u-boot/board/prodrive/alpr/nand.c
Stefan Roese 899620c2d6 Add initial support for the ALPR board from Prodrive
NAND needs some additional testing
Patch by Heiko Schocher, 15 Aug 2006
2006-08-15 14:22:35 +02:00

272 lines
6.3 KiB
C

/*
* (C) Copyright 2006
* Heiko Schocher, DENX Software Engineering, hs@denx.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/io.h>
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
#include <nand.h>
#if 0
#define HS_printf(fmt,arg...) \
printf("HS %s %s: " fmt,__FILE__, __FUNCTION__, ##arg)
#else
#define HS_printf(fmt,arg...) \
do { } while (0)
#endif
#if 0
#define CPLD_REG uchar
#else
#define CPLD_REG u16
#endif
struct alpr_ndfc_regs {
CPLD_REG cmd[4];
CPLD_REG addr_wait;
CPLD_REG term;
CPLD_REG dummy;
uchar dum2[2];
CPLD_REG data;
};
static u8 hwctl;
static struct alpr_ndfc_regs *alpr_ndfc;
static int alpr_chip = 0;
#if 1
static int pdnb3_nand_dev_ready(struct mtd_info *mtd);
#if 1
static u_char alpr_read (void *padr) {
return (u_char )*((u16 *)(padr));
}
#else
static u_char alpr_read (void *padr) {
u16 hilf;
u_char ret = 0;
hilf = *((u16 *)(padr));
ret = hilf;
printf("%p hilf: %x ret: %x\n", padr, hilf, ret);
return ret;
}
#endif
static void alpr_write (u_char byte, void *padr) {
HS_printf("%p Byte: %x\n", padr, byte);
*(volatile u16 *)padr = (u16)(byte);
}
#elif 0
#define alpr_read(a) (*(volatile u16 *) (a))
#define alpr_write(a, b) ((*(volatile u16 *) (a)) = (b))
#else
#define alpr_read(a) readw(a)
#define alpr_write(a, b) writew(a, b)
#endif
/*
* The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to
* the NAND devices. The NDFC has command, address and data registers that
* when accessed will set up the NAND flash pins appropriately. We'll use the
* hwcontrol function to save the configuration in a global variable.
* We can then use this information in the read and write functions to
* determine which NDFC register to access.
*
* There are 2 NAND devices on the board, a Hynix HY27US08561A (32 MByte).
*/
static void pdnb3_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
HS_printf("cmd: %x\n", cmd);
switch (cmd) {
case NAND_CTL_SETCLE:
hwctl |= 0x1;
break;
case NAND_CTL_CLRCLE:
hwctl &= ~0x1;
break;
case NAND_CTL_SETALE:
hwctl |= 0x2;
break;
case NAND_CTL_CLRALE:
hwctl &= ~0x2;
break;
case NAND_CTL_SETNCE:
break;
case NAND_CTL_CLRNCE:
alpr_write(0x00, &(alpr_ndfc->term));
break;
}
}
static void pdnb3_nand_write_byte(struct mtd_info *mtd, u_char byte)
{
HS_printf("hwctl: %x %x %x %x\n", hwctl, byte, &(alpr_ndfc->cmd[alpr_chip]), &(alpr_ndfc->addr_wait));
if (hwctl & 0x1)
alpr_write(byte, &(alpr_ndfc->cmd[alpr_chip]));
else if (hwctl & 0x2) {
alpr_write(byte, &(alpr_ndfc->addr_wait));
} else
alpr_write(byte, &(alpr_ndfc->data));
}
static u_char pdnb3_nand_read_byte(struct mtd_info *mtd)
{
return alpr_read(&(alpr_ndfc->data));
}
static void pdnb3_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
/*printf("%s chip:%d hwctl:%x size:%d\n", __FUNCTION__, alpr_chip, hwctl, len);*/
for (i = 0; i < len; i++) {
if (hwctl & 0x1)
alpr_write(buf[i], &(alpr_ndfc->cmd[alpr_chip]));
else if (hwctl & 0x2) {
alpr_write(buf[i], &(alpr_ndfc->addr_wait));
} else {
alpr_write(buf[i], &(alpr_ndfc->data));
/*printf("i: %d\n", i);*/
}
}
}
static void pdnb3_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
int i;
for (i = 0; i < len; i++) {
buf[i] = alpr_read(&(alpr_ndfc->data));
}
}
static int pdnb3_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
int i;
for (i = 0; i < len; i++)
if (buf[i] != alpr_read(&(alpr_ndfc->data)))
return i;
return 0;
}
static int pdnb3_nand_dev_ready(struct mtd_info *mtd)
{
#if 1
volatile u_char val;
/*printf("%s aufruf\n", __FUNCTION__);*/
/*
* Blocking read to wait for NAND to be ready
*/
val = alpr_read(&(alpr_ndfc->addr_wait));
/*
* Return always true
*/
return 1;
#else
u8 hwctl_org = hwctl;
unsigned long timeo;
u8 val;
hwctl = 0x01;
pdnb3_nand_write_byte (mtd, NAND_CMD_STATUS);
hwctl = hwctl_org;
reset_timer();
while (1) {
if (get_timer(0) > timeo) {
printf("Timeout!");
return 0;
}
val = pdnb3_nand_read_byte(mtd);
/*printf("%s val: %x\n", __FUNCTION__, val);*/
if (val & NAND_STATUS_READY)
break;
}
return 1;
#endif
}
static void alpr_select_chip(struct mtd_info *mtd, int chip)
{
alpr_chip = chip;
}
static int alpr_nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
unsigned long timeo;
if (state == FL_ERASING)
timeo = CFG_HZ * 400;
else
timeo = CFG_HZ * 20;
if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
else
this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
reset_timer();
while (1) {
if (get_timer(0) > timeo) {
printf("Timeout!");
return 0;
}
if (this->read_byte(mtd) & NAND_STATUS_READY)
break;
}
return this->read_byte(mtd);
}
void board_nand_init(struct nand_chip *nand)
{
alpr_ndfc = (struct alpr_ndfc_regs *)CFG_NAND_BASE;
nand->eccmode = NAND_ECC_SOFT;
/* Set address of NAND IO lines (Using Linear Data Access Region) */
nand->IO_ADDR_R = (void __iomem *) ((ulong) alpr_ndfc + 0x10);
nand->IO_ADDR_W = (void __iomem *) ((ulong) alpr_ndfc + 0x10);
/* Reference hardware control function */
nand->hwcontrol = pdnb3_nand_hwcontrol;
/* Set command delay time */
nand->hwcontrol = pdnb3_nand_hwcontrol;
nand->write_byte = pdnb3_nand_write_byte;
nand->read_byte = pdnb3_nand_read_byte;
nand->write_buf = pdnb3_nand_write_buf;
nand->read_buf = pdnb3_nand_read_buf;
nand->verify_buf = pdnb3_nand_verify_buf;
nand->dev_ready = pdnb3_nand_dev_ready;
nand->select_chip = alpr_select_chip;
nand->waitfunc = alpr_nand_wait;
}
#endif