PHY(port_info->tx_desc_base), TDFAR);
sh_eth_write(port_info, ADDR_TO_PHY(cur_tx_desc), TDFXR);
sh_eth_write(port_info, 0x01, TDFFR);/* Last discriptor bit */
#endif
err:
return ret;
}
static int sh_eth_rx_desc_init(struct sh_eth_dev *eth)
{
int i, ret = 0;
u32 alloc_desc_size = NUM_RX_DESC * sizeof(struct rx_desc_s);
struct sh_eth_info *port_info = &eth->port_info[eth->port];
struct rx_desc_s *cur_rx_desc;
u8 *rx_buf;
/*
* Allocate rx descriptors. They must be aligned to size of struct
* rx_desc_s.
*/
port_info->rx_desc_alloc =
memalign(sizeof(struct rx_desc_s), alloc_desc_size);
if (!port_info->rx_desc_alloc) {
printf(SHETHER_NAME ": memalign failed\n");
ret = -ENOMEM;
goto err;
}
flush_cache_wback(port_info->rx_desc_alloc, alloc_desc_size);
/* Make sure we use a P2 address (non-cacheable) */
port_info->rx_desc_base =
(struct rx_desc_s *)ADDR_TO_P2((u32)port_info->rx_desc_alloc);
port_info->rx_desc_cur = port_info->rx_desc_base;
/*
* Allocate rx data buffers. They must be RX_BUF_ALIGNE_SIZE bytes
* aligned and in P2 area.
*/
port_info->rx_buf_alloc =
memalign(RX_BUF_ALIGNE_SIZE, NUM_RX_DESC * MAX_BUF_SIZE);
if (!port_info->rx_buf_alloc) {
printf(SHETHER_NAME ": alloc failed\n");
ret = -ENOMEM;
goto err_buf_alloc;
}
port_info->rx_buf_base = (u8 *)ADDR_TO_P2((u32)port_info->rx_buf_alloc);
/* Initialize all descriptors */
for (cur_rx_desc = port_info->rx_desc_base,
rx_buf = port_info->rx_buf_base, i = 0;
i < NUM_RX_DESC; cur_rx_desc++, rx_buf += MAX_BUF_SIZE, i++) {
cur_rx_desc->rd0 = RD_RACT;
cur_rx_desc->rd1 = MAX_BUF_SIZE << 16;
cur_rx_desc->rd2 = (u32)ADDR_TO_PHY(rx_buf);
}
/* Mark the end of the descriptors */
cur_rx_desc--;
cur_rx_desc->rd0 |= RD_RDLE;
/* Point the controller to the rx descriptor list */
sh_eth_write(port_info, ADDR_TO_PHY(port_info->rx_desc_base), RDLAR);
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(port_info, ADDR_TO_PHY(port_info->rx_desc_base), RDFAR);
sh_eth_write(port_info, ADDR_TO_PHY(cur_rx_desc), RDFXR);
sh_eth_write(port_info, RDFFR_RDLF, RDFFR);
#endif
return ret;
err_buf_alloc:
free(port_info->rx_desc_alloc);
port_info->rx_desc_alloc = NULL;
err:
return ret;
}
static void sh_eth_tx_desc_free(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
if (port_info->tx_desc_alloc) {
free(port_info->tx_desc_alloc);
port_info->tx_desc_alloc = NULL;
}
}
static void sh_eth_rx_desc_free(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
if (port_info->rx_desc_alloc) {
free(port_info->rx_desc_alloc);
port_info->rx_desc_alloc = NULL;
}
if (port_info->rx_buf_alloc) {
free(port_info->rx_buf_alloc);
port_info->rx_buf_alloc = NULL;
}
}
static int sh_eth_desc_init(struct sh_eth_dev *eth)
{
int ret = 0;
ret = sh_eth_tx_desc_init(eth);
if (ret)
goto err_tx_init;
ret = sh_eth_rx_desc_init(eth);
if (ret)
goto err_rx_init;
return ret;
err_rx_init:
sh_eth_tx_desc_free(eth);
err_tx_init:
return ret;
}
static void sh_eth_write_hwaddr(struct sh_eth_info *port_info,
unsigned char *mac)
{
u32 val;
val = (mac[0] << 24) | (mac[1] << 16) | (mac[2] << 8) | mac[3];
sh_eth_write(port_info, val, MAHR);
val = (mac[4] << 8) | mac[5];
sh_eth_write(port_info, val, MALR);
}
static void sh_eth_mac_regs_config(struct sh_eth_dev *eth, unsigned char *mac)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
/* Configure e-dmac registers */
sh_eth_write(port_info, (sh_eth_read(port_info, EDMR) & ~EMDR_DESC_R) |
(EMDR_DESC | EDMR_EL), EDMR);
sh_eth_write(port_info, 0, EESIPR);
sh_eth_write(port_info, 0, TRSCER);
sh_eth_write(port_info, 0, TFTR);
sh_eth_write(port_info, (FIFO_SIZE_T | FIFO_SIZE_R), FDR);
sh_eth_write(port_info, RMCR_RST, RMCR);
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(port_info, 0, RPADIR);
#endif
sh_eth_write(port_info, (FIFO_F_D_RFF | FIFO_F_D_RFD), FCFTR);
/* Configure e-mac registers */
sh_eth_write(port_info, 0, ECSIPR);
/* Set Mac address */
sh_eth_write_hwaddr(port_info, mac);
sh_eth_write(port_info, RFLR_RFL_MIN, RFLR);
#if defined(SH_ETH_TYPE_GETHER)
sh_eth_write(port_info, 0, PIPR);
#endif
#if defined(SH_ETH_TYPE_GETHER) || defined(SH_ETH_TYPE_RZ)
sh_eth_write(port_info, APR_AP, APR);
sh_eth_write(port_info, MPR_MP, MPR);
sh_eth_write(port_info, TPAUSER_TPAUSE, TPAUSER);
#endif
#if defined(CONFIG_CPU_SH7734) || defined(CONFIG_R8A7740)
sh_eth_write(port_info, CONFIG_SH_ETHER_SH7734_MII, RMII_MII);
#elif defined(CONFIG_RCAR_GEN2)
sh_eth_write(port_info, sh_eth_read(port_info, RMIIMR) | 0x1, RMIIMR);
#endif
}
static int sh_eth_phy_regs_config(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
struct phy_device *phy = port_info->phydev;
int ret = 0;
u32 val = 0;
/* Set the transfer speed */
if (phy->speed == 100) {
printf(SHETHER_NAME ": 100Base/");
#if defined(SH_ETH_TYPE_GETHER)
sh_eth_write(port_info, GECMR_100B, GECMR);
#elif defined(CONFIG_CPU_SH7757) || defined(CONFIG_CPU_SH7752)
sh_eth_write(port_info, 1, RTRATE);
#elif defined(CONFIG_CPU_SH7724) || defined(CONFIG_RCAR_GEN2)
val = ECMR_RTM;
#endif
} else if (phy->speed == 10) {
printf(SHETHER_NAME ": 10Base/");
#if defined(SH_ETH_TYPE_GETHER)
sh_eth_write(port_info, GECMR_10B, GECMR);
#elif defined(CONFIG_CPU_SH7757) || defined(CONFIG_CPU_SH7752)
sh_eth_write(port_info, 0, RTRATE);
#endif
}
#if defined(SH_ETH_TYPE_GETHER)
else if (phy->speed == 1000) {
printf(SHETHER_NAME ": 1000Base/");
sh_eth_write(port_info, GECMR_1000B, GECMR);
}
#endif
/* Check if full duplex mode is supported by the phy */
if (phy->duplex) {
printf("Full\n");
sh_eth_write(port_info,
val | (ECMR_CHG_DM | ECMR_RE | ECMR_TE | ECMR_DM),
ECMR);
} else {
printf("Half\n");
sh_eth_write(port_info,
val | (ECMR_CHG_DM | ECMR_RE | ECMR_TE),
ECMR);
}
return ret;
}
static void sh_eth_start(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
/*
* Enable the e-dmac receiver only. The transmitter will be enabled when
* we have something to transmit
*/
sh_eth_write(port_info, EDRRR_R, EDRRR);
}
static void sh_eth_stop(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
sh_eth_write(port_info, ~EDRRR_R, EDRRR);
}
static int sh_eth_init_common(struct sh_eth_dev *eth, unsigned char *mac)
{
int ret = 0;
ret = sh_eth_reset(eth);
if (ret)
return ret;
ret = sh_eth_desc_init(eth);
if (ret)
return ret;
sh_eth_mac_regs_config(eth, mac);
return 0;
}
static int sh_eth_start_common(struct sh_eth_dev *eth)
{
struct sh_eth_info *port_info = &eth->port_info[eth->port];
int ret;
ret = phy_startup(port_info->phydev);
if (ret) {
printf(SHETHER_NAME ": phy startup failure\n");
return ret;
}
ret = sh_eth_phy_regs_config(eth);
if (ret)
return ret;
sh_eth_start(eth);
return 0;
}
#ifndef CONFIG_DM_ETH
static int sh_eth_phy_config_legacy(struct sh_eth_dev *eth)
{
int ret = 0;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
struct eth_device *dev = port_info->dev;
struct phy_device *phydev;
phydev = phy_connect(
miiphy_get_dev_by_name(dev->name),
port_info->phy_addr, dev, CONFIG_SH_ETHER_PHY_MODE);
port_info->phydev = phydev;
phy_config(phydev);
return ret;
}
static int sh_eth_send_legacy(struct eth_device *dev, void *packet, int len)
{
struct sh_eth_dev *eth = dev->priv;
return sh_eth_send_common(eth, packet, len);
}
static int sh_eth_recv_common(struct sh_eth_dev *eth)
{
int len = 0;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
uchar *packet = (uchar *)ADDR_TO_P2(port_info->rx_desc_cur->rd2);
len = sh_eth_recv_start(eth);
if (len > 0) {
invalidate_cache(packet, len);
net_process_received_packet(packet, len);
sh_eth_recv_finish(eth);
} else
len = 0;
/* Restart the receiver if disabled */
if (!(sh_eth_read(port_info, EDRRR) & EDRRR_R))
sh_eth_write(port_info, EDRRR_R, EDRRR);
return len;
}
static int sh_eth_recv_legacy(struct eth_device *dev)
{
struct sh_eth_dev *eth = dev->priv;
return sh_eth_recv_common(eth);
}
static int sh_eth_init_legacy(struct eth_device *dev, bd_t *bd)
{
struct sh_eth_dev *eth = dev->priv;
int ret;
ret = sh_eth_init_common(eth, dev->enetaddr);
if (ret)
return ret;
ret = sh_eth_phy_config_legacy(eth);
if (ret) {
printf(SHETHER_NAME ": phy config timeout\n");
goto err_start;
}
ret = sh_eth_start_common(eth);
if (ret)
goto err_start;
return 0;
err_start:
sh_eth_tx_desc_free(eth);
sh_eth_rx_desc_free(eth);
return ret;
}
void sh_eth_halt_legacy(struct eth_device *dev)
{
struct sh_eth_dev *eth = dev->priv;
sh_eth_stop(eth);
}
int sh_eth_initialize(bd_t *bd)
{
int ret = 0;
struct sh_eth_dev *eth = NULL;
struct eth_device *dev = NULL;
struct mii_dev *mdiodev;
eth = (struct sh_eth_dev *)malloc(sizeof(struct sh_eth_dev));
if (!eth) {
printf(SHETHER_NAME ": %s: malloc failed\n", __func__);
ret = -ENOMEM;
goto err;
}
dev = (struct eth_device *)malloc(sizeof(struct eth_device));
if (!dev) {
printf(SHETHER_NAME ": %s: malloc failed\n", __func__);
ret = -ENOMEM;
goto err;
}
memset(dev, 0, sizeof(struct eth_device));
memset(eth, 0, sizeof(struct sh_eth_dev));
eth->port = CONFIG_SH_ETHER_USE_PORT;
eth->port_info[eth->port].phy_addr = CONFIG_SH_ETHER_PHY_ADDR;
eth->port_info[eth->port].iobase =
(void __iomem *)(BASE_IO_ADDR + 0x800 * eth->port);
dev->priv = (void *)eth;
dev->iobase = 0;
dev->init = sh_eth_init_legacy;
dev->halt = sh_eth_halt_legacy;
dev->send = sh_eth_send_legacy;
dev->recv = sh_eth_recv_legacy;
eth->port_info[eth->port].dev = dev;
strcpy(dev->name, SHETHER_NAME);
/* Register Device to EtherNet subsystem */
eth_register(dev);
bb_miiphy_buses[0].priv = eth;
mdiodev = mdio_alloc();
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
mdiodev->read = bb_miiphy_read;
mdiodev->write = bb_miiphy_write;
ret = mdio_register(mdiodev);
if (ret < 0)
return ret;
if (!eth_env_get_enetaddr("ethaddr", dev->enetaddr))
puts("Please set MAC address\n");
return ret;
err:
if (dev)
free(dev);
if (eth)
free(eth);
printf(SHETHER_NAME ": Failed\n");
return ret;
}
#else /* CONFIG_DM_ETH */
struct sh_ether_priv {
struct sh_eth_dev shdev;
struct mii_dev *bus;
phys_addr_t iobase;
struct clk clk;
struct gpio_desc reset_gpio;
};
static int sh_ether_send(struct udevice *dev, void *packet, int len)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
struct sh_eth_dev *eth = &priv->shdev;
return sh_eth_send_common(eth, packet, len);
}
static int sh_ether_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
struct sh_eth_dev *eth = &priv->shdev;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
uchar *packet = (uchar *)ADDR_TO_P2(port_info->rx_desc_cur->rd2);
int len;
len = sh_eth_recv_start(eth);
if (len > 0) {
invalidate_cache(packet, len);
*packetp = packet;
return len;
} else {
len = 0;
/* Restart the receiver if disabled */
if (!(sh_eth_read(port_info, EDRRR) & EDRRR_R))
sh_eth_write(port_info, EDRRR_R, EDRRR);
return -EAGAIN;
}
}
static int sh_ether_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
struct sh_eth_dev *eth = &priv->shdev;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
sh_eth_recv_finish(eth);
/* Restart the receiver if disabled */
if (!(sh_eth_read(port_info, EDRRR) & EDRRR_R))
sh_eth_write(port_info, EDRRR_R, EDRRR);
return 0;
}
static int sh_ether_write_hwaddr(struct udevice *dev)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
struct sh_eth_dev *eth = &priv->shdev;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
struct eth_pdata *pdata = dev_get_platdata(dev);
sh_eth_write_hwaddr(port_info, pdata->enetaddr);
return 0;
}
static int sh_eth_phy_config(struct udevice *dev)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
struct sh_eth_dev *eth = &priv->shdev;
int ret = 0;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
struct phy_device *phydev;
int mask = 0xffffffff;
phydev = phy_find_by_mask(priv->bus, mask, pdata->phy_interface);
if (!phydev)
return -ENODEV;
phy_connect_dev(phydev, dev);
port_info->phydev = phydev;
phy_config(phydev);
return ret;
}
static int sh_ether_start(struct udevice *dev)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
struct eth_pdata *pdata = dev_get_platdata(dev);
struct sh_eth_dev *eth = &priv->shdev;
int ret;
ret = clk_enable(&priv->clk);
if (ret)
return ret;
ret = sh_eth_init_common(eth, pdata->enetaddr);
if (ret)
goto err_clk;
ret = sh_eth_phy_config(dev);
if (ret) {
printf(SHETHER_NAME ": phy config timeout\n");
goto err_start;
}
ret = sh_eth_start_common(eth);
if (ret)
goto err_start;
return 0;
err_start:
sh_eth_tx_desc_free(eth);
sh_eth_rx_desc_free(eth);
err_clk:
clk_disable(&priv->clk);
return ret;
}
static void sh_ether_stop(struct udevice *dev)
{
struct sh_ether_priv *priv = dev_get_priv(dev);
sh_eth_stop(&priv->shdev);
clk_disable(&priv->clk);
}
static int sh_ether_probe(struct udevice *udev)
{
struct eth_pdata *pdata = dev_get_platdata(udev);
struct sh_ether_priv *priv = dev_get_priv(udev);
struct sh_eth_dev *eth = &priv->shdev;
struct mii_dev *mdiodev;
int ret;
priv->iobase = pdata->iobase;
ret = clk_get_by_index(udev, 0, &priv->clk);
if (ret < 0)
return ret;
gpio_request_by_name(udev, "reset-gpios", 0, &priv->reset_gpio,
GPIOD_IS_OUT);
mdiodev = mdio_alloc();
if (!mdiodev) {
ret = -ENOMEM;
return ret;
}
mdiodev->read = bb_miiphy_read;
mdiodev->write = bb_miiphy_write;
bb_miiphy_buses[0].priv = eth;
snprintf(mdiodev->name, sizeof(mdiodev->name), udev->name);
ret = mdio_register(mdiodev);
if (ret < 0)
goto err_mdio_register;
priv->bus = miiphy_get_dev_by_name(udev->name);
eth->port = CONFIG_SH_ETHER_USE_PORT;
eth->port_info[eth->port].phy_addr = CONFIG_SH_ETHER_PHY_ADDR;
eth->port_info[eth->port].iobase =
(void __iomem *)(BASE_IO_ADDR + 0x800 * eth->port);
return 0;
err_mdio_register:
mdio_free(mdiodev);
return ret;
}
static int sh_ether_remove(struct udevice *udev)
{
struct sh_ether_priv *priv = dev_get_priv(udev);
struct sh_eth_dev *eth = &priv->shdev;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
free(port_info->phydev);
mdio_unregister(priv->bus);
mdio_free(priv->bus);
if (dm_gpio_is_valid(&priv->reset_gpio))
dm_gpio_free(udev, &priv->reset_gpio);
return 0;
}
static const struct eth_ops sh_ether_ops = {
.start = sh_ether_start,
.send = sh_ether_send,
.recv = sh_ether_recv,
.free_pkt = sh_ether_free_pkt,
.stop = sh_ether_stop,
.write_hwaddr = sh_ether_write_hwaddr,
};
int sh_ether_ofdata_to_platdata(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_platdata(dev);
const char *phy_mode;
const fdt32_t *cell;
int ret = 0;
pdata->iobase = devfdt_get_addr(dev);
pdata->phy_interface = -1;
phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
NULL);
if (phy_mode)
pdata->phy_interface = phy_get_interface_by_name(phy_mode);
if (pdata->phy_interface == -1) {
debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
return -EINVAL;
}
pdata->max_speed = 1000;
cell = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "max-speed", NULL);
if (cell)
pdata->max_speed = fdt32_to_cpu(*cell);
sprintf(bb_miiphy_buses[0].name, dev->name);
return ret;
}
static const struct udevice_id sh_ether_ids[] = {
{ .compatible = "renesas,ether-r8a7791" },
{ }
};
U_BOOT_DRIVER(eth_sh_ether) = {
.name = "sh_ether",
.id = UCLASS_ETH,
.of_match = sh_ether_ids,
.ofdata_to_platdata = sh_ether_ofdata_to_platdata,
.probe = sh_ether_probe,
.remove = sh_ether_remove,
.ops = &sh_ether_ops,
.priv_auto_alloc_size = sizeof(struct sh_ether_priv),
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
.flags = DM_FLAG_ALLOC_PRIV_DMA,
};
#endif
/******* for bb_miiphy *******/
static int sh_eth_bb_init(struct bb_miiphy_bus *bus)
{
return 0;
}
static int sh_eth_bb_mdio_active(struct bb_miiphy_bus *bus)
{
struct sh_eth_dev *eth = bus->priv;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
sh_eth_write(port_info, sh_eth_read(port_info, PIR) | PIR_MMD, PIR);
return 0;
}
static int sh_eth_bb_mdio_tristate(struct bb_miiphy_bus *bus)
{
struct sh_eth_dev *eth = bus->priv;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
sh_eth_write(port_info, sh_eth_read(port_info, PIR) & ~PIR_MMD, PIR);
return 0;
}
static int sh_eth_bb_set_mdio(struct bb_miiphy_bus *bus, int v)
{
struct sh_eth_dev *eth = bus->priv;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
if (v)
sh_eth_write(port_info,
sh_eth_read(port_info, PIR) | PIR_MDO, PIR);
else
sh_eth_write(port_info,
sh_eth_read(port_info, PIR) & ~PIR_MDO, PIR);
return 0;
}
static int sh_eth_bb_get_mdio(struct bb_miiphy_bus *bus, int *v)
{
struct sh_eth_dev *eth = bus->priv;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
*v = (sh_eth_read(port_info, PIR) & PIR_MDI) >> 3;
return 0;
}
static int sh_eth_bb_set_mdc(struct bb_miiphy_bus *bus, int v)
{
struct sh_eth_dev *eth = bus->priv;
struct sh_eth_info *port_info = &eth->port_info[eth->port];
if (v)
sh_eth_write(port_info,
sh_eth_read(port_info, PIR) | PIR_MDC, PIR);
else
sh_eth_write(port_info,
sh_eth_read(port_info, PIR) & ~PIR_MDC, PIR);
return 0;
}
static int sh_eth_bb_delay(struct bb_miiphy_bus *bus)
{
udelay(10);
return 0;
}
struct bb_miiphy_bus bb_miiphy_buses[] = {
{
.name = "sh_eth",
.init = sh_eth_bb_init,
.mdio_active = sh_eth_bb_mdio_active,
.mdio_tristate = sh_eth_bb_mdio_tristate,
.set_mdio = sh_eth_bb_set_mdio,
.get_mdio = sh_eth_bb_get_mdio,
.set_mdc = sh_eth_bb_set_mdc,
.delay = sh_eth_bb_delay,
}
};
int bb_miiphy_buses_num = ARRAY_SIZE(bb_miiphy_buses);