u-boot/drivers/clk/rockchip/clk_rk3399.c
Jagan Teki b1bcd61665 clk: rk3399: Set empty for vopl assigned-clocks
During vidconsole probe, the device probe will try to
check whether the assigned clocks on that video console
node is initialized or not? and return an error if not.

But, unlike Linux U-Boot won't require to handle these
vopl assigned-clocks since core clocks are enough to
handle the video out to process.

So, mark them as empty in set_rate to satisfy clk_set_defaults
so-that probe happened properly.

Signed-off-by: Jagan Teki <jagan@amarulasolutions.com>
Reviewed-by: Kever Yang <kever.yang@rock-chips.com>
Tested-by: Peter Robinson <pbrobinson@gmail.com>
2020-04-02 15:44:56 +02:00

1428 lines
38 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2015 Google, Inc
* (C) 2017 Theobroma Systems Design und Consulting GmbH
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <dt-structs.h>
#include <errno.h>
#include <malloc.h>
#include <mapmem.h>
#include <syscon.h>
#include <bitfield.h>
#include <asm/io.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru.h>
#include <asm/arch-rockchip/hardware.h>
#include <dm/lists.h>
#include <dt-bindings/clock/rk3399-cru.h>
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3399_clk_plat {
struct dtd_rockchip_rk3399_cru dtd;
};
struct rk3399_pmuclk_plat {
struct dtd_rockchip_rk3399_pmucru dtd;
};
#endif
struct pll_div {
u32 refdiv;
u32 fbdiv;
u32 postdiv1;
u32 postdiv2;
u32 frac;
};
#define RATE_TO_DIV(input_rate, output_rate) \
((input_rate) / (output_rate) - 1)
#define DIV_TO_RATE(input_rate, div) ((input_rate) / ((div) + 1))
#define PLL_DIVISORS(hz, _refdiv, _postdiv1, _postdiv2) {\
.refdiv = _refdiv,\
.fbdiv = (u32)((u64)hz * _refdiv * _postdiv1 * _postdiv2 / OSC_HZ),\
.postdiv1 = _postdiv1, .postdiv2 = _postdiv2};
#if defined(CONFIG_SPL_BUILD)
static const struct pll_div gpll_init_cfg = PLL_DIVISORS(GPLL_HZ, 2, 2, 1);
static const struct pll_div cpll_init_cfg = PLL_DIVISORS(CPLL_HZ, 1, 2, 2);
#else
static const struct pll_div ppll_init_cfg = PLL_DIVISORS(PPLL_HZ, 2, 2, 1);
#endif
static const struct pll_div apll_l_1600_cfg = PLL_DIVISORS(1600 * MHz, 3, 1, 1);
static const struct pll_div apll_l_600_cfg = PLL_DIVISORS(600 * MHz, 1, 2, 1);
static const struct pll_div *apll_l_cfgs[] = {
[APLL_L_1600_MHZ] = &apll_l_1600_cfg,
[APLL_L_600_MHZ] = &apll_l_600_cfg,
};
static const struct pll_div apll_b_600_cfg = PLL_DIVISORS(600 * MHz, 1, 2, 1);
static const struct pll_div *apll_b_cfgs[] = {
[APLL_B_600_MHZ] = &apll_b_600_cfg,
};
enum {
/* PLL_CON0 */
PLL_FBDIV_MASK = 0xfff,
PLL_FBDIV_SHIFT = 0,
/* PLL_CON1 */
PLL_POSTDIV2_SHIFT = 12,
PLL_POSTDIV2_MASK = 0x7 << PLL_POSTDIV2_SHIFT,
PLL_POSTDIV1_SHIFT = 8,
PLL_POSTDIV1_MASK = 0x7 << PLL_POSTDIV1_SHIFT,
PLL_REFDIV_MASK = 0x3f,
PLL_REFDIV_SHIFT = 0,
/* PLL_CON2 */
PLL_LOCK_STATUS_SHIFT = 31,
PLL_LOCK_STATUS_MASK = 1 << PLL_LOCK_STATUS_SHIFT,
PLL_FRACDIV_MASK = 0xffffff,
PLL_FRACDIV_SHIFT = 0,
/* PLL_CON3 */
PLL_MODE_SHIFT = 8,
PLL_MODE_MASK = 3 << PLL_MODE_SHIFT,
PLL_MODE_SLOW = 0,
PLL_MODE_NORM,
PLL_MODE_DEEP,
PLL_DSMPD_SHIFT = 3,
PLL_DSMPD_MASK = 1 << PLL_DSMPD_SHIFT,
PLL_INTEGER_MODE = 1,
/* PMUCRU_CLKSEL_CON0 */
PMU_PCLK_DIV_CON_MASK = 0x1f,
PMU_PCLK_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON1 */
SPI3_PLL_SEL_SHIFT = 7,
SPI3_PLL_SEL_MASK = 1 << SPI3_PLL_SEL_SHIFT,
SPI3_PLL_SEL_24M = 0,
SPI3_PLL_SEL_PPLL = 1,
SPI3_DIV_CON_SHIFT = 0x0,
SPI3_DIV_CON_MASK = 0x7f,
/* PMUCRU_CLKSEL_CON2 */
I2C_DIV_CON_MASK = 0x7f,
CLK_I2C8_DIV_CON_SHIFT = 8,
CLK_I2C0_DIV_CON_SHIFT = 0,
/* PMUCRU_CLKSEL_CON3 */
CLK_I2C4_DIV_CON_SHIFT = 0,
/* CLKSEL_CON0 */
ACLKM_CORE_L_DIV_CON_SHIFT = 8,
ACLKM_CORE_L_DIV_CON_MASK = 0x1f << ACLKM_CORE_L_DIV_CON_SHIFT,
CLK_CORE_L_PLL_SEL_SHIFT = 6,
CLK_CORE_L_PLL_SEL_MASK = 3 << CLK_CORE_L_PLL_SEL_SHIFT,
CLK_CORE_L_PLL_SEL_ALPLL = 0x0,
CLK_CORE_L_PLL_SEL_ABPLL = 0x1,
CLK_CORE_L_PLL_SEL_DPLL = 0x10,
CLK_CORE_L_PLL_SEL_GPLL = 0x11,
CLK_CORE_L_DIV_MASK = 0x1f,
CLK_CORE_L_DIV_SHIFT = 0,
/* CLKSEL_CON1 */
PCLK_DBG_L_DIV_SHIFT = 0x8,
PCLK_DBG_L_DIV_MASK = 0x1f << PCLK_DBG_L_DIV_SHIFT,
ATCLK_CORE_L_DIV_SHIFT = 0,
ATCLK_CORE_L_DIV_MASK = 0x1f << ATCLK_CORE_L_DIV_SHIFT,
/* CLKSEL_CON2 */
ACLKM_CORE_B_DIV_CON_SHIFT = 8,
ACLKM_CORE_B_DIV_CON_MASK = 0x1f << ACLKM_CORE_B_DIV_CON_SHIFT,
CLK_CORE_B_PLL_SEL_SHIFT = 6,
CLK_CORE_B_PLL_SEL_MASK = 3 << CLK_CORE_B_PLL_SEL_SHIFT,
CLK_CORE_B_PLL_SEL_ALPLL = 0x0,
CLK_CORE_B_PLL_SEL_ABPLL = 0x1,
CLK_CORE_B_PLL_SEL_DPLL = 0x10,
CLK_CORE_B_PLL_SEL_GPLL = 0x11,
CLK_CORE_B_DIV_MASK = 0x1f,
CLK_CORE_B_DIV_SHIFT = 0,
/* CLKSEL_CON3 */
PCLK_DBG_B_DIV_SHIFT = 0x8,
PCLK_DBG_B_DIV_MASK = 0x1f << PCLK_DBG_B_DIV_SHIFT,
ATCLK_CORE_B_DIV_SHIFT = 0,
ATCLK_CORE_B_DIV_MASK = 0x1f << ATCLK_CORE_B_DIV_SHIFT,
/* CLKSEL_CON14 */
PCLK_PERIHP_DIV_CON_SHIFT = 12,
PCLK_PERIHP_DIV_CON_MASK = 0x7 << PCLK_PERIHP_DIV_CON_SHIFT,
HCLK_PERIHP_DIV_CON_SHIFT = 8,
HCLK_PERIHP_DIV_CON_MASK = 3 << HCLK_PERIHP_DIV_CON_SHIFT,
ACLK_PERIHP_PLL_SEL_SHIFT = 7,
ACLK_PERIHP_PLL_SEL_MASK = 1 << ACLK_PERIHP_PLL_SEL_SHIFT,
ACLK_PERIHP_PLL_SEL_CPLL = 0,
ACLK_PERIHP_PLL_SEL_GPLL = 1,
ACLK_PERIHP_DIV_CON_SHIFT = 0,
ACLK_PERIHP_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON21 */
ACLK_EMMC_PLL_SEL_SHIFT = 7,
ACLK_EMMC_PLL_SEL_MASK = 0x1 << ACLK_EMMC_PLL_SEL_SHIFT,
ACLK_EMMC_PLL_SEL_GPLL = 0x1,
ACLK_EMMC_DIV_CON_SHIFT = 0,
ACLK_EMMC_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON22 */
CLK_EMMC_PLL_SHIFT = 8,
CLK_EMMC_PLL_MASK = 0x7 << CLK_EMMC_PLL_SHIFT,
CLK_EMMC_PLL_SEL_GPLL = 0x1,
CLK_EMMC_PLL_SEL_24M = 0x5,
CLK_EMMC_DIV_CON_SHIFT = 0,
CLK_EMMC_DIV_CON_MASK = 0x7f << CLK_EMMC_DIV_CON_SHIFT,
/* CLKSEL_CON23 */
PCLK_PERILP0_DIV_CON_SHIFT = 12,
PCLK_PERILP0_DIV_CON_MASK = 0x7 << PCLK_PERILP0_DIV_CON_SHIFT,
HCLK_PERILP0_DIV_CON_SHIFT = 8,
HCLK_PERILP0_DIV_CON_MASK = 3 << HCLK_PERILP0_DIV_CON_SHIFT,
ACLK_PERILP0_PLL_SEL_SHIFT = 7,
ACLK_PERILP0_PLL_SEL_MASK = 1 << ACLK_PERILP0_PLL_SEL_SHIFT,
ACLK_PERILP0_PLL_SEL_CPLL = 0,
ACLK_PERILP0_PLL_SEL_GPLL = 1,
ACLK_PERILP0_DIV_CON_SHIFT = 0,
ACLK_PERILP0_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON25 */
PCLK_PERILP1_DIV_CON_SHIFT = 8,
PCLK_PERILP1_DIV_CON_MASK = 0x7 << PCLK_PERILP1_DIV_CON_SHIFT,
HCLK_PERILP1_PLL_SEL_SHIFT = 7,
HCLK_PERILP1_PLL_SEL_MASK = 1 << HCLK_PERILP1_PLL_SEL_SHIFT,
HCLK_PERILP1_PLL_SEL_CPLL = 0,
HCLK_PERILP1_PLL_SEL_GPLL = 1,
HCLK_PERILP1_DIV_CON_SHIFT = 0,
HCLK_PERILP1_DIV_CON_MASK = 0x1f,
/* CLKSEL_CON26 */
CLK_SARADC_DIV_CON_SHIFT = 8,
CLK_SARADC_DIV_CON_MASK = GENMASK(15, 8),
CLK_SARADC_DIV_CON_WIDTH = 8,
/* CLKSEL_CON27 */
CLK_TSADC_SEL_X24M = 0x0,
CLK_TSADC_SEL_SHIFT = 15,
CLK_TSADC_SEL_MASK = 1 << CLK_TSADC_SEL_SHIFT,
CLK_TSADC_DIV_CON_SHIFT = 0,
CLK_TSADC_DIV_CON_MASK = 0x3ff,
/* CLKSEL_CON47 & CLKSEL_CON48 */
ACLK_VOP_PLL_SEL_SHIFT = 6,
ACLK_VOP_PLL_SEL_MASK = 0x3 << ACLK_VOP_PLL_SEL_SHIFT,
ACLK_VOP_PLL_SEL_CPLL = 0x1,
ACLK_VOP_DIV_CON_SHIFT = 0,
ACLK_VOP_DIV_CON_MASK = 0x1f << ACLK_VOP_DIV_CON_SHIFT,
/* CLKSEL_CON49 & CLKSEL_CON50 */
DCLK_VOP_DCLK_SEL_SHIFT = 11,
DCLK_VOP_DCLK_SEL_MASK = 1 << DCLK_VOP_DCLK_SEL_SHIFT,
DCLK_VOP_DCLK_SEL_DIVOUT = 0,
DCLK_VOP_PLL_SEL_SHIFT = 8,
DCLK_VOP_PLL_SEL_MASK = 3 << DCLK_VOP_PLL_SEL_SHIFT,
DCLK_VOP_PLL_SEL_VPLL = 0,
DCLK_VOP_DIV_CON_MASK = 0xff,
DCLK_VOP_DIV_CON_SHIFT = 0,
/* CLKSEL_CON58 */
CLK_SPI_PLL_SEL_WIDTH = 1,
CLK_SPI_PLL_SEL_MASK = ((1 < CLK_SPI_PLL_SEL_WIDTH) - 1),
CLK_SPI_PLL_SEL_CPLL = 0,
CLK_SPI_PLL_SEL_GPLL = 1,
CLK_SPI_PLL_DIV_CON_WIDTH = 7,
CLK_SPI_PLL_DIV_CON_MASK = ((1 << CLK_SPI_PLL_DIV_CON_WIDTH) - 1),
CLK_SPI5_PLL_DIV_CON_SHIFT = 8,
CLK_SPI5_PLL_SEL_SHIFT = 15,
/* CLKSEL_CON59 */
CLK_SPI1_PLL_SEL_SHIFT = 15,
CLK_SPI1_PLL_DIV_CON_SHIFT = 8,
CLK_SPI0_PLL_SEL_SHIFT = 7,
CLK_SPI0_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON60 */
CLK_SPI4_PLL_SEL_SHIFT = 15,
CLK_SPI4_PLL_DIV_CON_SHIFT = 8,
CLK_SPI2_PLL_SEL_SHIFT = 7,
CLK_SPI2_PLL_DIV_CON_SHIFT = 0,
/* CLKSEL_CON61 */
CLK_I2C_PLL_SEL_MASK = 1,
CLK_I2C_PLL_SEL_CPLL = 0,
CLK_I2C_PLL_SEL_GPLL = 1,
CLK_I2C5_PLL_SEL_SHIFT = 15,
CLK_I2C5_DIV_CON_SHIFT = 8,
CLK_I2C1_PLL_SEL_SHIFT = 7,
CLK_I2C1_DIV_CON_SHIFT = 0,
/* CLKSEL_CON62 */
CLK_I2C6_PLL_SEL_SHIFT = 15,
CLK_I2C6_DIV_CON_SHIFT = 8,
CLK_I2C2_PLL_SEL_SHIFT = 7,
CLK_I2C2_DIV_CON_SHIFT = 0,
/* CLKSEL_CON63 */
CLK_I2C7_PLL_SEL_SHIFT = 15,
CLK_I2C7_DIV_CON_SHIFT = 8,
CLK_I2C3_PLL_SEL_SHIFT = 7,
CLK_I2C3_DIV_CON_SHIFT = 0,
/* CRU_SOFTRST_CON4 */
RESETN_DDR0_REQ_SHIFT = 8,
RESETN_DDR0_REQ_MASK = 1 << RESETN_DDR0_REQ_SHIFT,
RESETN_DDRPHY0_REQ_SHIFT = 9,
RESETN_DDRPHY0_REQ_MASK = 1 << RESETN_DDRPHY0_REQ_SHIFT,
RESETN_DDR1_REQ_SHIFT = 12,
RESETN_DDR1_REQ_MASK = 1 << RESETN_DDR1_REQ_SHIFT,
RESETN_DDRPHY1_REQ_SHIFT = 13,
RESETN_DDRPHY1_REQ_MASK = 1 << RESETN_DDRPHY1_REQ_SHIFT,
};
#define VCO_MAX_KHZ (3200 * (MHz / KHz))
#define VCO_MIN_KHZ (800 * (MHz / KHz))
#define OUTPUT_MAX_KHZ (3200 * (MHz / KHz))
#define OUTPUT_MIN_KHZ (16 * (MHz / KHz))
/*
* the div restructions of pll in integer mode, these are defined in
* * CRU_*PLL_CON0 or PMUCRU_*PLL_CON0
*/
#define PLL_DIV_MIN 16
#define PLL_DIV_MAX 3200
/*
* How to calculate the PLL(from TRM V0.3 Part 1 Page 63):
* Formulas also embedded within the Fractional PLL Verilog model:
* If DSMPD = 1 (DSM is disabled, "integer mode")
* FOUTVCO = FREF / REFDIV * FBDIV
* FOUTPOSTDIV = FOUTVCO / POSTDIV1 / POSTDIV2
* Where:
* FOUTVCO = Fractional PLL non-divided output frequency
* FOUTPOSTDIV = Fractional PLL divided output frequency
* (output of second post divider)
* FREF = Fractional PLL input reference frequency, (the OSC_HZ 24MHz input)
* REFDIV = Fractional PLL input reference clock divider
* FBDIV = Integer value programmed into feedback divide
*
*/
static void rkclk_set_pll(u32 *pll_con, const struct pll_div *div)
{
/* All 8 PLLs have same VCO and output frequency range restrictions. */
u32 vco_khz = OSC_HZ / 1000 * div->fbdiv / div->refdiv;
u32 output_khz = vco_khz / div->postdiv1 / div->postdiv2;
debug("PLL at %p: fbdiv=%d, refdiv=%d, postdiv1=%d, "
"postdiv2=%d, vco=%u khz, output=%u khz\n",
pll_con, div->fbdiv, div->refdiv, div->postdiv1,
div->postdiv2, vco_khz, output_khz);
assert(vco_khz >= VCO_MIN_KHZ && vco_khz <= VCO_MAX_KHZ &&
output_khz >= OUTPUT_MIN_KHZ && output_khz <= OUTPUT_MAX_KHZ &&
div->fbdiv >= PLL_DIV_MIN && div->fbdiv <= PLL_DIV_MAX);
/*
* When power on or changing PLL setting,
* we must force PLL into slow mode to ensure output stable clock.
*/
rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
PLL_MODE_SLOW << PLL_MODE_SHIFT);
/* use integer mode */
rk_clrsetreg(&pll_con[3], PLL_DSMPD_MASK,
PLL_INTEGER_MODE << PLL_DSMPD_SHIFT);
rk_clrsetreg(&pll_con[0], PLL_FBDIV_MASK,
div->fbdiv << PLL_FBDIV_SHIFT);
rk_clrsetreg(&pll_con[1],
PLL_POSTDIV2_MASK | PLL_POSTDIV1_MASK |
PLL_REFDIV_MASK | PLL_REFDIV_SHIFT,
(div->postdiv2 << PLL_POSTDIV2_SHIFT) |
(div->postdiv1 << PLL_POSTDIV1_SHIFT) |
(div->refdiv << PLL_REFDIV_SHIFT));
/* waiting for pll lock */
while (!(readl(&pll_con[2]) & (1 << PLL_LOCK_STATUS_SHIFT)))
udelay(1);
/* pll enter normal mode */
rk_clrsetreg(&pll_con[3], PLL_MODE_MASK,
PLL_MODE_NORM << PLL_MODE_SHIFT);
}
static int pll_para_config(u32 freq_hz, struct pll_div *div)
{
u32 ref_khz = OSC_HZ / KHz, refdiv, fbdiv = 0;
u32 postdiv1, postdiv2 = 1;
u32 fref_khz;
u32 diff_khz, best_diff_khz;
const u32 max_refdiv = 63, max_fbdiv = 3200, min_fbdiv = 16;
const u32 max_postdiv1 = 7, max_postdiv2 = 7;
u32 vco_khz;
u32 freq_khz = freq_hz / KHz;
if (!freq_hz) {
printf("%s: the frequency can't be 0 Hz\n", __func__);
return -1;
}
postdiv1 = DIV_ROUND_UP(VCO_MIN_KHZ, freq_khz);
if (postdiv1 > max_postdiv1) {
postdiv2 = DIV_ROUND_UP(postdiv1, max_postdiv1);
postdiv1 = DIV_ROUND_UP(postdiv1, postdiv2);
}
vco_khz = freq_khz * postdiv1 * postdiv2;
if (vco_khz < VCO_MIN_KHZ || vco_khz > VCO_MAX_KHZ ||
postdiv2 > max_postdiv2) {
printf("%s: Cannot find out a supported VCO"
" for Frequency (%uHz).\n", __func__, freq_hz);
return -1;
}
div->postdiv1 = postdiv1;
div->postdiv2 = postdiv2;
best_diff_khz = vco_khz;
for (refdiv = 1; refdiv < max_refdiv && best_diff_khz; refdiv++) {
fref_khz = ref_khz / refdiv;
fbdiv = vco_khz / fref_khz;
if (fbdiv >= max_fbdiv || fbdiv <= min_fbdiv)
continue;
diff_khz = vco_khz - fbdiv * fref_khz;
if (fbdiv + 1 < max_fbdiv && diff_khz > fref_khz / 2) {
fbdiv++;
diff_khz = fref_khz - diff_khz;
}
if (diff_khz >= best_diff_khz)
continue;
best_diff_khz = diff_khz;
div->refdiv = refdiv;
div->fbdiv = fbdiv;
}
if (best_diff_khz > 4 * (MHz / KHz)) {
printf("%s: Failed to match output frequency %u, "
"difference is %u Hz,exceed 4MHZ\n", __func__, freq_hz,
best_diff_khz * KHz);
return -1;
}
return 0;
}
void rk3399_configure_cpu_l(struct rockchip_cru *cru,
enum apll_l_frequencies apll_l_freq)
{
u32 aclkm_div;
u32 pclk_dbg_div;
u32 atclk_div;
/* Setup cluster L */
rkclk_set_pll(&cru->apll_l_con[0], apll_l_cfgs[apll_l_freq]);
aclkm_div = LPLL_HZ / ACLKM_CORE_L_HZ - 1;
assert((aclkm_div + 1) * ACLKM_CORE_L_HZ == LPLL_HZ &&
aclkm_div < 0x1f);
pclk_dbg_div = LPLL_HZ / PCLK_DBG_L_HZ - 1;
assert((pclk_dbg_div + 1) * PCLK_DBG_L_HZ == LPLL_HZ &&
pclk_dbg_div < 0x1f);
atclk_div = LPLL_HZ / ATCLK_CORE_L_HZ - 1;
assert((atclk_div + 1) * ATCLK_CORE_L_HZ == LPLL_HZ &&
atclk_div < 0x1f);
rk_clrsetreg(&cru->clksel_con[0],
ACLKM_CORE_L_DIV_CON_MASK | CLK_CORE_L_PLL_SEL_MASK |
CLK_CORE_L_DIV_MASK,
aclkm_div << ACLKM_CORE_L_DIV_CON_SHIFT |
CLK_CORE_L_PLL_SEL_ALPLL << CLK_CORE_L_PLL_SEL_SHIFT |
0 << CLK_CORE_L_DIV_SHIFT);
rk_clrsetreg(&cru->clksel_con[1],
PCLK_DBG_L_DIV_MASK | ATCLK_CORE_L_DIV_MASK,
pclk_dbg_div << PCLK_DBG_L_DIV_SHIFT |
atclk_div << ATCLK_CORE_L_DIV_SHIFT);
}
void rk3399_configure_cpu_b(struct rockchip_cru *cru,
enum apll_b_frequencies apll_b_freq)
{
u32 aclkm_div;
u32 pclk_dbg_div;
u32 atclk_div;
/* Setup cluster B */
rkclk_set_pll(&cru->apll_b_con[0], apll_b_cfgs[apll_b_freq]);
aclkm_div = BPLL_HZ / ACLKM_CORE_B_HZ - 1;
assert((aclkm_div + 1) * ACLKM_CORE_B_HZ == BPLL_HZ &&
aclkm_div < 0x1f);
pclk_dbg_div = BPLL_HZ / PCLK_DBG_B_HZ - 1;
assert((pclk_dbg_div + 1) * PCLK_DBG_B_HZ == BPLL_HZ &&
pclk_dbg_div < 0x1f);
atclk_div = BPLL_HZ / ATCLK_CORE_B_HZ - 1;
assert((atclk_div + 1) * ATCLK_CORE_B_HZ == BPLL_HZ &&
atclk_div < 0x1f);
rk_clrsetreg(&cru->clksel_con[2],
ACLKM_CORE_B_DIV_CON_MASK | CLK_CORE_B_PLL_SEL_MASK |
CLK_CORE_B_DIV_MASK,
aclkm_div << ACLKM_CORE_B_DIV_CON_SHIFT |
CLK_CORE_B_PLL_SEL_ABPLL << CLK_CORE_B_PLL_SEL_SHIFT |
0 << CLK_CORE_B_DIV_SHIFT);
rk_clrsetreg(&cru->clksel_con[3],
PCLK_DBG_B_DIV_MASK | ATCLK_CORE_B_DIV_MASK,
pclk_dbg_div << PCLK_DBG_B_DIV_SHIFT |
atclk_div << ATCLK_CORE_B_DIV_SHIFT);
}
#define I2C_CLK_REG_MASK(bus) \
(I2C_DIV_CON_MASK << CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_MASK << CLK_I2C ##bus## _PLL_SEL_SHIFT)
#define I2C_CLK_REG_VALUE(bus, clk_div) \
((clk_div - 1) << CLK_I2C ##bus## _DIV_CON_SHIFT | \
CLK_I2C_PLL_SEL_GPLL << CLK_I2C ##bus## _PLL_SEL_SHIFT)
#define I2C_CLK_DIV_VALUE(con, bus) \
((con >> CLK_I2C ##bus## _DIV_CON_SHIFT) & I2C_DIV_CON_MASK)
#define I2C_PMUCLK_REG_MASK(bus) \
(I2C_DIV_CON_MASK << CLK_I2C ##bus## _DIV_CON_SHIFT)
#define I2C_PMUCLK_REG_VALUE(bus, clk_div) \
((clk_div - 1) << CLK_I2C ##bus## _DIV_CON_SHIFT)
static ulong rk3399_i2c_get_clk(struct rockchip_cru *cru, ulong clk_id)
{
u32 div, con;
switch (clk_id) {
case SCLK_I2C1:
con = readl(&cru->clksel_con[61]);
div = I2C_CLK_DIV_VALUE(con, 1);
break;
case SCLK_I2C2:
con = readl(&cru->clksel_con[62]);
div = I2C_CLK_DIV_VALUE(con, 2);
break;
case SCLK_I2C3:
con = readl(&cru->clksel_con[63]);
div = I2C_CLK_DIV_VALUE(con, 3);
break;
case SCLK_I2C5:
con = readl(&cru->clksel_con[61]);
div = I2C_CLK_DIV_VALUE(con, 5);
break;
case SCLK_I2C6:
con = readl(&cru->clksel_con[62]);
div = I2C_CLK_DIV_VALUE(con, 6);
break;
case SCLK_I2C7:
con = readl(&cru->clksel_con[63]);
div = I2C_CLK_DIV_VALUE(con, 7);
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3399_i2c_set_clk(struct rockchip_cru *cru, ulong clk_id, uint hz)
{
int src_clk_div;
/* i2c0,4,8 src clock from ppll, i2c1,2,3,5,6,7 src clock from gpll*/
src_clk_div = GPLL_HZ / hz;
assert(src_clk_div - 1 < 127);
switch (clk_id) {
case SCLK_I2C1:
rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(1),
I2C_CLK_REG_VALUE(1, src_clk_div));
break;
case SCLK_I2C2:
rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(2),
I2C_CLK_REG_VALUE(2, src_clk_div));
break;
case SCLK_I2C3:
rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(3),
I2C_CLK_REG_VALUE(3, src_clk_div));
break;
case SCLK_I2C5:
rk_clrsetreg(&cru->clksel_con[61], I2C_CLK_REG_MASK(5),
I2C_CLK_REG_VALUE(5, src_clk_div));
break;
case SCLK_I2C6:
rk_clrsetreg(&cru->clksel_con[62], I2C_CLK_REG_MASK(6),
I2C_CLK_REG_VALUE(6, src_clk_div));
break;
case SCLK_I2C7:
rk_clrsetreg(&cru->clksel_con[63], I2C_CLK_REG_MASK(7),
I2C_CLK_REG_VALUE(7, src_clk_div));
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return rk3399_i2c_get_clk(cru, clk_id);
}
/*
* RK3399 SPI clocks have a common divider-width (7 bits) and a single bit
* to select either CPLL or GPLL as the clock-parent. The location within
* the enclosing CLKSEL_CON (i.e. div_shift and sel_shift) are variable.
*/
struct spi_clkreg {
u8 reg; /* CLKSEL_CON[reg] register in CRU */
u8 div_shift;
u8 sel_shift;
};
/*
* The entries are numbered relative to their offset from SCLK_SPI0.
*
* Note that SCLK_SPI3 (which is configured via PMUCRU and requires different
* logic is not supported).
*/
static const struct spi_clkreg spi_clkregs[] = {
[0] = { .reg = 59,
.div_shift = CLK_SPI0_PLL_DIV_CON_SHIFT,
.sel_shift = CLK_SPI0_PLL_SEL_SHIFT, },
[1] = { .reg = 59,
.div_shift = CLK_SPI1_PLL_DIV_CON_SHIFT,
.sel_shift = CLK_SPI1_PLL_SEL_SHIFT, },
[2] = { .reg = 60,
.div_shift = CLK_SPI2_PLL_DIV_CON_SHIFT,
.sel_shift = CLK_SPI2_PLL_SEL_SHIFT, },
[3] = { .reg = 60,
.div_shift = CLK_SPI4_PLL_DIV_CON_SHIFT,
.sel_shift = CLK_SPI4_PLL_SEL_SHIFT, },
[4] = { .reg = 58,
.div_shift = CLK_SPI5_PLL_DIV_CON_SHIFT,
.sel_shift = CLK_SPI5_PLL_SEL_SHIFT, },
};
static ulong rk3399_spi_get_clk(struct rockchip_cru *cru, ulong clk_id)
{
const struct spi_clkreg *spiclk = NULL;
u32 div, val;
switch (clk_id) {
case SCLK_SPI0 ... SCLK_SPI5:
spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
break;
default:
pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
return -EINVAL;
}
val = readl(&cru->clksel_con[spiclk->reg]);
div = bitfield_extract(val, spiclk->div_shift,
CLK_SPI_PLL_DIV_CON_WIDTH);
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3399_spi_set_clk(struct rockchip_cru *cru, ulong clk_id, uint hz)
{
const struct spi_clkreg *spiclk = NULL;
int src_clk_div;
src_clk_div = DIV_ROUND_UP(GPLL_HZ, hz) - 1;
assert(src_clk_div < 128);
switch (clk_id) {
case SCLK_SPI1 ... SCLK_SPI5:
spiclk = &spi_clkregs[clk_id - SCLK_SPI0];
break;
default:
pr_err("%s: SPI clk-id %ld not supported\n", __func__, clk_id);
return -EINVAL;
}
rk_clrsetreg(&cru->clksel_con[spiclk->reg],
((CLK_SPI_PLL_DIV_CON_MASK << spiclk->div_shift) |
(CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)),
((src_clk_div << spiclk->div_shift) |
(CLK_SPI_PLL_SEL_GPLL << spiclk->sel_shift)));
return rk3399_spi_get_clk(cru, clk_id);
}
static ulong rk3399_vop_set_clk(struct rockchip_cru *cru, ulong clk_id, u32 hz)
{
struct pll_div vpll_config = {0};
int aclk_vop = 198 * MHz;
void *aclkreg_addr, *dclkreg_addr;
u32 div;
switch (clk_id) {
case DCLK_VOP0:
aclkreg_addr = &cru->clksel_con[47];
dclkreg_addr = &cru->clksel_con[49];
break;
case DCLK_VOP1:
aclkreg_addr = &cru->clksel_con[48];
dclkreg_addr = &cru->clksel_con[50];
break;
default:
return -EINVAL;
}
/* vop aclk source clk: cpll */
div = CPLL_HZ / aclk_vop;
assert(div - 1 < 32);
rk_clrsetreg(aclkreg_addr,
ACLK_VOP_PLL_SEL_MASK | ACLK_VOP_DIV_CON_MASK,
ACLK_VOP_PLL_SEL_CPLL << ACLK_VOP_PLL_SEL_SHIFT |
(div - 1) << ACLK_VOP_DIV_CON_SHIFT);
/* vop dclk source from vpll, and equals to vpll(means div == 1) */
if (pll_para_config(hz, &vpll_config))
return -1;
rkclk_set_pll(&cru->vpll_con[0], &vpll_config);
rk_clrsetreg(dclkreg_addr,
DCLK_VOP_DCLK_SEL_MASK | DCLK_VOP_PLL_SEL_MASK |
DCLK_VOP_DIV_CON_MASK,
DCLK_VOP_DCLK_SEL_DIVOUT << DCLK_VOP_DCLK_SEL_SHIFT |
DCLK_VOP_PLL_SEL_VPLL << DCLK_VOP_PLL_SEL_SHIFT |
(1 - 1) << DCLK_VOP_DIV_CON_SHIFT);
return hz;
}
static ulong rk3399_mmc_get_clk(struct rockchip_cru *cru, uint clk_id)
{
u32 div, con;
switch (clk_id) {
case HCLK_SDMMC:
case SCLK_SDMMC:
con = readl(&cru->clksel_con[16]);
/* dwmmc controller have internal div 2 */
div = 2;
break;
case SCLK_EMMC:
con = readl(&cru->clksel_con[21]);
div = 1;
break;
default:
return -EINVAL;
}
div *= (con & CLK_EMMC_DIV_CON_MASK) >> CLK_EMMC_DIV_CON_SHIFT;
if ((con & CLK_EMMC_PLL_MASK) >> CLK_EMMC_PLL_SHIFT
== CLK_EMMC_PLL_SEL_24M)
return DIV_TO_RATE(OSC_HZ, div);
else
return DIV_TO_RATE(GPLL_HZ, div);
}
static ulong rk3399_mmc_set_clk(struct rockchip_cru *cru,
ulong clk_id, ulong set_rate)
{
int src_clk_div;
int aclk_emmc = 198 * MHz;
switch (clk_id) {
case HCLK_SDMMC:
case SCLK_SDMMC:
/* Select clk_sdmmc source from GPLL by default */
/* mmc clock defaulg div 2 internal, provide double in cru */
src_clk_div = DIV_ROUND_UP(GPLL_HZ / 2, set_rate);
if (src_clk_div > 128) {
/* use 24MHz source for 400KHz clock */
src_clk_div = DIV_ROUND_UP(OSC_HZ / 2, set_rate);
assert(src_clk_div - 1 < 128);
rk_clrsetreg(&cru->clksel_con[16],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_24M << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
} else {
rk_clrsetreg(&cru->clksel_con[16],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
}
break;
case SCLK_EMMC:
/* Select aclk_emmc source from GPLL */
src_clk_div = DIV_ROUND_UP(GPLL_HZ, aclk_emmc);
assert(src_clk_div - 1 < 32);
rk_clrsetreg(&cru->clksel_con[21],
ACLK_EMMC_PLL_SEL_MASK | ACLK_EMMC_DIV_CON_MASK,
ACLK_EMMC_PLL_SEL_GPLL << ACLK_EMMC_PLL_SEL_SHIFT |
(src_clk_div - 1) << ACLK_EMMC_DIV_CON_SHIFT);
/* Select clk_emmc source from GPLL too */
src_clk_div = DIV_ROUND_UP(GPLL_HZ, set_rate);
assert(src_clk_div - 1 < 128);
rk_clrsetreg(&cru->clksel_con[22],
CLK_EMMC_PLL_MASK | CLK_EMMC_DIV_CON_MASK,
CLK_EMMC_PLL_SEL_GPLL << CLK_EMMC_PLL_SHIFT |
(src_clk_div - 1) << CLK_EMMC_DIV_CON_SHIFT);
break;
default:
return -EINVAL;
}
return rk3399_mmc_get_clk(cru, clk_id);
}
static ulong rk3399_gmac_set_clk(struct rockchip_cru *cru, ulong rate)
{
ulong ret;
/*
* The RGMII CLK can be derived either from an external "clkin"
* or can be generated from internally by a divider from SCLK_MAC.
*/
if (readl(&cru->clksel_con[19]) & BIT(4)) {
/* An external clock will always generate the right rate... */
ret = rate;
} else {
/*
* No platform uses an internal clock to date.
* Implement this once it becomes necessary and print an error
* if someone tries to use it (while it remains unimplemented).
*/
pr_err("%s: internal clock is UNIMPLEMENTED\n", __func__);
ret = 0;
}
return ret;
}
#define PMUSGRF_DDR_RGN_CON16 0xff330040
static ulong rk3399_ddr_set_clk(struct rockchip_cru *cru,
ulong set_rate)
{
struct pll_div dpll_cfg;
/* IC ECO bug, need to set this register */
writel(0xc000c000, PMUSGRF_DDR_RGN_CON16);
/* clk_ddrc == DPLL = 24MHz / refdiv * fbdiv / postdiv1 / postdiv2 */
switch (set_rate) {
case 50 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 12, .postdiv1 = 3, .postdiv2 = 2};
break;
case 200 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 50, .postdiv1 = 6, .postdiv2 = 1};
break;
case 300 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 2, .fbdiv = 100, .postdiv1 = 4, .postdiv2 = 1};
break;
case 400 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 50, .postdiv1 = 3, .postdiv2 = 1};
break;
case 666 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 2, .fbdiv = 111, .postdiv1 = 2, .postdiv2 = 1};
break;
case 800 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 100, .postdiv1 = 3, .postdiv2 = 1};
break;
case 933 * MHz:
dpll_cfg = (struct pll_div)
{.refdiv = 1, .fbdiv = 116, .postdiv1 = 3, .postdiv2 = 1};
break;
default:
pr_err("Unsupported SDRAM frequency!,%ld\n", set_rate);
}
rkclk_set_pll(&cru->dpll_con[0], &dpll_cfg);
return set_rate;
}
static ulong rk3399_saradc_get_clk(struct rockchip_cru *cru)
{
u32 div, val;
val = readl(&cru->clksel_con[26]);
div = bitfield_extract(val, CLK_SARADC_DIV_CON_SHIFT,
CLK_SARADC_DIV_CON_WIDTH);
return DIV_TO_RATE(OSC_HZ, div);
}
static ulong rk3399_saradc_set_clk(struct rockchip_cru *cru, uint hz)
{
int src_clk_div;
src_clk_div = DIV_ROUND_UP(OSC_HZ, hz) - 1;
assert(src_clk_div < 128);
rk_clrsetreg(&cru->clksel_con[26],
CLK_SARADC_DIV_CON_MASK,
src_clk_div << CLK_SARADC_DIV_CON_SHIFT);
return rk3399_saradc_get_clk(cru);
}
static ulong rk3399_clk_get_rate(struct clk *clk)
{
struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
switch (clk->id) {
case 0 ... 63:
return 0;
case HCLK_SDMMC:
case SCLK_SDMMC:
case SCLK_EMMC:
rate = rk3399_mmc_get_clk(priv->cru, clk->id);
break;
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
case SCLK_I2C5:
case SCLK_I2C6:
case SCLK_I2C7:
rate = rk3399_i2c_get_clk(priv->cru, clk->id);
break;
case SCLK_SPI0...SCLK_SPI5:
rate = rk3399_spi_get_clk(priv->cru, clk->id);
break;
case SCLK_UART0:
case SCLK_UART1:
case SCLK_UART2:
case SCLK_UART3:
return 24000000;
case PCLK_HDMI_CTRL:
break;
case DCLK_VOP0:
case DCLK_VOP1:
break;
case PCLK_EFUSE1024NS:
break;
case SCLK_SARADC:
rate = rk3399_saradc_get_clk(priv->cru);
break;
case ACLK_VIO:
case ACLK_HDCP:
case ACLK_GIC_PRE:
case PCLK_DDR:
break;
default:
log_debug("Unknown clock %lu\n", clk->id);
return -ENOENT;
}
return rate;
}
static ulong rk3399_clk_set_rate(struct clk *clk, ulong rate)
{
struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
ulong ret = 0;
switch (clk->id) {
case 0 ... 63:
return 0;
case ACLK_PERIHP:
case HCLK_PERIHP:
case PCLK_PERIHP:
return 0;
case ACLK_PERILP0:
case HCLK_PERILP0:
case PCLK_PERILP0:
return 0;
case ACLK_CCI:
return 0;
case HCLK_PERILP1:
case PCLK_PERILP1:
return 0;
case HCLK_SDMMC:
case SCLK_SDMMC:
case SCLK_EMMC:
ret = rk3399_mmc_set_clk(priv->cru, clk->id, rate);
break;
case SCLK_MAC:
ret = rk3399_gmac_set_clk(priv->cru, rate);
break;
case SCLK_I2C1:
case SCLK_I2C2:
case SCLK_I2C3:
case SCLK_I2C5:
case SCLK_I2C6:
case SCLK_I2C7:
ret = rk3399_i2c_set_clk(priv->cru, clk->id, rate);
break;
case SCLK_SPI0...SCLK_SPI5:
ret = rk3399_spi_set_clk(priv->cru, clk->id, rate);
break;
case PCLK_HDMI_CTRL:
case PCLK_VIO_GRF:
/* the PCLK gates for video are enabled by default */
break;
case DCLK_VOP0:
case DCLK_VOP1:
ret = rk3399_vop_set_clk(priv->cru, clk->id, rate);
break;
case ACLK_VOP1:
case HCLK_VOP1:
/**
* assigned-clocks handling won't require for vopl, so
* return 0 to satisfy clk_set_defaults during device probe.
*/
return 0;
case SCLK_DDRCLK:
ret = rk3399_ddr_set_clk(priv->cru, rate);
break;
case PCLK_EFUSE1024NS:
break;
case SCLK_SARADC:
ret = rk3399_saradc_set_clk(priv->cru, rate);
break;
case ACLK_VIO:
case ACLK_HDCP:
case ACLK_GIC_PRE:
case PCLK_DDR:
return 0;
default:
log_debug("Unknown clock %lu\n", clk->id);
return -ENOENT;
}
return ret;
}
static int __maybe_unused rk3399_gmac_set_parent(struct clk *clk,
struct clk *parent)
{
struct rk3399_clk_priv *priv = dev_get_priv(clk->dev);
const char *clock_output_name;
int ret;
/*
* If the requested parent is in the same clock-controller and
* the id is SCLK_MAC ("clk_gmac"), switch to the internal clock.
*/
if (parent->dev == clk->dev && parent->id == SCLK_MAC) {
debug("%s: switching RGMII to SCLK_MAC\n", __func__);
rk_clrreg(&priv->cru->clksel_con[19], BIT(4));
return 0;
}
/*
* Otherwise, we need to check the clock-output-names of the
* requested parent to see if the requested id is "clkin_gmac".
*/
ret = dev_read_string_index(parent->dev, "clock-output-names",
parent->id, &clock_output_name);
if (ret < 0)
return -ENODATA;
/* If this is "clkin_gmac", switch to the external clock input */
if (!strcmp(clock_output_name, "clkin_gmac")) {
debug("%s: switching RGMII to CLKIN\n", __func__);
rk_setreg(&priv->cru->clksel_con[19], BIT(4));
return 0;
}
return -EINVAL;
}
static int __maybe_unused rk3399_clk_set_parent(struct clk *clk,
struct clk *parent)
{
switch (clk->id) {
case SCLK_RMII_SRC:
return rk3399_gmac_set_parent(clk, parent);
}
debug("%s: unsupported clk %ld\n", __func__, clk->id);
return -ENOENT;
}
static struct clk_ops rk3399_clk_ops = {
.get_rate = rk3399_clk_get_rate,
.set_rate = rk3399_clk_set_rate,
#if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
.set_parent = rk3399_clk_set_parent,
#endif
};
#ifdef CONFIG_SPL_BUILD
static void rkclk_init(struct rockchip_cru *cru)
{
u32 aclk_div;
u32 hclk_div;
u32 pclk_div;
rk3399_configure_cpu_l(cru, APLL_L_600_MHZ);
rk3399_configure_cpu_b(cru, APLL_B_600_MHZ);
/*
* some cru registers changed by bootrom, we'd better reset them to
* reset/default values described in TRM to avoid confusion in kernel.
* Please consider these three lines as a fix of bootrom bug.
*/
rk_clrsetreg(&cru->clksel_con[12], 0xffff, 0x4101);
rk_clrsetreg(&cru->clksel_con[19], 0xffff, 0x033f);
rk_clrsetreg(&cru->clksel_con[56], 0x0003, 0x0003);
/* configure gpll cpll */
rkclk_set_pll(&cru->gpll_con[0], &gpll_init_cfg);
rkclk_set_pll(&cru->cpll_con[0], &cpll_init_cfg);
/* configure perihp aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERIHP_ACLK_HZ - 1;
assert((aclk_div + 1) * PERIHP_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
hclk_div = PERIHP_ACLK_HZ / PERIHP_HCLK_HZ - 1;
assert((hclk_div + 1) * PERIHP_HCLK_HZ ==
PERIHP_ACLK_HZ && (hclk_div < 0x4));
pclk_div = PERIHP_ACLK_HZ / PERIHP_PCLK_HZ - 1;
assert((pclk_div + 1) * PERIHP_PCLK_HZ ==
PERIHP_ACLK_HZ && (pclk_div < 0x7));
rk_clrsetreg(&cru->clksel_con[14],
PCLK_PERIHP_DIV_CON_MASK | HCLK_PERIHP_DIV_CON_MASK |
ACLK_PERIHP_PLL_SEL_MASK | ACLK_PERIHP_DIV_CON_MASK,
pclk_div << PCLK_PERIHP_DIV_CON_SHIFT |
hclk_div << HCLK_PERIHP_DIV_CON_SHIFT |
ACLK_PERIHP_PLL_SEL_GPLL << ACLK_PERIHP_PLL_SEL_SHIFT |
aclk_div << ACLK_PERIHP_DIV_CON_SHIFT);
/* configure perilp0 aclk, hclk, pclk */
aclk_div = GPLL_HZ / PERILP0_ACLK_HZ - 1;
assert((aclk_div + 1) * PERILP0_ACLK_HZ == GPLL_HZ && aclk_div < 0x1f);
hclk_div = PERILP0_ACLK_HZ / PERILP0_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP0_HCLK_HZ ==
PERILP0_ACLK_HZ && (hclk_div < 0x4));
pclk_div = PERILP0_ACLK_HZ / PERILP0_PCLK_HZ - 1;
assert((pclk_div + 1) * PERILP0_PCLK_HZ ==
PERILP0_ACLK_HZ && (pclk_div < 0x7));
rk_clrsetreg(&cru->clksel_con[23],
PCLK_PERILP0_DIV_CON_MASK | HCLK_PERILP0_DIV_CON_MASK |
ACLK_PERILP0_PLL_SEL_MASK | ACLK_PERILP0_DIV_CON_MASK,
pclk_div << PCLK_PERILP0_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP0_DIV_CON_SHIFT |
ACLK_PERILP0_PLL_SEL_GPLL << ACLK_PERILP0_PLL_SEL_SHIFT |
aclk_div << ACLK_PERILP0_DIV_CON_SHIFT);
/* perilp1 hclk select gpll as source */
hclk_div = GPLL_HZ / PERILP1_HCLK_HZ - 1;
assert((hclk_div + 1) * PERILP1_HCLK_HZ ==
GPLL_HZ && (hclk_div < 0x1f));
pclk_div = PERILP1_HCLK_HZ / PERILP1_HCLK_HZ - 1;
assert((pclk_div + 1) * PERILP1_HCLK_HZ ==
PERILP1_HCLK_HZ && (hclk_div < 0x7));
rk_clrsetreg(&cru->clksel_con[25],
PCLK_PERILP1_DIV_CON_MASK | HCLK_PERILP1_DIV_CON_MASK |
HCLK_PERILP1_PLL_SEL_MASK,
pclk_div << PCLK_PERILP1_DIV_CON_SHIFT |
hclk_div << HCLK_PERILP1_DIV_CON_SHIFT |
HCLK_PERILP1_PLL_SEL_GPLL << HCLK_PERILP1_PLL_SEL_SHIFT);
}
#endif
static int rk3399_clk_probe(struct udevice *dev)
{
#ifdef CONFIG_SPL_BUILD
struct rk3399_clk_priv *priv = dev_get_priv(dev);
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3399_clk_plat *plat = dev_get_platdata(dev);
priv->cru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
#endif
rkclk_init(priv->cru);
#endif
return 0;
}
static int rk3399_clk_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3399_clk_priv *priv = dev_get_priv(dev);
priv->cru = dev_read_addr_ptr(dev);
#endif
return 0;
}
static int rk3399_clk_bind(struct udevice *dev)
{
int ret;
struct udevice *sys_child;
struct sysreset_reg *priv;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(dev, "rockchip_sysreset", "sysreset",
&sys_child);
if (ret) {
debug("Warning: No sysreset driver: ret=%d\n", ret);
} else {
priv = malloc(sizeof(struct sysreset_reg));
priv->glb_srst_fst_value = offsetof(struct rockchip_cru,
glb_srst_fst_value);
priv->glb_srst_snd_value = offsetof(struct rockchip_cru,
glb_srst_snd_value);
sys_child->priv = priv;
}
#if CONFIG_IS_ENABLED(RESET_ROCKCHIP)
ret = offsetof(struct rockchip_cru, softrst_con[0]);
ret = rockchip_reset_bind(dev, ret, 21);
if (ret)
debug("Warning: software reset driver bind faile\n");
#endif
return 0;
}
static const struct udevice_id rk3399_clk_ids[] = {
{ .compatible = "rockchip,rk3399-cru" },
{ }
};
U_BOOT_DRIVER(clk_rk3399) = {
.name = "rockchip_rk3399_cru",
.id = UCLASS_CLK,
.of_match = rk3399_clk_ids,
.priv_auto_alloc_size = sizeof(struct rk3399_clk_priv),
.ofdata_to_platdata = rk3399_clk_ofdata_to_platdata,
.ops = &rk3399_clk_ops,
.bind = rk3399_clk_bind,
.probe = rk3399_clk_probe,
#if CONFIG_IS_ENABLED(OF_PLATDATA)
.platdata_auto_alloc_size = sizeof(struct rk3399_clk_plat),
#endif
};
static ulong rk3399_i2c_get_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id)
{
u32 div, con;
switch (clk_id) {
case SCLK_I2C0_PMU:
con = readl(&pmucru->pmucru_clksel[2]);
div = I2C_CLK_DIV_VALUE(con, 0);
break;
case SCLK_I2C4_PMU:
con = readl(&pmucru->pmucru_clksel[3]);
div = I2C_CLK_DIV_VALUE(con, 4);
break;
case SCLK_I2C8_PMU:
con = readl(&pmucru->pmucru_clksel[2]);
div = I2C_CLK_DIV_VALUE(con, 8);
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(PPLL_HZ, div);
}
static ulong rk3399_i2c_set_pmuclk(struct rk3399_pmucru *pmucru, ulong clk_id,
uint hz)
{
int src_clk_div;
src_clk_div = PPLL_HZ / hz;
assert(src_clk_div - 1 < 127);
switch (clk_id) {
case SCLK_I2C0_PMU:
rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(0),
I2C_PMUCLK_REG_VALUE(0, src_clk_div));
break;
case SCLK_I2C4_PMU:
rk_clrsetreg(&pmucru->pmucru_clksel[3], I2C_PMUCLK_REG_MASK(4),
I2C_PMUCLK_REG_VALUE(4, src_clk_div));
break;
case SCLK_I2C8_PMU:
rk_clrsetreg(&pmucru->pmucru_clksel[2], I2C_PMUCLK_REG_MASK(8),
I2C_PMUCLK_REG_VALUE(8, src_clk_div));
break;
default:
printf("do not support this i2c bus\n");
return -EINVAL;
}
return DIV_TO_RATE(PPLL_HZ, src_clk_div);
}
static ulong rk3399_pwm_get_clk(struct rk3399_pmucru *pmucru)
{
u32 div, con;
/* PWM closk rate is same as pclk_pmu */
con = readl(&pmucru->pmucru_clksel[0]);
div = con & PMU_PCLK_DIV_CON_MASK;
return DIV_TO_RATE(PPLL_HZ, div);
}
static ulong rk3399_pmuclk_get_rate(struct clk *clk)
{
struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
ulong rate = 0;
switch (clk->id) {
case PLL_PPLL:
return PPLL_HZ;
case PCLK_RKPWM_PMU:
rate = rk3399_pwm_get_clk(priv->pmucru);
break;
case SCLK_I2C0_PMU:
case SCLK_I2C4_PMU:
case SCLK_I2C8_PMU:
rate = rk3399_i2c_get_pmuclk(priv->pmucru, clk->id);
break;
default:
return -ENOENT;
}
return rate;
}
static ulong rk3399_pmuclk_set_rate(struct clk *clk, ulong rate)
{
struct rk3399_pmuclk_priv *priv = dev_get_priv(clk->dev);
ulong ret = 0;
switch (clk->id) {
case PLL_PPLL:
/*
* This has already been set up and we don't want/need
* to change it here. Accept the request though, as the
* device-tree has this in an 'assigned-clocks' list.
*/
return PPLL_HZ;
case SCLK_I2C0_PMU:
case SCLK_I2C4_PMU:
case SCLK_I2C8_PMU:
ret = rk3399_i2c_set_pmuclk(priv->pmucru, clk->id, rate);
break;
default:
return -ENOENT;
}
return ret;
}
static struct clk_ops rk3399_pmuclk_ops = {
.get_rate = rk3399_pmuclk_get_rate,
.set_rate = rk3399_pmuclk_set_rate,
};
#ifndef CONFIG_SPL_BUILD
static void pmuclk_init(struct rk3399_pmucru *pmucru)
{
u32 pclk_div;
/* configure pmu pll(ppll) */
rkclk_set_pll(&pmucru->ppll_con[0], &ppll_init_cfg);
/* configure pmu pclk */
pclk_div = PPLL_HZ / PMU_PCLK_HZ - 1;
rk_clrsetreg(&pmucru->pmucru_clksel[0],
PMU_PCLK_DIV_CON_MASK,
pclk_div << PMU_PCLK_DIV_CON_SHIFT);
}
#endif
static int rk3399_pmuclk_probe(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(OF_PLATDATA) || !defined(CONFIG_SPL_BUILD)
struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
#endif
#if CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3399_pmuclk_plat *plat = dev_get_platdata(dev);
priv->pmucru = map_sysmem(plat->dtd.reg[0], plat->dtd.reg[1]);
#endif
#ifndef CONFIG_SPL_BUILD
pmuclk_init(priv->pmucru);
#endif
return 0;
}
static int rk3399_pmuclk_ofdata_to_platdata(struct udevice *dev)
{
#if !CONFIG_IS_ENABLED(OF_PLATDATA)
struct rk3399_pmuclk_priv *priv = dev_get_priv(dev);
priv->pmucru = dev_read_addr_ptr(dev);
#endif
return 0;
}
static int rk3399_pmuclk_bind(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(CONFIG_RESET_ROCKCHIP)
int ret;
ret = offsetof(struct rk3399_pmucru, pmucru_softrst_con[0]);
ret = rockchip_reset_bind(dev, ret, 2);
if (ret)
debug("Warning: software reset driver bind faile\n");
#endif
return 0;
}
static const struct udevice_id rk3399_pmuclk_ids[] = {
{ .compatible = "rockchip,rk3399-pmucru" },
{ }
};
U_BOOT_DRIVER(rockchip_rk3399_pmuclk) = {
.name = "rockchip_rk3399_pmucru",
.id = UCLASS_CLK,
.of_match = rk3399_pmuclk_ids,
.priv_auto_alloc_size = sizeof(struct rk3399_pmuclk_priv),
.ofdata_to_platdata = rk3399_pmuclk_ofdata_to_platdata,
.ops = &rk3399_pmuclk_ops,
.probe = rk3399_pmuclk_probe,
.bind = rk3399_pmuclk_bind,
#if CONFIG_IS_ENABLED(OF_PLATDATA)
.platdata_auto_alloc_size = sizeof(struct rk3399_pmuclk_plat),
#endif
};