u-boot/cpu/ppc4xx/denali_spd_ddr2.c
Jean-Christophe PLAGNIOL-VILLARD 6d0f6bcf33 rename CFG_ macros to CONFIG_SYS
Signed-off-by: Jean-Christophe PLAGNIOL-VILLARD <plagnioj@jcrosoft.com>
2008-10-18 21:54:03 +02:00

1257 lines
40 KiB
C

/*
* cpu/ppc4xx/denali_spd_ddr2.c
* This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core
* DDR2 controller, specifically the 440EPx/GRx.
*
* (C) Copyright 2007-2008
* Larry Johnson, lrj@acm.org.
*
* Based primarily on cpu/ppc4xx/4xx_spd_ddr2.c, which is...
*
* (C) Copyright 2007
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* COPYRIGHT AMCC CORPORATION 2004
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <command.h>
#include <ppc4xx.h>
#include <i2c.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/cache.h>
#if defined(CONFIG_SPD_EEPROM) && \
(defined(CONFIG_440EPX) || defined(CONFIG_440GRX))
/*-----------------------------------------------------------------------------+
* Defines
*-----------------------------------------------------------------------------*/
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define MAXDIMMS 2
#define MAXRANKS 2
#define ONE_BILLION 1000000000
#define MULDIV64(m1, m2, d) (u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))
#define DLL_DQS_DELAY 0x19
#define DLL_DQS_BYPASS 0x0B
#define DQS_OUT_SHIFT 0x7F
/*
* This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
* region. Right now the cache should still be disabled in U-Boot because of the
* EMAC driver, that need it's buffer descriptor to be located in non cached
* memory.
*
* If at some time this restriction doesn't apply anymore, just define
* CONFIG_4xx_DCACHE in the board config file and this code should setup
* everything correctly.
*/
#if defined(CONFIG_4xx_DCACHE)
#define MY_TLB_WORD2_I_ENABLE 0 /* enable caching on SDRAM */
#else
#define MY_TLB_WORD2_I_ENABLE TLB_WORD2_I_ENABLE /* disable caching on SDRAM */
#endif
/*-----------------------------------------------------------------------------+
* Prototypes
*-----------------------------------------------------------------------------*/
extern int denali_wait_for_dlllock(void);
extern void denali_core_search_data_eye(void);
extern void dcbz_area(u32 start_address, u32 num_bytes);
/*
* Board-specific Platform code can reimplement spd_ddr_init_hang () if needed
*/
void __spd_ddr_init_hang(void)
{
hang();
}
void spd_ddr_init_hang(void)
__attribute__ ((weak, alias("__spd_ddr_init_hang")));
#if defined(DEBUG)
static void print_mcsr(void)
{
printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR));
}
static void denali_sdram_register_dump(void)
{
unsigned int sdram_data;
printf("\n Register Dump:\n");
mfsdram(DDR0_00, sdram_data);
printf(" DDR0_00 = 0x%08X", sdram_data);
mfsdram(DDR0_01, sdram_data);
printf(" DDR0_01 = 0x%08X\n", sdram_data);
mfsdram(DDR0_02, sdram_data);
printf(" DDR0_02 = 0x%08X", sdram_data);
mfsdram(DDR0_03, sdram_data);
printf(" DDR0_03 = 0x%08X\n", sdram_data);
mfsdram(DDR0_04, sdram_data);
printf(" DDR0_04 = 0x%08X", sdram_data);
mfsdram(DDR0_05, sdram_data);
printf(" DDR0_05 = 0x%08X\n", sdram_data);
mfsdram(DDR0_06, sdram_data);
printf(" DDR0_06 = 0x%08X", sdram_data);
mfsdram(DDR0_07, sdram_data);
printf(" DDR0_07 = 0x%08X\n", sdram_data);
mfsdram(DDR0_08, sdram_data);
printf(" DDR0_08 = 0x%08X", sdram_data);
mfsdram(DDR0_09, sdram_data);
printf(" DDR0_09 = 0x%08X\n", sdram_data);
mfsdram(DDR0_10, sdram_data);
printf(" DDR0_10 = 0x%08X", sdram_data);
mfsdram(DDR0_11, sdram_data);
printf(" DDR0_11 = 0x%08X\n", sdram_data);
mfsdram(DDR0_12, sdram_data);
printf(" DDR0_12 = 0x%08X", sdram_data);
mfsdram(DDR0_14, sdram_data);
printf(" DDR0_14 = 0x%08X\n", sdram_data);
mfsdram(DDR0_17, sdram_data);
printf(" DDR0_17 = 0x%08X", sdram_data);
mfsdram(DDR0_18, sdram_data);
printf(" DDR0_18 = 0x%08X\n", sdram_data);
mfsdram(DDR0_19, sdram_data);
printf(" DDR0_19 = 0x%08X", sdram_data);
mfsdram(DDR0_20, sdram_data);
printf(" DDR0_20 = 0x%08X\n", sdram_data);
mfsdram(DDR0_21, sdram_data);
printf(" DDR0_21 = 0x%08X", sdram_data);
mfsdram(DDR0_22, sdram_data);
printf(" DDR0_22 = 0x%08X\n", sdram_data);
mfsdram(DDR0_23, sdram_data);
printf(" DDR0_23 = 0x%08X", sdram_data);
mfsdram(DDR0_24, sdram_data);
printf(" DDR0_24 = 0x%08X\n", sdram_data);
mfsdram(DDR0_25, sdram_data);
printf(" DDR0_25 = 0x%08X", sdram_data);
mfsdram(DDR0_26, sdram_data);
printf(" DDR0_26 = 0x%08X\n", sdram_data);
mfsdram(DDR0_27, sdram_data);
printf(" DDR0_27 = 0x%08X", sdram_data);
mfsdram(DDR0_28, sdram_data);
printf(" DDR0_28 = 0x%08X\n", sdram_data);
mfsdram(DDR0_31, sdram_data);
printf(" DDR0_31 = 0x%08X", sdram_data);
mfsdram(DDR0_32, sdram_data);
printf(" DDR0_32 = 0x%08X\n", sdram_data);
mfsdram(DDR0_33, sdram_data);
printf(" DDR0_33 = 0x%08X", sdram_data);
mfsdram(DDR0_34, sdram_data);
printf(" DDR0_34 = 0x%08X\n", sdram_data);
mfsdram(DDR0_35, sdram_data);
printf(" DDR0_35 = 0x%08X", sdram_data);
mfsdram(DDR0_36, sdram_data);
printf(" DDR0_36 = 0x%08X\n", sdram_data);
mfsdram(DDR0_37, sdram_data);
printf(" DDR0_37 = 0x%08X", sdram_data);
mfsdram(DDR0_38, sdram_data);
printf(" DDR0_38 = 0x%08X\n", sdram_data);
mfsdram(DDR0_39, sdram_data);
printf(" DDR0_39 = 0x%08X", sdram_data);
mfsdram(DDR0_40, sdram_data);
printf(" DDR0_40 = 0x%08X\n", sdram_data);
mfsdram(DDR0_41, sdram_data);
printf(" DDR0_41 = 0x%08X", sdram_data);
mfsdram(DDR0_42, sdram_data);
printf(" DDR0_42 = 0x%08X\n", sdram_data);
mfsdram(DDR0_43, sdram_data);
printf(" DDR0_43 = 0x%08X", sdram_data);
mfsdram(DDR0_44, sdram_data);
printf(" DDR0_44 = 0x%08X\n", sdram_data);
}
#else
static inline void denali_sdram_register_dump(void)
{
}
inline static void print_mcsr(void)
{
}
#endif /* defined(DEBUG) */
static int is_ecc_enabled(void)
{
u32 val;
mfsdram(DDR0_22, val);
return 0x3 == DDR0_22_CTRL_RAW_DECODE(val);
}
static unsigned char spd_read(u8 chip, unsigned int addr)
{
u8 data[2];
if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) {
debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr);
return 0;
}
debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n",
chip, addr, data[0]);
return data[0];
}
static unsigned long get_tcyc(unsigned char reg)
{
/*
* Byte 9, et al: Cycle time for CAS Latency=X, is split into two
* nibbles: the higher order nibble (bits 4-7) designates the cycle time
* to a granularity of 1ns; the value presented by the lower order
* nibble (bits 0-3) has a granularity of .1ns and is added to the value
* designated by the higher nibble. In addition, four lines of the lower
* order nibble are assigned to support +.25, +.33, +.66, and +.75.
*/
unsigned char subfield_b = reg & 0x0F;
switch (subfield_b & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
return 1000 * (reg >> 4) + 100 * subfield_b;
case 0xA:
return 1000 * (reg >> 4) + 250;
case 0xB:
return 1000 * (reg >> 4) + 333;
case 0xC:
return 1000 * (reg >> 4) + 667;
case 0xD:
return 1000 * (reg >> 4) + 750;
}
return 0;
}
/*------------------------------------------------------------------
* Find the installed DIMMs, make sure that the are DDR2, and fill
* in the dimm_ranks array. Then dimm_ranks[dimm_num] > 0 iff the
* DIMM and dimm_num is present.
* Note: Because there are only two chip-select lines, it is assumed
* that a board with a single socket can support two ranks on that
* socket, while a board with two sockets can support only one rank
* on each socket.
*-----------------------------------------------------------------*/
static void get_spd_info(unsigned long dimm_ranks[],
unsigned long *ranks,
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long dimm_found = FALSE;
unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1;
unsigned char num_of_bytes;
unsigned char total_size;
*ranks = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
num_of_bytes = 0;
total_size = 0;
num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
if ((num_of_bytes != 0) && (total_size != 0)) {
unsigned char const dimm_type =
spd_read(iic0_dimm_addr[dimm_num], 2);
unsigned long ranks_on_dimm =
(spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1;
if (8 != dimm_type) {
switch (dimm_type) {
case 1:
printf("ERROR: Standard Fast Page Mode "
"DRAM DIMM");
break;
case 2:
printf("ERROR: EDO DIMM");
break;
case 3:
printf("ERROR: Pipelined Nibble DIMM");
break;
case 4:
printf("ERROR: SDRAM DIMM");
break;
case 5:
printf("ERROR: Multiplexed ROM DIMM");
break;
case 6:
printf("ERROR: SGRAM DIMM");
break;
case 7:
printf("ERROR: DDR1 DIMM");
break;
default:
printf("ERROR: Unknown DIMM (type %d)",
(unsigned int)dimm_type);
break;
}
printf(" detected in slot %lu.\n", dimm_num);
printf("Only DDR2 SDRAM DIMMs are supported."
"\n");
printf("Replace the module with a DDR2 DIMM."
"\n\n");
spd_ddr_init_hang();
}
dimm_found = TRUE;
debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM"
"\n", dimm_num, ranks_on_dimm);
if (ranks_on_dimm > max_ranks_per_dimm) {
printf("WARNING: DRAM DIMM in slot %lu has %lu "
"ranks.\n", dimm_num, ranks_on_dimm);
if (1 == max_ranks_per_dimm) {
printf("Only one rank will be used.\n");
} else {
printf
("Only two ranks will be used.\n");
}
ranks_on_dimm = max_ranks_per_dimm;
}
dimm_ranks[dimm_num] = ranks_on_dimm;
*ranks += ranks_on_dimm;
} else {
dimm_ranks[dimm_num] = 0;
debug("DIMM slot %lu: Not populated\n", dimm_num);
}
}
if (dimm_found == FALSE) {
printf("ERROR: No memory installed.\n");
printf("Install at least one DDR2 DIMM.\n\n");
spd_ddr_init_hang();
}
debug("Total number of ranks = %d\n", *ranks);
}
/*------------------------------------------------------------------
* For the memory DIMMs installed, this routine verifies that
* frequency previously calculated is supported.
*-----------------------------------------------------------------*/
static void check_frequency(unsigned long *dimm_ranks,
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long cycle_time;
unsigned long calc_cycle_time;
/*
* calc_cycle_time is calculated from DDR frequency set by board/chip
* and is expressed in picoseconds to match the way DIMM cycle time is
* calculated below.
*/
calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq);
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_ranks[dimm_num]) {
cycle_time =
get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9));
debug("cycle_time=%d ps\n", cycle_time);
if (cycle_time > (calc_cycle_time + 10)) {
/*
* the provided sdram cycle_time is too small
* for the available DIMM cycle_time. The
* additionnal 10ps is here to accept a small
* incertainty.
*/
printf
("ERROR: DRAM DIMM detected with cycle_time %d ps in "
"slot %d \n while calculated cycle time is %d ps.\n",
(unsigned int)cycle_time,
(unsigned int)dimm_num,
(unsigned int)calc_cycle_time);
printf
("Replace the DIMM, or change DDR frequency via "
"strapping bits.\n\n");
spd_ddr_init_hang();
}
}
}
}
/*------------------------------------------------------------------
* This routine gets size information for the installed memory
* DIMMs.
*-----------------------------------------------------------------*/
static void get_dimm_size(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long *const rows,
unsigned long *const banks,
unsigned long *const cols, unsigned long *const width)
{
unsigned long dimm_num;
*rows = 0;
*banks = 0;
*cols = 0;
*width = 0;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_ranks[dimm_num]) {
unsigned long t;
/* Rows */
t = spd_read(iic0_dimm_addr[dimm_num], 3);
if (0 == *rows) {
*rows = t;
} else if (t != *rows) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same number of rows.\n\n");
spd_ddr_init_hang();
}
/* Banks */
t = spd_read(iic0_dimm_addr[dimm_num], 17);
if (0 == *banks) {
*banks = t;
} else if (t != *banks) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same number of banks.\n\n");
spd_ddr_init_hang();
}
/* Columns */
t = spd_read(iic0_dimm_addr[dimm_num], 4);
if (0 == *cols) {
*cols = t;
} else if (t != *cols) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same number of columns.\n\n");
spd_ddr_init_hang();
}
/* Data width */
t = spd_read(iic0_dimm_addr[dimm_num], 6);
if (0 == *width) {
*width = t;
} else if (t != *width) {
printf("ERROR: DRAM DIMM modules do not all "
"have the same data width.\n\n");
spd_ddr_init_hang();
}
}
}
debug("Number of rows = %d\n", *rows);
debug("Number of columns = %d\n", *cols);
debug("Number of banks = %d\n", *banks);
debug("Data width = %d\n", *width);
if (*rows > 14) {
printf("ERROR: DRAM DIMM modules have %lu address rows.\n",
*rows);
printf("Only modules with 14 or fewer rows are supported.\n\n");
spd_ddr_init_hang();
}
if (4 != *banks && 8 != *banks) {
printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks);
printf("Only modules with 4 or 8 banks are supported.\n\n");
spd_ddr_init_hang();
}
if (*cols > 12) {
printf("ERROR: DRAM DIMM modules have %lu address columns.\n",
*cols);
printf("Only modules with 12 or fewer columns are "
"supported.\n\n");
spd_ddr_init_hang();
}
if (32 != *width && 40 != *width && 64 != *width && 72 != *width) {
printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n",
*width);
printf("Only modules with widths of 32, 40, 64, and 72 bits "
"are supported.\n\n");
spd_ddr_init_hang();
}
}
/*------------------------------------------------------------------
* Only 1.8V modules are supported. This routine verifies this.
*-----------------------------------------------------------------*/
static void check_voltage_type(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks)
{
unsigned long dimm_num;
unsigned long voltage_type;
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
if (dimm_ranks[dimm_num]) {
voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
if (0x05 != voltage_type) { /* 1.8V for DDR2 */
printf("ERROR: Slot %lu provides 1.8V for DDR2 "
"DIMMs.\n", dimm_num);
switch (voltage_type) {
case 0x00:
printf("This DIMM is 5.0 Volt/TTL.\n");
break;
case 0x01:
printf("This DIMM is LVTTL.\n");
break;
case 0x02:
printf("This DIMM is 1.5 Volt.\n");
break;
case 0x03:
printf("This DIMM is 3.3 Volt/TTL.\n");
break;
case 0x04:
printf("This DIMM is 2.5 Volt.\n");
break;
default:
printf("This DIMM is an unknown "
"voltage.\n");
break;
}
printf("Replace it with a 1.8V DDR2 DIMM.\n\n");
spd_ddr_init_hang();
}
}
}
}
static void program_ddr0_03(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq,
unsigned long rows, unsigned long *cas_latency)
{
unsigned long dimm_num;
unsigned long cas_index;
unsigned long cycle_2_0_clk;
unsigned long cycle_3_0_clk;
unsigned long cycle_4_0_clk;
unsigned long cycle_5_0_clk;
unsigned long max_2_0_tcyc_ps = 100;
unsigned long max_3_0_tcyc_ps = 100;
unsigned long max_4_0_tcyc_ps = 100;
unsigned long max_5_0_tcyc_ps = 100;
unsigned char cas_available = 0x3C; /* value for DDR2 */
u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2);
unsigned int const tcyc_addr[3] = { 9, 23, 25 };
/*------------------------------------------------------------------
* Get the board configuration info.
*-----------------------------------------------------------------*/
debug("sdram_freq = %d\n", sdram_freq);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned char const cas_bit =
spd_read(iic0_dimm_addr[dimm_num], 18);
unsigned char cas_mask;
cas_available &= cas_bit;
for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) {
if (cas_bit & cas_mask)
break;
}
debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n",
cas_bit, cas_mask);
for (cas_index = 0; cas_index < 3;
cas_mask >>= 1, cas_index++) {
unsigned long cycle_time_ps;
if (!(cas_available & cas_mask)) {
continue;
}
cycle_time_ps =
get_tcyc(spd_read(iic0_dimm_addr[dimm_num],
tcyc_addr[cas_index]));
debug("cas_index = %d: cycle_time_ps = %d\n",
cas_index, cycle_time_ps);
/*
* DDR2 devices use the following bitmask for CAS latency:
* Bit 7 6 5 4 3 2 1 0
* TBD 6.0 5.0 4.0 3.0 2.0 TBD TBD
*/
switch (cas_mask) {
case 0x20:
max_5_0_tcyc_ps =
max(max_5_0_tcyc_ps, cycle_time_ps);
break;
case 0x10:
max_4_0_tcyc_ps =
max(max_4_0_tcyc_ps, cycle_time_ps);
break;
case 0x08:
max_3_0_tcyc_ps =
max(max_3_0_tcyc_ps, cycle_time_ps);
break;
case 0x04:
max_2_0_tcyc_ps =
max(max_2_0_tcyc_ps, cycle_time_ps);
break;
}
}
}
}
debug("cas_available (bit map) = 0x%02X\n", cas_available);
/*------------------------------------------------------------------
* Set the SDRAM mode, SDRAM_MMODE
*-----------------------------------------------------------------*/
/* add 10 here because of rounding problems */
cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10;
cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10;
cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10;
cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10;
debug("cycle_2_0_clk = %d\n", cycle_2_0_clk);
debug("cycle_3_0_clk = %d\n", cycle_3_0_clk);
debug("cycle_4_0_clk = %d\n", cycle_4_0_clk);
debug("cycle_5_0_clk = %d\n", cycle_5_0_clk);
if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) {
*cas_latency = 2;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) |
DDR0_03_CASLAT_LIN_ENCODE(0x4);
} else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) {
*cas_latency = 3;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) |
DDR0_03_CASLAT_LIN_ENCODE(0x6);
} else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) {
*cas_latency = 4;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) |
DDR0_03_CASLAT_LIN_ENCODE(0x8);
} else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) {
*cas_latency = 5;
ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) |
DDR0_03_CASLAT_LIN_ENCODE(0xA);
} else {
printf("ERROR: Cannot find a supported CAS latency with the "
"installed DIMMs.\n");
printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, "
"and 5.0 are supported.\n");
printf("Make sure the PLB speed is within the supported range "
"of the DIMMs.\n");
printf("sdram_freq=%ld cycle2=%ld cycle3=%ld cycle4=%ld "
"cycle5=%ld\n\n", sdram_freq, cycle_2_0_clk,
cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
spd_ddr_init_hang();
}
debug("CAS latency = %d\n", *cas_latency);
mtsdram(DDR0_03, ddr0_03);
}
static void program_ddr0_04(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long t_rc_ps = 0;
unsigned long t_rrd_ps = 0;
unsigned long t_rtp_ps = 0;
unsigned long t_rc_clk;
unsigned long t_rrd_clk;
unsigned long t_rtp_clk;
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
/* tRC */
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41);
switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) {
case 0x1:
ps += 250;
break;
case 0x2:
ps += 333;
break;
case 0x3:
ps += 500;
break;
case 0x4:
ps += 667;
break;
case 0x5:
ps += 750;
break;
}
t_rc_ps = max(t_rc_ps, ps);
/* tRRD */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28);
t_rrd_ps = max(t_rrd_ps, ps);
/* tRTP */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38);
t_rtp_ps = max(t_rtp_ps, ps);
}
}
debug("t_rc_ps = %d\n", t_rc_ps);
t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000;
debug("t_rrd_ps = %d\n", t_rrd_ps);
t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000;
debug("t_rtp_ps = %d\n", t_rtp_ps);
t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) |
DDR0_04_TRRD_ENCODE(t_rrd_clk) |
DDR0_04_TRTP_ENCODE(t_rtp_clk));
}
static void program_ddr0_05(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long t_rp_ps = 0;
unsigned long t_ras_ps = 0;
unsigned long t_rp_clk;
unsigned long t_ras_clk;
u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
/* tRP */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27);
t_rp_ps = max(t_rp_ps, ps);
/* tRAS */
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30);
t_ras_ps = max(t_ras_ps, ps);
}
}
debug("t_rp_ps = %d\n", t_rp_ps);
t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000;
debug("t_ras_ps = %d\n", t_ras_ps);
t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) |
DDR0_05_TRAS_MIN_ENCODE(t_ras_clk));
}
static void program_ddr0_06(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned char spd_40;
unsigned long t_wtr_ps = 0;
unsigned long t_rfc_ps = 0;
unsigned long t_wtr_clk;
unsigned long t_rfc_clk;
u32 ddr0_06 =
DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
/* tWTR */
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37);
t_wtr_ps = max(t_wtr_ps, ps);
/* tRFC */
ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42);
spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40);
ps += 256000 * (spd_40 & 0x01);
switch ((spd_40 & 0x0E) >> 1) {
case 0x1:
ps += 250;
break;
case 0x2:
ps += 333;
break;
case 0x3:
ps += 500;
break;
case 0x4:
ps += 667;
break;
case 0x5:
ps += 750;
break;
}
t_rfc_ps = max(t_rfc_ps, ps);
}
}
debug("t_wtr_ps = %d\n", t_wtr_ps);
t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000;
debug("t_rfc_ps = %d\n", t_rfc_ps);
t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) |
DDR0_06_TRFC_ENCODE(t_rfc_clk));
}
static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks)
{
unsigned long csmap;
if (2 == ranks) {
/* Both chip selects in use */
csmap = 0x03;
} else {
/* One chip select in use */
csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2;
}
mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) |
DDR0_10_CS_MAP_ENCODE(csmap) |
DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0));
}
static void program_ddr0_11(unsigned long sdram_freq)
{
unsigned long const t_xsnr_ps = 200000; /* 200 ns */
unsigned long t_xsnr_clk;
debug("t_xsnr_ps = %d\n", t_xsnr_ps);
t_xsnr_clk =
(MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) |
DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200));
}
static void program_ddr0_22(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks, unsigned long width)
{
#if defined(CONFIG_DDR_ECC)
unsigned long dimm_num;
unsigned long ecc_available = width >= 64;
u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS);
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
/* Check for ECC */
if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) &
0x02)) {
ecc_available = FALSE;
}
}
}
if (ecc_available) {
debug("ECC found on all DIMMs present\n");
mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3));
} else {
debug("ECC not found on some or all DIMMs present\n");
mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0));
}
#else
mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) |
DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) |
DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) |
DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS));
#endif /* defined(CONFIG_DDR_ECC) */
}
static void program_ddr0_24(unsigned long ranks)
{
u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) | /* 75 ohm */
DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0);
if (2 == ranks) {
/* Both chip selects in use */
ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) |
DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2);
} else {
/* One chip select in use */
/* One of the two fields added to ddr0_24 is a "don't care" */
ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) |
DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1);
}
mtsdram(DDR0_24, ddr0_24);
}
static void program_ddr0_26(unsigned long sdram_freq)
{
unsigned long const t_ref_ps = 7800000; /* 7.8 us. refresh */
/* TODO: check definition of tRAS_MAX */
unsigned long const t_ras_max_ps = 9 * t_ref_ps;
unsigned long t_ras_max_clk;
unsigned long t_ref_clk;
/* Round down t_ras_max_clk and t_ref_clk */
debug("t_ras_max_ps = %d\n", t_ras_max_ps);
t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000;
debug("t_ref_ps = %d\n", t_ref_ps);
t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000;
mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) |
DDR0_26_TREF_ENCODE(t_ref_clk));
}
static void program_ddr0_27(unsigned long sdram_freq)
{
unsigned long const t_init_ps = 200000000; /* 200 us. init */
unsigned long t_init_clk;
debug("t_init_ps = %d\n", t_init_ps);
t_init_clk =
(MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) |
DDR0_27_TINIT_ENCODE(t_init_clk));
}
static void program_ddr0_43(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq,
unsigned long cols, unsigned long banks)
{
unsigned long dimm_num;
unsigned long t_wr_ps = 0;
unsigned long t_wr_clk;
u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) |
DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) |
DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0);
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36);
t_wr_ps = max(t_wr_ps, ps);
}
}
debug("t_wr_ps = %d\n", t_wr_ps);
t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk));
}
static void program_ddr0_44(unsigned long dimm_ranks[],
unsigned char const iic0_dimm_addr[],
unsigned long num_dimm_banks,
unsigned long sdram_freq)
{
unsigned long dimm_num;
unsigned long t_rcd_ps = 0;
unsigned long t_rcd_clk;
/*------------------------------------------------------------------
* Handle the timing. We need to find the worst case timing of all
* the dimm modules installed.
*-----------------------------------------------------------------*/
/* loop through all the DIMM slots on the board */
for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
/* If a dimm is installed in a particular slot ... */
if (dimm_ranks[dimm_num]) {
unsigned long ps;
ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29);
t_rcd_ps = max(t_rcd_ps, ps);
}
}
debug("t_rcd_ps = %d\n", t_rcd_ps);
t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000;
mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk));
}
/*-----------------------------------------------------------------------------+
* initdram. Initializes the 440EPx/GPx DDR SDRAM controller.
* Note: This routine runs from flash with a stack set up in the chip's
* sram space. It is important that the routine does not require .sbss, .bss or
* .data sections. It also cannot call routines that require these sections.
*-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
* Function: initdram
* Description: Configures SDRAM memory banks for DDR operation.
* Auto Memory Configuration option reads the DDR SDRAM EEPROMs
* via the IIC bus and then configures the DDR SDRAM memory
* banks appropriately. If Auto Memory Configuration is
* not used, it is assumed that no DIMM is plugged
*-----------------------------------------------------------------------------*/
phys_size_t initdram(int board_type)
{
unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
unsigned long dimm_ranks[MAXDIMMS];
unsigned long ranks;
unsigned long rows;
unsigned long banks;
unsigned long cols;
unsigned long width;
unsigned long const sdram_freq = get_bus_freq(0);
unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr); /* on board dimm banks */
unsigned long cas_latency = 0; /* to quiet initialization warning */
unsigned long dram_size;
debug("\nEntering initdram()\n");
/*------------------------------------------------------------------
* Stop the DDR-SDRAM controller.
*-----------------------------------------------------------------*/
mtsdram(DDR0_02, DDR0_02_START_ENCODE(0));
/*
* Make sure I2C controller is initialized
* before continuing.
*/
/* switch to correct I2C bus */
I2C_SET_BUS(CONFIG_SYS_SPD_BUS_NUM);
i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
/*------------------------------------------------------------------
* Clear out the serial presence detect buffers.
* Perform IIC reads from the dimm. Fill in the spds.
* Check to see if the dimm slots are populated
*-----------------------------------------------------------------*/
get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Check the frequency supported for the dimms plugged.
*-----------------------------------------------------------------*/
check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
/*------------------------------------------------------------------
* Check and get size information.
*-----------------------------------------------------------------*/
get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks,
&cols, &width);
/*------------------------------------------------------------------
* Check the voltage type for the dimms plugged.
*-----------------------------------------------------------------*/
check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks);
/*------------------------------------------------------------------
* Program registers for SDRAM controller.
*-----------------------------------------------------------------*/
mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) |
DDR0_00_DLL_START_POINT_DECODE(0x0A));
mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) |
DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) |
DDR0_01_INT_MASK_ENCODE(0xFF));
program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
rows, &cas_latency);
program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
/*
* TODO: tFAW not found in SPD. Value of 13 taken from Sequoia
* board SDRAM, but may be overly conservative.
*/
mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) |
DDR0_07_TFAW_ENCODE(13) |
DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) |
DDR0_07_AREFRESH_ENCODE(0));
mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) |
DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) |
DDR0_08_DDRII_ENCODE(1));
mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) |
DDR0_09_RTT_0_ENCODE(0x1) |
DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) |
DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20));
program_ddr0_10(dimm_ranks, ranks);
program_ddr0_11(sdram_freq);
mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3));
mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) |
DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) |
DDR0_14_REG_DIMM_ENABLE_ENCODE(0));
mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY));
mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) |
DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) |
DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) |
DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY));
mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) |
DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) |
DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) |
DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY));
mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) |
DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) |
DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) |
DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS));
mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) |
DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) |
DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) |
DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS));
program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width);
mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) |
DDR0_23_FWC_ENCODE(0));
program_ddr0_24(ranks);
program_ddr0_26(sdram_freq);
program_ddr0_27(sdram_freq);
mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) |
DDR0_28_EMRS2_DATA_ENCODE(0x0000));
mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000));
mtsdram(DDR0_42, DDR0_42_ADDR_PINS_DECODE(14 - rows) |
DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency));
program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq,
cols, banks);
program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq);
denali_sdram_register_dump();
dram_size = (width >= 64) ? 8 : 4;
dram_size *= 1 << cols;
dram_size *= banks;
dram_size *= 1 << rows;
dram_size *= ranks;
debug("dram_size = %lu\n", dram_size);
/* Start the SDRAM controler */
mtsdram(DDR0_02, DDR0_02_START_ENCODE(1));
denali_wait_for_dlllock();
#if defined(CONFIG_DDR_DATA_EYE)
/*
* Map the first 1 MiB of memory in the TLB, and perform the data eye
* search.
*/
program_tlb(0, CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE);
denali_core_search_data_eye();
denali_sdram_register_dump();
remove_tlb(CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE);
#endif
#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC)
program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, 0);
sync();
/* Zero the memory */
debug("Zeroing SDRAM...");
#if defined(CONFIG_SYS_MEM_TOP_HIDE)
dcbz_area(CONFIG_SYS_SDRAM_BASE, dram_size - CONFIG_SYS_MEM_TOP_HIDE);
#else
#error Please define CONFIG_SYS_MEM_TOP_HIDE (see README) in your board config file
#endif
/* Write modified dcache lines back to memory */
clean_dcache_range(CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_SDRAM_BASE + dram_size - CONFIG_SYS_MEM_TOP_HIDE);
debug("Completed\n");
sync();
remove_tlb(CONFIG_SYS_SDRAM_BASE, dram_size);
#if defined(CONFIG_DDR_ECC)
/*
* If ECC is enabled, clear and enable interrupts
*/
if (is_ecc_enabled()) {
u32 val;
sync();
/* Clear error status */
mfsdram(DDR0_00, val);
mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL);
/* Set 'int_mask' parameter to functionnal value */
mfsdram(DDR0_01, val);
mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) |
DDR0_01_INT_MASK_ALL_OFF);
#if defined(CONFIG_DDR_DATA_EYE)
/*
* Running denali_core_search_data_eye() when ECC is enabled
* causes non-ECC machine checks. This clears them.
*/
print_mcsr();
mtspr(SPRN_MCSR, mfspr(SPRN_MCSR));
print_mcsr();
#endif
sync();
}
#endif /* defined(CONFIG_DDR_ECC) */
#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */
program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE);
return dram_size;
}
void board_add_ram_info(int use_default)
{
u32 val;
printf(" (ECC");
if (!is_ecc_enabled()) {
printf(" not");
}
printf(" enabled, %ld MHz", (2 * get_bus_freq(0)) / 1000000);
mfsdram(DDR0_03, val);
printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1);
}
#endif /* CONFIG_SPD_EEPROM */