u-boot/arch/x86/lib/zimage.c
Gabe Black 69370d144a x86: Refactor the zboot innards so they can be reused with a vboot image
If vboot successfully verifies a kernel, it will leave it in place and
basically ready to boot. The zeropage table which is part of the x86 boot
protocol is at the end of the kernel, though, instead of the beginning, and
because the image is already in place there's no need to copy it around.
This change refactors the code which implements the zboot command so that
the configuration of the zeropage table and loading the pieces of the
kernel into memory are done separately. Also, because the command line goes
before the zeropage table in vboot which is somewhat incompatible with the
normal protocol, where to put the command line is a now a parameter instead
of being hard coded.

Signed-off-by: Gabe Black <gabeblack@chromium.org>
2011-12-19 13:26:16 +11:00

373 lines
9.1 KiB
C

/*
* Copyright (c) 2011 The Chromium OS Authors.
* (C) Copyright 2002
* Daniel Engström, Omicron Ceti AB, <daniel@omicron.se>
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* Linux x86 zImage and bzImage loading
*
* based on the procdure described in
* linux/Documentation/i386/boot.txt
*/
#include <common.h>
#include <asm/io.h>
#include <asm/ptrace.h>
#include <asm/zimage.h>
#include <asm/realmode.h>
#include <asm/byteorder.h>
#include <asm/bootparam.h>
/*
* Memory lay-out:
*
* relative to setup_base (which is 0x90000 currently)
*
* 0x0000-0x7FFF Real mode kernel
* 0x8000-0x8FFF Stack and heap
* 0x9000-0x90FF Kernel command line
*/
#define DEFAULT_SETUP_BASE 0x90000
#define COMMAND_LINE_OFFSET 0x9000
#define HEAP_END_OFFSET 0x8e00
#define COMMAND_LINE_SIZE 2048
unsigned generic_install_e820_map(unsigned max_entries,
struct e820entry *entries)
{
return 0;
}
unsigned install_e820_map(unsigned max_entries,
struct e820entry *entries)
__attribute__((weak, alias("generic_install_e820_map")));
static void build_command_line(char *command_line, int auto_boot)
{
char *env_command_line;
command_line[0] = '\0';
env_command_line = getenv("bootargs");
/* set console= argument if we use a serial console */
if (!strstr(env_command_line, "console=")) {
if (!strcmp(getenv("stdout"), "serial")) {
/* We seem to use serial console */
sprintf(command_line, "console=ttyS0,%s ",
getenv("baudrate"));
}
}
if (auto_boot)
strcat(command_line, "auto ");
if (env_command_line)
strcat(command_line, env_command_line);
printf("Kernel command line: \"%s\"\n", command_line);
}
static int kernel_magic_ok(struct setup_header *hdr)
{
if (KERNEL_MAGIC != hdr->boot_flag) {
printf("Error: Invalid Boot Flag "
"(found 0x%04x, expected 0x%04x)\n",
hdr->boot_flag, KERNEL_MAGIC);
return 0;
} else {
printf("Valid Boot Flag\n");
return 1;
}
}
static int get_boot_protocol(struct setup_header *hdr)
{
if (hdr->header == KERNEL_V2_MAGIC) {
printf("Magic signature found\n");
return hdr->version;
} else {
/* Very old kernel */
printf("Magic signature not found\n");
return 0x0100;
}
}
struct boot_params *load_zimage(char *image, unsigned long kernel_size,
void **load_address)
{
struct boot_params *setup_base;
int setup_size;
int bootproto;
int big_image;
struct boot_params *params = (struct boot_params *)image;
struct setup_header *hdr = &params->hdr;
/* base address for real-mode segment */
setup_base = (struct boot_params *)DEFAULT_SETUP_BASE;
if (!kernel_magic_ok(hdr))
return 0;
/* determine size of setup */
if (0 == hdr->setup_sects) {
printf("Setup Sectors = 0 (defaulting to 4)\n");
setup_size = 5 * 512;
} else {
setup_size = (hdr->setup_sects + 1) * 512;
}
printf("Setup Size = 0x%8.8lx\n", (ulong)setup_size);
if (setup_size > SETUP_MAX_SIZE)
printf("Error: Setup is too large (%d bytes)\n", setup_size);
/* determine boot protocol version */
bootproto = get_boot_protocol(hdr);
printf("Using boot protocol version %x.%02x\n",
(bootproto & 0xff00) >> 8, bootproto & 0xff);
if (bootproto >= 0x0200) {
if (hdr->setup_sects >= 15) {
printf("Linux kernel version %s\n",
(char *)params +
hdr->kernel_version + 0x200);
} else {
printf("Setup Sectors < 15 - "
"Cannot print kernel version.\n");
}
}
/* Determine image type */
big_image = (bootproto >= 0x0200) &&
(hdr->loadflags & BIG_KERNEL_FLAG);
/* Determine load address */
if (big_image)
*load_address = (void *)BZIMAGE_LOAD_ADDR;
else
*load_address = (void *)ZIMAGE_LOAD_ADDR;
#if defined CONFIG_ZBOOT_32
printf("Building boot_params at 0x%8.8lx\n", (ulong)setup_base);
memset(setup_base, 0, sizeof(*setup_base));
setup_base->hdr = params->hdr;
#else
/* load setup */
printf("Moving Real-Mode Code to 0x%8.8lx (%d bytes)\n",
(ulong)setup_base, setup_size);
memmove(setup_base, image, setup_size);
#endif
if (bootproto >= 0x0204)
kernel_size = hdr->syssize * 16;
else
kernel_size -= setup_size;
if (bootproto == 0x0100) {
/*
* A very old kernel MUST have its real-mode code
* loaded at 0x90000
*/
if ((u32)setup_base != 0x90000) {
/* Copy the real-mode kernel */
memmove((void *)0x90000, setup_base, setup_size);
/* Copy the command line */
memmove((void *)0x99000,
(u8 *)setup_base + COMMAND_LINE_OFFSET,
COMMAND_LINE_SIZE);
/* Relocated */
setup_base = (struct boot_params *)0x90000;
}
/* It is recommended to clear memory up to the 32K mark */
memset((u8 *)0x90000 + setup_size, 0,
SETUP_MAX_SIZE - setup_size);
}
if (big_image) {
if (kernel_size > BZIMAGE_MAX_SIZE) {
printf("Error: bzImage kernel too big! "
"(size: %ld, max: %d)\n",
kernel_size, BZIMAGE_MAX_SIZE);
return 0;
}
} else if ((kernel_size) > ZIMAGE_MAX_SIZE) {
printf("Error: zImage kernel too big! (size: %ld, max: %d)\n",
kernel_size, ZIMAGE_MAX_SIZE);
return 0;
}
printf("Loading %s at address %p (%ld bytes)\n",
big_image ? "bzImage" : "zImage", *load_address, kernel_size);
memmove(*load_address, image + setup_size, kernel_size);
return setup_base;
}
int setup_zimage(struct boot_params *setup_base, char *cmd_line, int auto_boot,
unsigned long initrd_addr, unsigned long initrd_size)
{
struct setup_header *hdr = &setup_base->hdr;
int bootproto = get_boot_protocol(hdr);
#if defined CONFIG_ZBOOT_32
setup_base->e820_entries = install_e820_map(
ARRAY_SIZE(setup_base->e820_map), setup_base->e820_map);
#endif
if (bootproto == 0x0100) {
setup_base->screen_info.cl_magic = COMMAND_LINE_MAGIC;
setup_base->screen_info.cl_offset = COMMAND_LINE_OFFSET;
}
if (bootproto >= 0x0200) {
hdr->type_of_loader = 8;
if (initrd_addr) {
printf("Initial RAM disk at linear address "
"0x%08lx, size %ld bytes\n",
initrd_addr, initrd_size);
hdr->ramdisk_image = initrd_addr;
hdr->ramdisk_size = initrd_size;
}
}
if (bootproto >= 0x0201) {
hdr->heap_end_ptr = HEAP_END_OFFSET;
hdr->loadflags |= HEAP_FLAG;
}
if (bootproto >= 0x0202) {
hdr->cmd_line_ptr = (uintptr_t)cmd_line;
} else if (bootproto >= 0x0200) {
setup_base->screen_info.cl_magic = COMMAND_LINE_MAGIC;
setup_base->screen_info.cl_offset =
(uintptr_t)cmd_line - (uintptr_t)setup_base;
hdr->setup_move_size = 0x9100;
}
/* build command line at COMMAND_LINE_OFFSET */
build_command_line(cmd_line, auto_boot);
return 0;
}
void boot_zimage(void *setup_base, void *load_address)
{
printf("\nStarting kernel ...\n\n");
#if defined CONFIG_ZBOOT_32
/*
* Set %ebx, %ebp, and %edi to 0, %esi to point to the boot_params
* structure, and then jump to the kernel. We assume that %cs is
* 0x10, 4GB flat, and read/execute, and the data segments are 0x18,
* 4GB flat, and read/write. U-boot is setting them up that way for
* itself in arch/i386/cpu/cpu.c.
*/
__asm__ __volatile__ (
"movl $0, %%ebp \n"
"cli \n"
"jmp %[kernel_entry] \n"
:: [kernel_entry]"a"(load_address),
[boot_params] "S"(setup_base),
"b"(0), "D"(0)
: "%ebp"
);
#else
struct pt_regs regs;
memset(&regs, 0, sizeof(struct pt_regs));
regs.xds = (u32)setup_base >> 4;
regs.xes = regs.xds;
regs.xss = regs.xds;
regs.esp = 0x9000;
regs.eflags = 0;
enter_realmode(((u32)setup_base + SETUP_START_OFFSET) >> 4, 0,
&regs, &regs);
#endif
}
int do_zboot(cmd_tbl_t *cmdtp, int flag, int argc, char *const argv[])
{
struct boot_params *base_ptr;
void *bzImage_addr = NULL;
void *load_address;
char *s;
ulong bzImage_size = 0;
disable_interrupts();
/* Setup board for maximum PC/AT Compatibility */
setup_pcat_compatibility();
if (argc >= 2) {
/* argv[1] holds the address of the bzImage */
s = argv[1];
} else {
s = getenv("fileaddr");
}
if (s)
bzImage_addr = (void *)simple_strtoul(s, NULL, 16);
if (argc >= 3)
/* argv[2] holds the size of the bzImage */
bzImage_size = simple_strtoul(argv[2], NULL, 16);
/* Lets look for */
base_ptr = load_zimage(bzImage_addr, bzImage_size, &load_address);
if (!base_ptr) {
printf("## Kernel loading failed ...\n");
return -1;
}
if (setup_zimage(base_ptr, (char *)base_ptr + COMMAND_LINE_OFFSET,
0, 0, 0)) {
printf("Setting up boot parameters failed ...\n");
return -1;
}
printf("## Transferring control to Linux "
"(at address %08x) ...\n",
(u32)base_ptr);
/* we assume that the kernel is in place */
boot_zimage(base_ptr, load_address);
/* does not return */
return -1;
}
U_BOOT_CMD(
zboot, 2, 0, do_zboot,
"Boot bzImage",
""
);