843400fd26
The following documents describe device details according to the i.MX family: - README.imx25 - README.imx27 - README.imx5 - README.imx6 - README.mxs Move all device common related document to doc/imx/common for a better directory structure. Signed-off-by: Breno Lima <breno.lima@nxp.com> |
||
---|---|---|
.. | ||
README.imx5 | ||
README.imx6 | ||
README.imx25 | ||
README.imx27 | ||
README.mxs |
Booting U-Boot on a MXS processor ================================= This document describes the MXS U-Boot port. This document mostly covers topics related to making the module/board bootable. Terminology ----------- The term "MXS" refers to a family of Freescale SoCs that is composed by MX23 and MX28. The dollar symbol ($) introduces a snipped of shell code. This shall be typed into the unix command prompt in U-Boot source code root directory. The (=>) introduces a snipped of code that should by typed into U-Boot command prompt Contents -------- 1) Prerequisites 2) Compiling U-Boot for a MXS based board 3) Installation of U-Boot for a MXS based board to SD card 4) Installation of U-Boot into NAND flash on a MX28 based board 5) Installation of U-Boot into SPI NOR flash on a MX28 based board 1) Prerequisites ---------------- To make a MXS based board bootable, some tools are necessary. The only mandatory tool is the "mxsboot" tool found in U-Boot source tree. The tool is built automatically when compiling U-Boot for i.MX23 or i.MX28. The production of BootStream image is handled via "mkimage", which is also part of the U-Boot source tree. The "mkimage" requires OpenSSL development libraries to be installed. In case of Debian and derivates, this is installed by running: $ sudo apt-get install libssl-dev NOTE: The "elftosb" tool distributed by Freescale Semiconductor is no longer necessary for general use of U-Boot on i.MX23 and i.MX28. The mkimage supports generation of BootStream images encrypted with a zero key, which is the vast majority of use-cases. In case you do need to produce image encrypted with non-zero key or other special features, please use the "elftosb" tool, otherwise continue to section 2). The installation procedure of the "elftosb" is outlined below: Firstly, obtain the elftosb archive from the following location: ftp://ftp.denx.de/pub/tools/elftosb-10.12.01.tar.gz We use a $VER variable here to denote the current version. At the time of writing of this document, that is "10.12.01". To obtain the file from command line, use: $ VER="10.12.01" $ wget ftp://ftp.denx.de/pub/tools/elftosb-${VER}.tar.gz Extract the file: $ tar xzf elftosb-${VER}.tar.gz Compile the file. We need to manually tell the linker to use also libm: $ cd elftosb-${VER}/ $ make LIBS="-lstdc++ -lm" elftosb Optionally, remove debugging symbols from elftosb: $ strip bld/linux/elftosb Finally, install the "elftosb" binary. The "install" target is missing, so just copy the binary by hand: $ sudo cp bld/linux/elftosb /usr/local/bin/ Make sure the "elftosb" binary can be found in your $PATH, in this case this means "/usr/local/bin/" has to be in your $PATH. 2) Compiling U-Boot for a MXS based board ------------------------------------------- Compiling the U-Boot for a MXS board is straightforward and done as compiling U-Boot for any other ARM device. For cross-compiler setup, please refer to ELDK5.0 documentation. First, clean up the source code: $ make mrproper Next, configure U-Boot for a MXS based board $ make <mxs_based_board_name>_config Examples: 1. For building U-Boot for Aries M28EVK board: $ make m28evk_config 2. For building U-Boot for Freescale MX28EVK board: $ make mx28evk_config 3. For building U-Boot for Freescale MX23EVK board: $ make mx23evk_config 4. For building U-Boot for Olimex MX23 Olinuxino board: $ make mx23_olinuxino_config Lastly, compile U-Boot and prepare a "BootStream". The "BootStream" is a special type of file, which MXS CPUs can boot. This is handled by the following command: $ make u-boot.sb HINT: To speed-up the build process, you can add -j<N>, where N is number of compiler instances that'll run in parallel. The code produces "u-boot.sb" file. This file needs to be augmented with a proper header to allow successful boot from SD or NAND. Adding the header is discussed in the following chapters. NOTE: The process that produces u-boot.sb uses the mkimage to generate the BootStream. The BootStream is encrypted with zero key. In case you need some special features of the BootStream and plan on using the "elftosb" tool instead, the invocation to produce a compatible BootStream with the one produced by mkimage is outlined below. For further details, refer to the documentation bundled with the "elftosb" package. $ elftosb -zf imx23 -c arch/arm/cpu/arm926ejs/mxs/u-boot-imx23.bd \ -o u-boot.sb $ elftosb -zf imx28 -c arch/arm/cpu/arm926ejs/mxs/u-boot-imx28.bd \ -o u-boot.sb 3) Installation of U-Boot for a MXS based board to SD card ---------------------------------------------------------- To boot a MXS based board from SD, set the boot mode DIP switches according to to MX28 manual, section 12.2.1 (Table 12-2) or MX23 manual, section 35.1.2 (Table 35-3). The SD card used to boot U-Boot must contain a DOS partition table, which in turn carries a partition of special type and which contains a special header. The rest of partitions in the DOS partition table can be used by the user. To prepare such partition, use your favourite partitioning tool. The partition must have the following parameters: * Start sector .......... sector 2048 * Partition size ........ at least 1024 kb * Partition type ........ 0x53 (sometimes "OnTrack DM6 Aux3") For example in Linux fdisk, the sequence for a clear card follows. Be sure to run fdisk with the option "-u=sectors" to set units to sectors: * o ..................... create a clear partition table * n ..................... create new partition * p ............. primary partition * 1 ............. first partition * 2048 .......... first sector is 2048 * +1M ........... make the partition 1Mb big * t 1 ................... change first partition ID * 53 ............ change the ID to 0x53 (OnTrack DM6 Aux3) * <create other partitions> * w ..................... write partition table to disk The partition layout is ready, next the special partition must be filled with proper contents. The contents is generated by running the following command (see chapter 2)): $ ./tools/mxsboot sd u-boot.sb u-boot.sd The resulting file, "u-boot.sd", shall then be written to the partition. In this case, we assume the first partition of the SD card is /dev/mmcblk0p1: $ dd if=u-boot.sd of=/dev/mmcblk0p1 Last step is to insert the card into the MXS based board and boot. NOTE: If the user needs to adjust the start sector, the "mxsboot" tool contains a "-p" switch for that purpose. The "-p" switch takes the sector number as an argument. 4) Installation of U-Boot into NAND flash on a MX28 based board --------------------------------------------------------------- To boot a MX28 based board from NAND, set the boot mode DIP switches according to MX28 manual section 12.2.1 (Table 12-2), PORT=GPMI, NAND 1.8 V. There are two possibilities when preparing an image writable to NAND flash. I) The NAND wasn't written at all yet or the BCB is broken ---------------------------------------------------------- In this case, both BCB (FCB and DBBT) and firmware needs to be written to NAND. To generate NAND image containing all these, there is a tool called "mxsboot" in the "tools/" directory. The tool is invoked on "u-boot.sb" file from chapter 2): $ ./tools/mxsboot nand u-boot.sb u-boot.nand NOTE: The above invokation works for NAND flash with geometry of 2048b per page, 64b OOB data, 128kb erase size. If your chip has a different geometry, please use: -w <size> change page size (default 2048 b) -o <size> change oob size (default 64 b) -e <size> change erase size (default 131072 b) The geometry information can be obtained from running U-Boot on the MX28 board by issuing the "nand info" command. The resulting file, "u-boot.nand" can be written directly to NAND from the U-Boot prompt. To simplify the process, the U-Boot default environment contains script "update_nand_full" to update the system. This script expects a working TFTP server containing the file "u-boot.nand" in it's root directory. This can be changed by adjusting the "update_nand_full_filename" variable. To update the system, run the following in U-Boot prompt: => run update_nand_full In case you would only need to update the bootloader in future, see II) below. II) The NAND was already written with a good BCB ------------------------------------------------ This part applies after the part I) above was done at least once. If part I) above was done correctly already, there is no need to write the FCB and DBBT parts of NAND again. It's possible to upgrade only the bootloader image. To simplify the process of firmware update, the U-Boot default environment contains script "update_nand_firmware" to update only the firmware, without rewriting FCB and DBBT. This script expects a working TFTP server containing the file "u-boot.sb" in it's root directory. This can be changed by adjusting the "update_nand_firmware_filename" variable. To update the system, run the following in U-Boot prompt: => run update_nand_firmware III) Special settings for the update scripts -------------------------------------------- There is a slight possibility of the user wanting to adjust the STRIDE and COUNT options of the NAND boot. For description of these, see MX28 manual section 12.12.1.2 and 12.12.1.3. The update scripts take this possibility into account. In case the user changes STRIDE by blowing fuses, the user also has to change "update_nand_stride" variable. In case the user changes COUNT by blowing fuses, the user also has to change "update_nand_count" variable for the update scripts to work correctly. In case the user needs to boot a firmware image bigger than 1Mb, the user has to adjust the "update_nand_firmware_maxsz" variable for the update scripts to work properly. 5) Installation of U-Boot into SPI NOR flash on a MX28 based board ------------------------------------------------------------------ The u-boot.sb file can be directly written to SPI NOR from U-Boot prompt. Load u-boot.sb into RAM, this can be done in several ways and one way is to use tftp: => tftp u-boot.sb 0x42000000 Probe the SPI NOR flash: => sf probe (SPI NOR should be succesfully detected in this step) Erase the blocks where U-Boot binary will be written to: => sf erase 0x0 0x80000 Write u-boot.sb to SPI NOR: => sf write 0x42000000 0 0x80000 Power off the board and set the boot mode DIP switches to boot from the SPI NOR according to MX28 manual section 12.2.1 (Table 12-2) Last step is to power up the board and U-Boot should start from SPI NOR.