u-boot/lib/efi_loader/efi_runtime.c
Heinrich Schuchardt e706ed7f5b efi_loader: implement EFI_RESET_SHUTDOWN at boot time
Allow an EFI application to shut down the system.

If EFI_RESET_SHUTDOWN is issued call do_poweroff().

Signed-off-by: Heinrich Schuchardt <xypron.glpk@gmx.de>
Signed-off-by: Alexander Graf <agraf@suse.de>
2018-12-02 21:59:36 +01:00

682 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI application runtime services
*
* Copyright (c) 2016 Alexander Graf
*/
#include <common.h>
#include <command.h>
#include <dm.h>
#include <elf.h>
#include <efi_loader.h>
#include <rtc.h>
/* For manual relocation support */
DECLARE_GLOBAL_DATA_PTR;
struct efi_runtime_mmio_list {
struct list_head link;
void **ptr;
u64 paddr;
u64 len;
};
/* This list contains all runtime available mmio regions */
LIST_HEAD(efi_runtime_mmio);
static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void);
static efi_status_t __efi_runtime EFIAPI efi_device_error(void);
static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void);
/*
* TODO(sjg@chromium.org): These defines and structures should come from the ELF
* header for each architecture (or a generic header) rather than being repeated
* here.
*/
#if defined(__aarch64__)
#define R_RELATIVE R_AARCH64_RELATIVE
#define R_MASK 0xffffffffULL
#define IS_RELA 1
#elif defined(__arm__)
#define R_RELATIVE R_ARM_RELATIVE
#define R_MASK 0xffULL
#elif defined(__i386__)
#define R_RELATIVE R_386_RELATIVE
#define R_MASK 0xffULL
#elif defined(__x86_64__)
#define R_RELATIVE R_X86_64_RELATIVE
#define R_MASK 0xffffffffULL
#define IS_RELA 1
#elif defined(__riscv)
#define R_RELATIVE R_RISCV_RELATIVE
#define R_MASK 0xffULL
#define IS_RELA 1
struct dyn_sym {
ulong foo1;
ulong addr;
u32 foo2;
u32 foo3;
};
#if (__riscv_xlen == 32)
#define R_ABSOLUTE R_RISCV_32
#define SYM_INDEX 8
#elif (__riscv_xlen == 64)
#define R_ABSOLUTE R_RISCV_64
#define SYM_INDEX 32
#else
#error unknown riscv target
#endif
#else
#error Need to add relocation awareness
#endif
struct elf_rel {
ulong *offset;
ulong info;
};
struct elf_rela {
ulong *offset;
ulong info;
long addend;
};
/*
* EFI runtime code lives in two stages. In the first stage, U-Boot and an EFI
* payload are running concurrently at the same time. In this mode, we can
* handle a good number of runtime callbacks
*/
/**
* efi_update_table_header_crc32() - Update crc32 in table header
*
* @table: EFI table
*/
void __efi_runtime efi_update_table_header_crc32(struct efi_table_hdr *table)
{
table->crc32 = 0;
table->crc32 = crc32(0, (const unsigned char *)table,
table->headersize);
}
/**
* efi_reset_system_boottime() - reset system at boot time
*
* This function implements the ResetSystem() runtime service before
* SetVirtualAddressMap() is called.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @reset_type: type of reset to perform
* @reset_status: status code for the reset
* @data_size: size of reset_data
* @reset_data: information about the reset
*/
static void EFIAPI efi_reset_system_boottime(
enum efi_reset_type reset_type,
efi_status_t reset_status,
unsigned long data_size, void *reset_data)
{
struct efi_event *evt;
EFI_ENTRY("%d %lx %lx %p", reset_type, reset_status, data_size,
reset_data);
/* Notify reset */
list_for_each_entry(evt, &efi_events, link) {
if (evt->group &&
!guidcmp(evt->group,
&efi_guid_event_group_reset_system)) {
efi_signal_event(evt, false);
break;
}
}
switch (reset_type) {
case EFI_RESET_COLD:
case EFI_RESET_WARM:
case EFI_RESET_PLATFORM_SPECIFIC:
do_reset(NULL, 0, 0, NULL);
break;
case EFI_RESET_SHUTDOWN:
#ifdef CONFIG_CMD_POWEROFF
do_poweroff(NULL, 0, 0, NULL);
#endif
break;
}
while (1) { }
}
/**
* efi_get_time_boottime() - get current time at boot time
*
* This function implements the GetTime runtime service before
* SetVirtualAddressMap() is called.
*
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* @time: pointer to structure to receive current time
* @capabilities: pointer to structure to receive RTC properties
* Returns: status code
*/
static efi_status_t EFIAPI efi_get_time_boottime(
struct efi_time *time,
struct efi_time_cap *capabilities)
{
#ifdef CONFIG_DM_RTC
efi_status_t ret = EFI_SUCCESS;
int r;
struct rtc_time tm;
struct udevice *dev;
EFI_ENTRY("%p %p", time, capabilities);
if (!time) {
ret = EFI_INVALID_PARAMETER;
goto out;
}
r = uclass_get_device(UCLASS_RTC, 0, &dev);
if (!r)
r = dm_rtc_get(dev, &tm);
if (r) {
ret = EFI_DEVICE_ERROR;
goto out;
}
memset(time, 0, sizeof(*time));
time->year = tm.tm_year;
time->month = tm.tm_mon;
time->day = tm.tm_mday;
time->hour = tm.tm_hour;
time->minute = tm.tm_min;
time->second = tm.tm_sec;
time->daylight = EFI_TIME_ADJUST_DAYLIGHT;
if (tm.tm_isdst > 0)
time->daylight |= EFI_TIME_IN_DAYLIGHT;
time->timezone = EFI_UNSPECIFIED_TIMEZONE;
if (capabilities) {
/* Set reasonable dummy values */
capabilities->resolution = 1; /* 1 Hz */
capabilities->accuracy = 100000000; /* 100 ppm */
capabilities->sets_to_zero = false;
}
out:
return EFI_EXIT(ret);
#else
EFI_ENTRY("%p %p", time, capabilities);
return EFI_EXIT(EFI_DEVICE_ERROR);
#endif
}
/**
* efi_reset_system() - reset system
*
* This function implements the ResetSystem() runtime service after
* SetVirtualAddressMap() is called. It only executes an endless loop.
* Boards may override the helpers below to implement reset functionality.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @reset_type: type of reset to perform
* @reset_status: status code for the reset
* @data_size: size of reset_data
* @reset_data: information about the reset
*/
void __weak __efi_runtime EFIAPI efi_reset_system(
enum efi_reset_type reset_type,
efi_status_t reset_status,
unsigned long data_size, void *reset_data)
{
/* Nothing we can do */
while (1) { }
}
/**
* efi_reset_system_init() - initialize the reset driver
*
* Boards may override this function to initialize the reset driver.
*/
efi_status_t __weak efi_reset_system_init(void)
{
return EFI_SUCCESS;
}
/**
* efi_get_time() - get current time
*
* This function implements the GetTime runtime service after
* SetVirtualAddressMap() is called. As the U-Boot driver are not available
* anymore only an error code is returned.
*
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* @time: pointer to structure to receive current time
* @capabilities: pointer to structure to receive RTC properties
* Returns: status code
*/
efi_status_t __weak __efi_runtime EFIAPI efi_get_time(
struct efi_time *time,
struct efi_time_cap *capabilities)
{
/* Nothing we can do */
return EFI_DEVICE_ERROR;
}
struct efi_runtime_detach_list_struct {
void *ptr;
void *patchto;
};
static const struct efi_runtime_detach_list_struct efi_runtime_detach_list[] = {
{
/* do_reset is gone */
.ptr = &efi_runtime_services.reset_system,
.patchto = efi_reset_system,
}, {
/* invalidate_*cache_all are gone */
.ptr = &efi_runtime_services.set_virtual_address_map,
.patchto = &efi_invalid_parameter,
}, {
/* RTC accessors are gone */
.ptr = &efi_runtime_services.get_time,
.patchto = &efi_get_time,
}, {
/* Clean up system table */
.ptr = &systab.con_in,
.patchto = NULL,
}, {
/* Clean up system table */
.ptr = &systab.con_out,
.patchto = NULL,
}, {
/* Clean up system table */
.ptr = &systab.std_err,
.patchto = NULL,
}, {
/* Clean up system table */
.ptr = &systab.boottime,
.patchto = NULL,
}, {
.ptr = &efi_runtime_services.get_variable,
.patchto = &efi_device_error,
}, {
.ptr = &efi_runtime_services.get_next_variable_name,
.patchto = &efi_device_error,
}, {
.ptr = &efi_runtime_services.set_variable,
.patchto = &efi_device_error,
}
};
static bool efi_runtime_tobedetached(void *p)
{
int i;
for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++)
if (efi_runtime_detach_list[i].ptr == p)
return true;
return false;
}
static void efi_runtime_detach(ulong offset)
{
int i;
ulong patchoff = offset - (ulong)gd->relocaddr;
for (i = 0; i < ARRAY_SIZE(efi_runtime_detach_list); i++) {
ulong patchto = (ulong)efi_runtime_detach_list[i].patchto;
ulong *p = efi_runtime_detach_list[i].ptr;
ulong newaddr = patchto ? (patchto + patchoff) : 0;
debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
*p = newaddr;
}
/* Update CRC32 */
efi_update_table_header_crc32(&efi_runtime_services.hdr);
}
/* Relocate EFI runtime to uboot_reloc_base = offset */
void efi_runtime_relocate(ulong offset, struct efi_mem_desc *map)
{
#ifdef IS_RELA
struct elf_rela *rel = (void*)&__efi_runtime_rel_start;
#else
struct elf_rel *rel = (void*)&__efi_runtime_rel_start;
static ulong lastoff = CONFIG_SYS_TEXT_BASE;
#endif
debug("%s: Relocating to offset=%lx\n", __func__, offset);
for (; (ulong)rel < (ulong)&__efi_runtime_rel_stop; rel++) {
ulong base = CONFIG_SYS_TEXT_BASE;
ulong *p;
ulong newaddr;
p = (void*)((ulong)rel->offset - base) + gd->relocaddr;
debug("%s: rel->info=%#lx *p=%#lx rel->offset=%p\n", __func__,
rel->info, *p, rel->offset);
switch (rel->info & R_MASK) {
case R_RELATIVE:
#ifdef IS_RELA
newaddr = rel->addend + offset - CONFIG_SYS_TEXT_BASE;
#else
newaddr = *p - lastoff + offset;
#endif
break;
#ifdef R_ABSOLUTE
case R_ABSOLUTE: {
ulong symidx = rel->info >> SYM_INDEX;
extern struct dyn_sym __dyn_sym_start[];
newaddr = __dyn_sym_start[symidx].addr + offset;
break;
}
#endif
default:
if (!efi_runtime_tobedetached(p))
printf("%s: Unknown relocation type %llx\n",
__func__, rel->info & R_MASK);
continue;
}
/* Check if the relocation is inside bounds */
if (map && ((newaddr < map->virtual_start) ||
newaddr > (map->virtual_start +
(map->num_pages << EFI_PAGE_SHIFT)))) {
if (!efi_runtime_tobedetached(p))
printf("%s: Relocation at %p is out of "
"range (%lx)\n", __func__, p, newaddr);
continue;
}
debug("%s: Setting %p to %lx\n", __func__, p, newaddr);
*p = newaddr;
flush_dcache_range((ulong)p & ~(EFI_CACHELINE_SIZE - 1),
ALIGN((ulong)&p[1], EFI_CACHELINE_SIZE));
}
#ifndef IS_RELA
lastoff = offset;
#endif
invalidate_icache_all();
}
/**
* efi_set_virtual_address_map() - change from physical to virtual mapping
*
* This function implements the SetVirtualAddressMap() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @memory_map_size: size of the virtual map
* @descriptor_size: size of an entry in the map
* @descriptor_version: version of the map entries
* @virtmap: virtual address mapping information
* Return: status code
*/
static efi_status_t EFIAPI efi_set_virtual_address_map(
unsigned long memory_map_size,
unsigned long descriptor_size,
uint32_t descriptor_version,
struct efi_mem_desc *virtmap)
{
ulong runtime_start = (ulong)&__efi_runtime_start &
~(ulong)EFI_PAGE_MASK;
int n = memory_map_size / descriptor_size;
int i;
EFI_ENTRY("%lx %lx %x %p", memory_map_size, descriptor_size,
descriptor_version, virtmap);
/* Rebind mmio pointers */
for (i = 0; i < n; i++) {
struct efi_mem_desc *map = (void*)virtmap +
(descriptor_size * i);
struct list_head *lhandle;
efi_physical_addr_t map_start = map->physical_start;
efi_physical_addr_t map_len = map->num_pages << EFI_PAGE_SHIFT;
efi_physical_addr_t map_end = map_start + map_len;
u64 off = map->virtual_start - map_start;
/* Adjust all mmio pointers in this region */
list_for_each(lhandle, &efi_runtime_mmio) {
struct efi_runtime_mmio_list *lmmio;
lmmio = list_entry(lhandle,
struct efi_runtime_mmio_list,
link);
if ((map_start <= lmmio->paddr) &&
(map_end >= lmmio->paddr)) {
uintptr_t new_addr = lmmio->paddr + off;
*lmmio->ptr = (void *)new_addr;
}
}
if ((map_start <= (uintptr_t)systab.tables) &&
(map_end >= (uintptr_t)systab.tables)) {
char *ptr = (char *)systab.tables;
ptr += off;
systab.tables = (struct efi_configuration_table *)ptr;
}
}
/* Move the actual runtime code over */
for (i = 0; i < n; i++) {
struct efi_mem_desc *map;
map = (void*)virtmap + (descriptor_size * i);
if (map->type == EFI_RUNTIME_SERVICES_CODE) {
ulong new_offset = map->virtual_start -
(runtime_start - gd->relocaddr);
efi_runtime_relocate(new_offset, map);
/* Once we're virtual, we can no longer handle
complex callbacks */
efi_runtime_detach(new_offset);
return EFI_EXIT(EFI_SUCCESS);
}
}
return EFI_EXIT(EFI_INVALID_PARAMETER);
}
/**
* efi_add_runtime_mmio() - add memory-mapped IO region
*
* This function adds a memory-mapped IO region to the memory map to make it
* available at runtime.
*
* @mmio_ptr: address of the memory-mapped IO region
* @len: size of the memory-mapped IO region
* Returns: status code
*/
efi_status_t efi_add_runtime_mmio(void *mmio_ptr, u64 len)
{
struct efi_runtime_mmio_list *newmmio;
u64 pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
uint64_t addr = *(uintptr_t *)mmio_ptr;
uint64_t retaddr;
retaddr = efi_add_memory_map(addr, pages, EFI_MMAP_IO, false);
if (retaddr != addr)
return EFI_OUT_OF_RESOURCES;
newmmio = calloc(1, sizeof(*newmmio));
if (!newmmio)
return EFI_OUT_OF_RESOURCES;
newmmio->ptr = mmio_ptr;
newmmio->paddr = *(uintptr_t *)mmio_ptr;
newmmio->len = len;
list_add_tail(&newmmio->link, &efi_runtime_mmio);
return EFI_SUCCESS;
}
/*
* In the second stage, U-Boot has disappeared. To isolate our runtime code
* that at this point still exists from the rest, we put it into a special
* section.
*
* !!WARNING!!
*
* This means that we can not rely on any code outside of this file in any
* function or variable below this line.
*
* Please keep everything fully self-contained and annotated with
* __efi_runtime and __efi_runtime_data markers.
*/
/*
* Relocate the EFI runtime stub to a different place. We need to call this
* the first time we expose the runtime interface to a user and on set virtual
* address map calls.
*/
/**
* efi_unimplemented() - replacement function, returns EFI_UNSUPPORTED
*
* This function is used after SetVirtualAddressMap() is called as replacement
* for services that are not available anymore due to constraints of the U-Boot
* implementation.
*
* Return: EFI_UNSUPPORTED
*/
static efi_status_t __efi_runtime EFIAPI efi_unimplemented(void)
{
return EFI_UNSUPPORTED;
}
/**
* efi_device_error() - replacement function, returns EFI_DEVICE_ERROR
*
* This function is used after SetVirtualAddressMap() is called as replacement
* for services that are not available anymore due to constraints of the U-Boot
* implementation.
*
* Return: EFI_DEVICE_ERROR
*/
static efi_status_t __efi_runtime EFIAPI efi_device_error(void)
{
return EFI_DEVICE_ERROR;
}
/**
* efi_invalid_parameter() - replacement function, returns EFI_INVALID_PARAMETER
*
* This function is used after SetVirtualAddressMap() is called as replacement
* for services that are not available anymore due to constraints of the U-Boot
* implementation.
*
* Return: EFI_INVALID_PARAMETER
*/
static efi_status_t __efi_runtime EFIAPI efi_invalid_parameter(void)
{
return EFI_INVALID_PARAMETER;
}
/**
* efi_update_capsule() - process information from operating system
*
* This function implements the UpdateCapsule() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @capsule_header_array: pointer to array of virtual pointers
* @capsule_count: number of pointers in capsule_header_array
* @scatter_gather_list: pointer to arry of physical pointers
* Returns: status code
*/
efi_status_t __efi_runtime EFIAPI efi_update_capsule(
struct efi_capsule_header **capsule_header_array,
efi_uintn_t capsule_count,
u64 scatter_gather_list)
{
return EFI_UNSUPPORTED;
}
/**
* efi_query_capsule_caps() - check if capsule is supported
*
* This function implements the QueryCapsuleCapabilities() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @capsule_header_array: pointer to array of virtual pointers
* @capsule_count: number of pointers in capsule_header_array
* @maximum_capsule_size: maximum capsule size
* @reset_type: type of reset needed for capsule update
* Returns: status code
*/
efi_status_t __efi_runtime EFIAPI efi_query_capsule_caps(
struct efi_capsule_header **capsule_header_array,
efi_uintn_t capsule_count,
u64 maximum_capsule_size,
u32 reset_type)
{
return EFI_UNSUPPORTED;
}
/**
* efi_query_variable_info() - get information about EFI variables
*
* This function implements the QueryVariableInfo() runtime service.
*
* See the Unified Extensible Firmware Interface (UEFI) specification for
* details.
*
* @attributes: bitmask to select variables to be
* queried
* @maximum_variable_storage_size: maximum size of storage area for the
* selected variable types
* @remaining_variable_storage_size: remaining size of storage are for the
* selected variable types
* @maximum_variable_size: maximum size of a variable of the
* selected type
* Returns: status code
*/
efi_status_t __efi_runtime EFIAPI efi_query_variable_info(
u32 attributes,
u64 *maximum_variable_storage_size,
u64 *remaining_variable_storage_size,
u64 *maximum_variable_size)
{
return EFI_UNSUPPORTED;
}
struct efi_runtime_services __efi_runtime_data efi_runtime_services = {
.hdr = {
.signature = EFI_RUNTIME_SERVICES_SIGNATURE,
.revision = EFI_SPECIFICATION_VERSION,
.headersize = sizeof(struct efi_runtime_services),
},
.get_time = &efi_get_time_boottime,
.set_time = (void *)&efi_device_error,
.get_wakeup_time = (void *)&efi_unimplemented,
.set_wakeup_time = (void *)&efi_unimplemented,
.set_virtual_address_map = &efi_set_virtual_address_map,
.convert_pointer = (void *)&efi_invalid_parameter,
.get_variable = efi_get_variable,
.get_next_variable_name = efi_get_next_variable_name,
.set_variable = efi_set_variable,
.get_next_high_mono_count = (void *)&efi_device_error,
.reset_system = &efi_reset_system_boottime,
.update_capsule = efi_update_capsule,
.query_capsule_caps = efi_query_capsule_caps,
.query_variable_info = efi_query_variable_info,
};