u-boot/drivers/tigon3.c
Ben Warren d1bc6c8d5f Sync'd u-boot-net with mainline
Merge git://www.denx.de/git/u-boot

Conflicts:

	drivers/bcm570x.c
	drivers/tigon3.c
2007-08-13 21:26:03 -04:00

5700 lines
173 KiB
C

/******************************************************************************/
/* */
/* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 Broadcom */
/* Corporation. */
/* All rights reserved. */
/* */
/* This program is free software; you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation, located in the file LICENSE. */
/* */
/* History: */
/******************************************************************************/
#include <common.h>
#include <asm/types.h>
#if defined(CONFIG_CMD_NET) && !defined(CONFIG_NET_MULTI) && \
defined(CONFIG_TIGON3)
#ifdef CONFIG_BMW
#include <mpc824x.h>
#endif
#include <malloc.h>
#include <linux/byteorder/big_endian.h>
#include "bcm570x_mm.h"
#define EMBEDDED 1
/******************************************************************************/
/* Local functions. */
/******************************************************************************/
LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice);
LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice);
static LM_STATUS LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE
RequestedMediaType,
PLM_MEDIA_TYPE pMediaType,
PLM_LINE_SPEED pLineSpeed,
PLM_DUPLEX_MODE pDuplexMode);
static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice);
__inline static LM_VOID LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice);
__inline static LM_VOID LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice);
static LM_STATUS LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
LM_REQUESTED_MEDIA_TYPE
RequestedMediaType);
static LM_STATUS LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
LM_REQUESTED_MEDIA_TYPE RequestedMediaType);
static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
LM_UINT32 LocalPhyAd,
LM_UINT32 RemotePhyAd);
#if INCLUDE_TBI_SUPPORT
STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice);
#endif
STATIC LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice);
STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid,
LM_UINT16 Ssid);
STATIC LM_STATUS LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
LM_PHYSICAL_ADDRESS BufferPhy,
LM_UINT32 BufferSize);
STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number);
STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice);
STATIC LM_STATUS LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice,
PLM_PACKET pPacket, PT3_SND_BD pSendBd);
/******************************************************************************/
/* External functions. */
/******************************************************************************/
LM_STATUS LM_LoadRlsFirmware (PLM_DEVICE_BLOCK pDevice);
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_UINT32 LM_RegRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register)
{
LM_UINT32 Value32;
#if PCIX_TARGET_WORKAROUND
MM_ACQUIRE_UNDI_LOCK (pDevice);
#endif
MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
MM_ReadConfig32 (pDevice, T3_PCI_REG_DATA_REG, &Value32);
#if PCIX_TARGET_WORKAROUND
MM_RELEASE_UNDI_LOCK (pDevice);
#endif
return Value32;
} /* LM_RegRdInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_RegWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32)
{
#if PCIX_TARGET_WORKAROUND
MM_ACQUIRE_UNDI_LOCK (pDevice);
#endif
MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register);
MM_WriteConfig32 (pDevice, T3_PCI_REG_DATA_REG, Value32);
#if PCIX_TARGET_WORKAROUND
MM_RELEASE_UNDI_LOCK (pDevice);
#endif
} /* LM_RegWrInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_UINT32 LM_MemRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr)
{
LM_UINT32 Value32;
MM_ACQUIRE_UNDI_LOCK (pDevice);
#ifdef BIG_ENDIAN_HOST
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
Value32 = REG_RD (pDevice, PciCfg.MemWindowData);
/* Value32 = REG_RD(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4]); */
#else
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
MM_ReadConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32);
#endif
MM_RELEASE_UNDI_LOCK (pDevice);
return Value32;
} /* LM_MemRdInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_MemWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr, LM_UINT32 Value32)
{
MM_ACQUIRE_UNDI_LOCK (pDevice);
#ifdef BIG_ENDIAN_HOST
REG_WR (pDevice, PciCfg.MemWindowBaseAddr, MemAddr);
REG_WR (pDevice, uIntMem.Mbuf[(MemAddr & 0x7fff) / 4], Value32);
#else
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr);
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, Value32);
#endif
MM_RELEASE_UNDI_LOCK (pDevice);
} /* LM_MemWrInd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS Lmstatus;
PLM_PACKET pPacket;
PT3_RCV_BD pRcvBd;
LM_UINT32 StdBdAdded = 0;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
LM_UINT32 JumboBdAdded = 0;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
Lmstatus = LM_STATUS_SUCCESS;
pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
while (pPacket) {
switch (pPacket->u.Rx.RcvProdRing) {
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */
/* Initialize the buffer descriptor. */
pRcvBd =
&pDevice->pRxJumboBdVirt[pDevice->RxJumboProdIdx];
pRcvBd->Flags =
RCV_BD_FLAG_END | RCV_BD_FLAG_JUMBO_RING;
pRcvBd->Len = (LM_UINT16) pDevice->RxJumboBufferSize;
/* Initialize the receive buffer pointer */
#if 0 /* Jimmy, deleted in new */
pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
#endif
MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
/* The opaque field may point to an offset from a fix addr. */
pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
MM_UINT_PTR (pDevice->
pPacketDescBase));
/* Update the producer index. */
pDevice->RxJumboProdIdx =
(pDevice->RxJumboProdIdx +
1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
JumboBdAdded++;
break;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */
/* Initialize the buffer descriptor. */
pRcvBd = &pDevice->pRxStdBdVirt[pDevice->RxStdProdIdx];
pRcvBd->Flags = RCV_BD_FLAG_END;
pRcvBd->Len = MAX_STD_RCV_BUFFER_SIZE;
/* Initialize the receive buffer pointer */
#if 0 /* Jimmy, deleted in new replaced with MM_MapRxDma */
pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low;
pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High;
#endif
MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr);
/* The opaque field may point to an offset from a fix addr. */
pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) -
MM_UINT_PTR (pDevice->
pPacketDescBase));
/* Update the producer index. */
pDevice->RxStdProdIdx = (pDevice->RxStdProdIdx + 1) &
T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
StdBdAdded++;
break;
case T3_UNKNOWN_RCV_PROD_RING:
default:
Lmstatus = LM_STATUS_FAILURE;
break;
} /* switch */
/* Bail out if there is any error. */
if (Lmstatus != LM_STATUS_SUCCESS) {
break;
}
pPacket =
(PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
} /* while */
wmb ();
/* Update the procedure index. */
if (StdBdAdded) {
MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low,
pDevice->RxStdProdIdx);
}
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
if (JumboBdAdded) {
MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low,
pDevice->RxJumboProdIdx);
}
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
return Lmstatus;
} /* LM_QueueRxPackets */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_VOID LM_NvramInit (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT32 j;
/* Intialize clock period and state machine. */
Value32 = SEEPROM_ADDR_CLK_PERD (SEEPROM_CLOCK_PERIOD) |
SEEPROM_ADDR_FSM_RESET;
REG_WR (pDevice, Grc.EepromAddr, Value32);
for (j = 0; j < 100; j++) {
MM_Wait (10);
}
/* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */
Value32 = REG_RD (pDevice, Grc.LocalCtrl);
REG_WR (pDevice, Grc.LocalCtrl,
Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM);
/* Set the 5701 compatibility mode if we are using EEPROM. */
if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
Value32 = REG_RD (pDevice, Nvram.Config1);
if ((Value32 & FLASH_INTERFACE_ENABLE) == 0) {
/* Use the new interface to read EEPROM. */
Value32 &= ~FLASH_COMPAT_BYPASS;
REG_WR (pDevice, Nvram.Config1, Value32);
}
}
} /* LM_NvRamInit */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_EepromRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
{
LM_UINT32 Value32;
LM_UINT32 Addr;
LM_UINT32 Dev;
LM_UINT32 j;
if (Offset > SEEPROM_CHIP_SIZE) {
return LM_STATUS_FAILURE;
}
Dev = Offset / SEEPROM_CHIP_SIZE;
Addr = Offset % SEEPROM_CHIP_SIZE;
Value32 = REG_RD (pDevice, Grc.EepromAddr);
Value32 &= ~(SEEPROM_ADDR_ADDRESS_MASK | SEEPROM_ADDR_DEV_ID_MASK |
SEEPROM_ADDR_RW_MASK);
REG_WR (pDevice, Grc.EepromAddr, Value32 | SEEPROM_ADDR_DEV_ID (Dev) |
SEEPROM_ADDR_ADDRESS (Addr) | SEEPROM_ADDR_START |
SEEPROM_ADDR_READ);
for (j = 0; j < 1000; j++) {
Value32 = REG_RD (pDevice, Grc.EepromAddr);
if (Value32 & SEEPROM_ADDR_COMPLETE) {
break;
}
MM_Wait (10);
}
if (Value32 & SEEPROM_ADDR_COMPLETE) {
Value32 = REG_RD (pDevice, Grc.EepromData);
*pData = Value32;
return LM_STATUS_SUCCESS;
}
return LM_STATUS_FAILURE;
} /* LM_EepromRead */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS
LM_NvramRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData)
{
LM_UINT32 Value32;
LM_STATUS Status;
LM_UINT32 j;
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Status = LM_EepromRead (pDevice, Offset, pData);
} else {
/* Determine if we have flash or EEPROM. */
Value32 = REG_RD (pDevice, Nvram.Config1);
if (Value32 & FLASH_INTERFACE_ENABLE) {
if (Value32 & FLASH_SSRAM_BUFFERRED_MODE) {
Offset = ((Offset / BUFFERED_FLASH_PAGE_SIZE) <<
BUFFERED_FLASH_PAGE_POS) +
(Offset % BUFFERED_FLASH_PAGE_SIZE);
}
}
REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
for (j = 0; j < 1000; j++) {
if (REG_RD (pDevice, Nvram.SwArb) & SW_ARB_GNT1) {
break;
}
MM_Wait (20);
}
if (j == 1000) {
return LM_STATUS_FAILURE;
}
/* Read from flash or EEPROM with the new 5703/02 interface. */
REG_WR (pDevice, Nvram.Addr, Offset & NVRAM_ADDRESS_MASK);
REG_WR (pDevice, Nvram.Cmd, NVRAM_CMD_RD | NVRAM_CMD_DO_IT |
NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE);
/* Wait for the done bit to clear. */
for (j = 0; j < 500; j++) {
MM_Wait (10);
Value32 = REG_RD (pDevice, Nvram.Cmd);
if (!(Value32 & NVRAM_CMD_DONE)) {
break;
}
}
/* Wait for the done bit. */
if (!(Value32 & NVRAM_CMD_DONE)) {
for (j = 0; j < 500; j++) {
MM_Wait (10);
Value32 = REG_RD (pDevice, Nvram.Cmd);
if (Value32 & NVRAM_CMD_DONE) {
MM_Wait (10);
*pData =
REG_RD (pDevice, Nvram.ReadData);
/* Change the endianess. */
*pData =
((*pData & 0xff) << 24) |
((*pData & 0xff00) << 8) |
((*pData & 0xff0000) >> 8) |
((*pData >> 24) & 0xff);
break;
}
}
}
REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1);
if (Value32 & NVRAM_CMD_DONE) {
Status = LM_STATUS_SUCCESS;
} else {
Status = LM_STATUS_FAILURE;
}
}
return Status;
} /* LM_NvramRead */
STATIC void LM_ReadVPD (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Vpd_arr[256 / 4];
LM_UINT8 *Vpd = (LM_UINT8 *) & Vpd_arr[0];
LM_UINT32 *Vpd_dptr = &Vpd_arr[0];
LM_UINT32 Value32;
unsigned int j;
/* Read PN from VPD */
for (j = 0; j < 256; j += 4, Vpd_dptr++) {
if (LM_NvramRead (pDevice, 0x100 + j, &Value32) !=
LM_STATUS_SUCCESS) {
printf ("BCM570x: LM_ReadVPD: VPD read failed"
" (no EEPROM onboard)\n");
return;
}
*Vpd_dptr = cpu_to_le32 (Value32);
}
for (j = 0; j < 256;) {
unsigned int Vpd_r_len;
unsigned int Vpd_r_end;
if ((Vpd[j] == 0x82) || (Vpd[j] == 0x91)) {
j = j + 3 + Vpd[j + 1] + (Vpd[j + 2] << 8);
} else if (Vpd[j] == 0x90) {
Vpd_r_len = Vpd[j + 1] + (Vpd[j + 2] << 8);
j += 3;
Vpd_r_end = Vpd_r_len + j;
while (j < Vpd_r_end) {
if ((Vpd[j] == 'P') && (Vpd[j + 1] == 'N')) {
unsigned int len = Vpd[j + 2];
if (len <= 24) {
memcpy (pDevice->PartNo,
&Vpd[j + 3], len);
}
break;
} else {
if (Vpd[j + 2] == 0) {
break;
}
j = j + Vpd[j + 2];
}
}
break;
} else {
break;
}
}
}
STATIC void LM_ReadBootCodeVersion (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32, offset, ver_offset;
int i;
if (LM_NvramRead (pDevice, 0x0, &Value32) != LM_STATUS_SUCCESS)
return;
if (Value32 != 0xaa559966)
return;
if (LM_NvramRead (pDevice, 0xc, &offset) != LM_STATUS_SUCCESS)
return;
offset = ((offset & 0xff) << 24) | ((offset & 0xff00) << 8) |
((offset & 0xff0000) >> 8) | ((offset >> 24) & 0xff);
if (LM_NvramRead (pDevice, offset, &Value32) != LM_STATUS_SUCCESS)
return;
if ((Value32 == 0x0300000e) &&
(LM_NvramRead (pDevice, offset + 4, &Value32) == LM_STATUS_SUCCESS)
&& (Value32 == 0)) {
if (LM_NvramRead (pDevice, offset + 8, &ver_offset) !=
LM_STATUS_SUCCESS)
return;
ver_offset = ((ver_offset & 0xff0000) >> 8) |
((ver_offset >> 24) & 0xff);
for (i = 0; i < 16; i += 4) {
if (LM_NvramRead
(pDevice, offset + ver_offset + i,
&Value32) != LM_STATUS_SUCCESS) {
return;
}
*((LM_UINT32 *) & pDevice->BootCodeVer[i]) =
cpu_to_le32 (Value32);
}
} else {
char c;
if (LM_NvramRead (pDevice, 0x94, &Value32) != LM_STATUS_SUCCESS)
return;
i = 0;
c = ((Value32 & 0xff0000) >> 16);
if (c < 10) {
pDevice->BootCodeVer[i++] = c + '0';
} else {
pDevice->BootCodeVer[i++] = (c / 10) + '0';
pDevice->BootCodeVer[i++] = (c % 10) + '0';
}
pDevice->BootCodeVer[i++] = '.';
c = (Value32 & 0xff000000) >> 24;
if (c < 10) {
pDevice->BootCodeVer[i++] = c + '0';
} else {
pDevice->BootCodeVer[i++] = (c / 10) + '0';
pDevice->BootCodeVer[i++] = (c % 10) + '0';
}
pDevice->BootCodeVer[i] = 0;
}
}
STATIC void LM_GetBusSpeed (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 PciState = pDevice->PciState;
LM_UINT32 ClockCtrl;
char *SpeedStr = "";
if (PciState & T3_PCI_STATE_32BIT_PCI_BUS) {
strcpy (pDevice->BusSpeedStr, "32-bit ");
} else {
strcpy (pDevice->BusSpeedStr, "64-bit ");
}
if (PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) {
strcat (pDevice->BusSpeedStr, "PCI ");
if (PciState & T3_PCI_STATE_HIGH_BUS_SPEED) {
SpeedStr = "66MHz";
} else {
SpeedStr = "33MHz";
}
} else {
strcat (pDevice->BusSpeedStr, "PCIX ");
if (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE) {
SpeedStr = "133MHz";
} else {
ClockCtrl = REG_RD (pDevice, PciCfg.ClockCtrl) & 0x1f;
switch (ClockCtrl) {
case 0:
SpeedStr = "33MHz";
break;
case 2:
SpeedStr = "50MHz";
break;
case 4:
SpeedStr = "66MHz";
break;
case 6:
SpeedStr = "100MHz";
break;
case 7:
SpeedStr = "133MHz";
break;
}
}
}
strcat (pDevice->BusSpeedStr, SpeedStr);
}
/******************************************************************************/
/* Description: */
/* This routine initializes default parameters and reads the PCI */
/* configurations. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_GetAdapterInfo (PLM_DEVICE_BLOCK pDevice)
{
PLM_ADAPTER_INFO pAdapterInfo;
LM_UINT32 Value32;
LM_STATUS Status;
LM_UINT32 j;
LM_UINT32 EeSigFound;
LM_UINT32 EePhyTypeSerdes = 0;
LM_UINT32 EePhyLedMode = 0;
LM_UINT32 EePhyId = 0;
/* Get Device Id and Vendor Id */
Status = MM_ReadConfig32 (pDevice, PCI_VENDOR_ID_REG, &Value32);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
pDevice->PciVendorId = (LM_UINT16) Value32;
pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16);
/* If we are not getting the write adapter, exit. */
if ((Value32 != T3_PCI_ID_BCM5700) &&
(Value32 != T3_PCI_ID_BCM5701) &&
(Value32 != T3_PCI_ID_BCM5702) &&
(Value32 != T3_PCI_ID_BCM5702x) &&
(Value32 != T3_PCI_ID_BCM5702FE) &&
(Value32 != T3_PCI_ID_BCM5703) &&
(Value32 != T3_PCI_ID_BCM5703x) && (Value32 != T3_PCI_ID_BCM5704)) {
return LM_STATUS_FAILURE;
}
Status = MM_ReadConfig32 (pDevice, PCI_REV_ID_REG, &Value32);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
pDevice->PciRevId = (LM_UINT8) Value32;
/* Get IRQ. */
Status = MM_ReadConfig32 (pDevice, PCI_INT_LINE_REG, &Value32);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
pDevice->Irq = (LM_UINT8) Value32;
/* Get interrupt pin. */
pDevice->IntPin = (LM_UINT8) (Value32 >> 8);
/* Get chip revision id. */
Status = MM_ReadConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32);
pDevice->ChipRevId = Value32 >> 16;
/* Get subsystem vendor. */
Status =
MM_ReadConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
pDevice->SubsystemVendorId = (LM_UINT16) Value32;
/* Get PCI subsystem id. */
pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16);
/* Get the cache line size. */
MM_ReadConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32);
pDevice->CacheLineSize = (LM_UINT8) Value32;
pDevice->SavedCacheLineReg = Value32;
if (pDevice->ChipRevId != T3_CHIP_ID_5703_A1 &&
pDevice->ChipRevId != T3_CHIP_ID_5703_A2 &&
pDevice->ChipRevId != T3_CHIP_ID_5704_A0) {
pDevice->UndiFix = FALSE;
}
#if !PCIX_TARGET_WORKAROUND
pDevice->UndiFix = FALSE;
#endif
/* Map the memory base to system address space. */
if (!pDevice->UndiFix) {
Status = MM_MapMemBase (pDevice);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
/* Initialize the memory view pointer. */
pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase;
}
#if PCIX_TARGET_WORKAROUND
/* store whether we are in PCI are PCI-X mode */
pDevice->EnablePciXFix = FALSE;
MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
if ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0) {
/* Enable PCI-X workaround only if we are running on 5700 BX. */
if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
pDevice->EnablePciXFix = TRUE;
}
}
if (pDevice->UndiFix) {
pDevice->EnablePciXFix = TRUE;
}
#endif
/* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */
/* management register may be clobbered which may cause the */
/* BCM5700 to go into D3 state. While in this state, we will */
/* not have memory mapped register access. As a workaround, we */
/* need to restore the device to D0 state. */
MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32);
Value32 |= T3_PM_PME_ASSERTED;
Value32 &= ~T3_PM_POWER_STATE_MASK;
Value32 |= T3_PM_POWER_STATE_D0;
MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32);
/* read the current PCI command word */
MM_ReadConfig32 (pDevice, PCI_COMMAND_REG, &Value32);
/* Make sure bus-mastering is enabled. */
Value32 |= PCI_BUSMASTER_ENABLE;
#if PCIX_TARGET_WORKAROUND
/* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR#
are enabled */
if (pDevice->EnablePciXFix == TRUE) {
Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE |
PCI_PARITY_ERROR_ENABLE);
}
if (pDevice->UndiFix) {
Value32 &= ~PCI_MEM_SPACE_ENABLE;
}
#endif
if (pDevice->EnableMWI) {
Value32 |= PCI_MEMORY_WRITE_INVALIDATE;
} else {
Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE);
}
/* Error out if mem-mapping is NOT enabled for PCI systems */
if (!(Value32 | PCI_MEM_SPACE_ENABLE)) {
return LM_STATUS_FAILURE;
}
/* save the value we are going to write into the PCI command word */
pDevice->PciCommandStatusWords = Value32;
Status = MM_WriteConfig32 (pDevice, PCI_COMMAND_REG, Value32);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
/* Set power state to D0. */
LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
#ifdef BIG_ENDIAN_PCI
pDevice->MiscHostCtrl =
MISC_HOST_CTRL_MASK_PCI_INT |
MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
#else /* No CPU Swap modes for PCI IO */
/* Setup the mode registers. */
pDevice->MiscHostCtrl =
MISC_HOST_CTRL_MASK_PCI_INT |
MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP |
#ifdef BIG_ENDIAN_HOST
MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP |
#endif /* BIG_ENDIAN_HOST */
MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS |
MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW;
#endif /* !BIG_ENDIAN_PCI */
/* write to PCI misc host ctr first in order to enable indirect accesses */
MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
pDevice->MiscHostCtrl);
REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl);
#ifdef BIG_ENDIAN_PCI
Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
#else
/* No CPU Swap modes for PCI IO */
#ifdef BIG_ENDIAN_HOST
Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
#else
Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
#endif
#endif /* !BIG_ENDIAN_PCI */
REG_WR (pDevice, Grc.Mode, Value32);
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
REG_WR (pDevice, Grc.LocalCtrl,
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1);
}
MM_Wait (40);
/* Enable indirect memory access */
REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
if (REG_RD (pDevice, PciCfg.ClockCtrl) & T3_PCI_44MHZ_CORE_CLOCK) {
REG_WR (pDevice, PciCfg.ClockCtrl, T3_PCI_44MHZ_CORE_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK);
REG_WR (pDevice, PciCfg.ClockCtrl,
T3_PCI_SELECT_ALTERNATE_CLOCK);
MM_Wait (40); /* required delay is 27usec */
}
REG_WR (pDevice, PciCfg.ClockCtrl, 0);
REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
#if PCIX_TARGET_WORKAROUND
MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32);
if ((pDevice->EnablePciXFix == FALSE) &&
((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)) {
if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B2 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B5) {
__raw_writel (0,
&(pDevice->pMemView->uIntMem.
MemBlock32K[0x300]));
__raw_writel (0,
&(pDevice->pMemView->uIntMem.
MemBlock32K[0x301]));
__raw_writel (0xffffffff,
&(pDevice->pMemView->uIntMem.
MemBlock32K[0x301]));
if (__raw_readl
(&(pDevice->pMemView->uIntMem.MemBlock32K[0x300])))
{
pDevice->EnablePciXFix = TRUE;
}
}
}
#endif
#if 1
/*
* This code was at the beginning of else block below, but that's
* a bug if node address in shared memory.
*/
MM_Wait (50);
LM_NvramInit (pDevice);
#endif
/* Get the node address. First try to get in from the shared memory. */
/* If the signature is not present, then get it from the NVRAM. */
Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_HIGH_MAILBOX);
if ((Value32 >> 16) == 0x484b) {
pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8);
pDevice->NodeAddress[1] = (LM_UINT8) Value32;
Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_LOW_MAILBOX);
pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24);
pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16);
pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8);
pDevice->NodeAddress[5] = (LM_UINT8) Value32;
Status = LM_STATUS_SUCCESS;
} else {
Status = LM_NvramRead (pDevice, 0x7c, &Value32);
if (Status == LM_STATUS_SUCCESS) {
pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 16);
pDevice->NodeAddress[1] = (LM_UINT8) (Value32 >> 24);
Status = LM_NvramRead (pDevice, 0x80, &Value32);
pDevice->NodeAddress[2] = (LM_UINT8) Value32;
pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 8);
pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 16);
pDevice->NodeAddress[5] = (LM_UINT8) (Value32 >> 24);
}
}
/* Assign a default address. */
if (Status != LM_STATUS_SUCCESS) {
#ifndef EMBEDDED
printk (KERN_ERR
"Cannot get MAC addr from NVRAM. Using default.\n");
#endif
pDevice->NodeAddress[0] = 0x00;
pDevice->NodeAddress[1] = 0x10;
pDevice->NodeAddress[2] = 0x18;
pDevice->NodeAddress[3] = 0x68;
pDevice->NodeAddress[4] = 0x61;
pDevice->NodeAddress[5] = 0x76;
}
pDevice->PermanentNodeAddress[0] = pDevice->NodeAddress[0];
pDevice->PermanentNodeAddress[1] = pDevice->NodeAddress[1];
pDevice->PermanentNodeAddress[2] = pDevice->NodeAddress[2];
pDevice->PermanentNodeAddress[3] = pDevice->NodeAddress[3];
pDevice->PermanentNodeAddress[4] = pDevice->NodeAddress[4];
pDevice->PermanentNodeAddress[5] = pDevice->NodeAddress[5];
/* Initialize the default values. */
pDevice->NoTxPseudoHdrChksum = FALSE;
pDevice->NoRxPseudoHdrChksum = FALSE;
pDevice->NicSendBd = FALSE;
pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT;
pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT;
pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS;
pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS;
pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES;
pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES;
pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE;
pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE;
pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS;
pDevice->EnableMWI = FALSE;
pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
pDevice->DisableAutoNeg = FALSE;
pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO;
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO;
pDevice->LedMode = LED_MODE_AUTO;
pDevice->ResetPhyOnInit = TRUE;
pDevice->DelayPciGrant = TRUE;
pDevice->UseTaggedStatus = FALSE;
pDevice->OneDmaAtOnce = BAD_DEFAULT_VALUE;
pDevice->DmaMbufLowMark = T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO;
pDevice->RxMacMbufLowMark = T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO;
pDevice->MbufHighMark = T3_DEF_MBUF_HIGH_WMARK_JUMBO;
pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_AUTO;
pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE;
pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE;
pDevice->EnableTbi = FALSE;
#if INCLUDE_TBI_SUPPORT
pDevice->PollTbiLink = BAD_DEFAULT_VALUE;
#endif
switch (T3_ASIC_REV (pDevice->ChipRevId)) {
case T3_ASIC_REV_5704:
pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64;
break;
default:
pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR;
pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96;
break;
}
pDevice->LinkStatus = LM_STATUS_LINK_DOWN;
pDevice->QueueRxPackets = TRUE;
pDevice->EnableWireSpeed = TRUE;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Make this is a known adapter. */
pAdapterInfo = LM_GetAdapterInfoBySsid (pDevice->SubsystemVendorId,
pDevice->SubsystemId);
pDevice->BondId = REG_RD (pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK;
if (pDevice->BondId != GRC_MISC_BD_ID_5700 &&
pDevice->BondId != GRC_MISC_BD_ID_5701 &&
pDevice->BondId != GRC_MISC_BD_ID_5702FE &&
pDevice->BondId != GRC_MISC_BD_ID_5703 &&
pDevice->BondId != GRC_MISC_BD_ID_5703S &&
pDevice->BondId != GRC_MISC_BD_ID_5704 &&
pDevice->BondId != GRC_MISC_BD_ID_5704CIOBE) {
return LM_STATUS_UNKNOWN_ADAPTER;
}
pDevice->SplitModeEnable = SPLIT_MODE_DISABLE;
if ((pDevice->ChipRevId == T3_CHIP_ID_5704_A0) &&
(pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE)) {
pDevice->SplitModeEnable = SPLIT_MODE_ENABLE;
pDevice->SplitModeMaxReq = SPLIT_MODE_5704_MAX_REQ;
}
/* Get Eeprom info. */
Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_SIG_ADDR);
if (Value32 == T3_NIC_DATA_SIG) {
EeSigFound = TRUE;
Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_NIC_CFG_ADDR);
/* Determine PHY type. */
switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK) {
case T3_NIC_CFG_PHY_TYPE_COPPER:
EePhyTypeSerdes = FALSE;
break;
case T3_NIC_CFG_PHY_TYPE_FIBER:
EePhyTypeSerdes = TRUE;
break;
default:
EePhyTypeSerdes = FALSE;
break;
}
/* Determine PHY led mode. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
case T3_NIC_CFG_LED_MODE_TRIPLE_SPEED:
EePhyLedMode = LED_MODE_THREE_LINK;
break;
case T3_NIC_CFG_LED_MODE_LINK_SPEED:
EePhyLedMode = LED_MODE_LINK10;
break;
default:
EePhyLedMode = LED_MODE_AUTO;
break;
}
} else {
switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) {
case T3_NIC_CFG_LED_MODE_OPEN_DRAIN:
EePhyLedMode = LED_MODE_OPEN_DRAIN;
break;
case T3_NIC_CFG_LED_MODE_OUTPUT:
EePhyLedMode = LED_MODE_OUTPUT;
break;
default:
EePhyLedMode = LED_MODE_AUTO;
break;
}
}
if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
/* Enable EEPROM write protection. */
if (Value32 & T3_NIC_EEPROM_WP) {
pDevice->EepromWp = TRUE;
}
}
/* Get the PHY Id. */
Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_PHY_ID_ADDR);
if (Value32) {
EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) &
PHY_ID1_OUI_MASK) << 10;
Value32 = Value32 & T3_NIC_PHY_ID2_MASK;
EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
(Value32 & PHY_ID2_MODEL_MASK) | (Value32 &
PHY_ID2_REV_MASK);
} else {
EePhyId = 0;
}
} else {
EeSigFound = FALSE;
}
/* Set the PHY address. */
pDevice->PhyAddr = PHY_DEVICE_ID;
/* Disable auto polling. */
pDevice->MiMode = 0xc0000;
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
MM_Wait (40);
/* Get the PHY id. */
LM_ReadPhy (pDevice, PHY_ID1_REG, &Value32);
pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10;
LM_ReadPhy (pDevice, PHY_ID2_REG, &Value32);
pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) |
(Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK);
/* Set the EnableTbi flag to false if we have a copper PHY. */
switch (pDevice->PhyId & PHY_ID_MASK) {
case PHY_BCM5400_PHY_ID:
pDevice->EnableTbi = FALSE;
break;
case PHY_BCM5401_PHY_ID:
pDevice->EnableTbi = FALSE;
break;
case PHY_BCM5411_PHY_ID:
pDevice->EnableTbi = FALSE;
break;
case PHY_BCM5701_PHY_ID:
pDevice->EnableTbi = FALSE;
break;
case PHY_BCM5703_PHY_ID:
pDevice->EnableTbi = FALSE;
break;
case PHY_BCM5704_PHY_ID:
pDevice->EnableTbi = FALSE;
break;
case PHY_BCM8002_PHY_ID:
pDevice->EnableTbi = TRUE;
break;
default:
if (pAdapterInfo) {
pDevice->PhyId = pAdapterInfo->PhyId;
pDevice->EnableTbi = pAdapterInfo->Serdes;
} else if (EeSigFound) {
pDevice->PhyId = EePhyId;
pDevice->EnableTbi = EePhyTypeSerdes;
}
break;
}
/* Bail out if we don't know the copper PHY id. */
if (UNKNOWN_PHY_ID (pDevice->PhyId) && !pDevice->EnableTbi) {
return LM_STATUS_FAILURE;
}
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
if ((pDevice->SavedCacheLineReg & 0xff00) < 0x4000) {
pDevice->SavedCacheLineReg &= 0xffff00ff;
pDevice->SavedCacheLineReg |= 0x4000;
}
}
/* Change driver parameters. */
Status = MM_GetConfig (pDevice);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
#if INCLUDE_5701_AX_FIX
if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
pDevice->ResetPhyOnInit = TRUE;
}
#endif
/* Save the current phy link status. */
if (!pDevice->EnableTbi) {
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
/* If we don't have link reset the PHY. */
if (!(Value32 & PHY_STATUS_LINK_PASS)
|| pDevice->ResetPhyOnInit) {
LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET);
for (j = 0; j < 100; j++) {
MM_Wait (10);
LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
if (Value32 && !(Value32 & PHY_CTRL_PHY_RESET)) {
MM_Wait (40);
break;
}
}
#if INCLUDE_5701_AX_FIX
/* 5701_AX_BX bug: only advertises 10mb speed. */
if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
PHY_AN_AD_10BASET_HALF |
PHY_AN_AD_10BASET_FULL |
PHY_AN_AD_100BASETX_FULL |
PHY_AN_AD_100BASETX_HALF;
Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
Value32 = BCM540X_AN_AD_1000BASET_HALF |
BCM540X_AN_AD_1000BASET_FULL |
BCM540X_CONFIG_AS_MASTER |
BCM540X_ENABLE_CONFIG_AS_MASTER;
LM_WritePhy (pDevice,
BCM540X_1000BASET_CTRL_REG,
Value32);
pDevice->advertising1000 = Value32;
LM_WritePhy (pDevice, PHY_CTRL_REG,
PHY_CTRL_AUTO_NEG_ENABLE |
PHY_CTRL_RESTART_AUTO_NEG);
}
#endif
if (T3_ASIC_REV (pDevice->ChipRevId) ==
T3_ASIC_REV_5703) {
LM_WritePhy (pDevice, 0x18, 0x0c00);
LM_WritePhy (pDevice, 0x17, 0x201f);
LM_WritePhy (pDevice, 0x15, 0x2aaa);
}
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
LM_WritePhy (pDevice, 0x1c, 0x8d68);
LM_WritePhy (pDevice, 0x1c, 0x8d68);
}
/* Enable Ethernet@WireSpeed. */
if (pDevice->EnableWireSpeed) {
LM_WritePhy (pDevice, 0x18, 0x7007);
LM_ReadPhy (pDevice, 0x18, &Value32);
LM_WritePhy (pDevice, 0x18,
Value32 | BIT_15 | BIT_4);
}
}
}
/* Turn off tap power management. */
if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
MM_Wait (40);
}
#if INCLUDE_TBI_SUPPORT
pDevice->IgnoreTbiLinkChange = FALSE;
if (pDevice->EnableTbi) {
pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE;
pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
if ((pDevice->PollTbiLink == BAD_DEFAULT_VALUE) ||
pDevice->DisableAutoNeg) {
pDevice->PollTbiLink = FALSE;
}
} else {
pDevice->PollTbiLink = FALSE;
}
#endif /* INCLUDE_TBI_SUPPORT */
/* UseTaggedStatus is only valid for 5701 and later. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
pDevice->UseTaggedStatus = FALSE;
pDevice->CoalesceMode = 0;
} else {
pDevice->CoalesceMode =
HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT |
HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT;
}
/* Set the status block size. */
if (T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_AX &&
T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_BX) {
pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE;
}
/* Check the DURING_INT coalescing ticks parameters. */
if (pDevice->UseTaggedStatus) {
if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
pDevice->RxCoalescingTicksDuringInt =
DEFAULT_RX_COALESCING_TICKS_DURING_INT;
}
if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
pDevice->TxCoalescingTicksDuringInt =
DEFAULT_TX_COALESCING_TICKS_DURING_INT;
}
if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
pDevice->RxMaxCoalescedFramesDuringInt =
DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT;
}
if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
pDevice->TxMaxCoalescedFramesDuringInt =
DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT;
}
} else {
if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
pDevice->RxCoalescingTicksDuringInt = 0;
}
if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) {
pDevice->TxCoalescingTicksDuringInt = 0;
}
if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
pDevice->RxMaxCoalescedFramesDuringInt = 0;
}
if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) {
pDevice->TxMaxCoalescedFramesDuringInt = 0;
}
}
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
if (pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */ )) {
pDevice->RxJumboDescCnt = 0;
if (pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
}
} else {
pDevice->RxJumboBufferSize =
(pDevice->RxMtu + 8 /* CRC + VLAN */ +
COMMON_CACHE_LINE_SIZE - 1) & ~COMMON_CACHE_LINE_MASK;
if (pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE) {
pDevice->RxJumboBufferSize =
DEFAULT_JUMBO_RCV_BUFFER_SIZE;
pDevice->RxMtu =
pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */ ;
}
pDevice->TxMtu = pDevice->RxMtu;
}
#else
pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
pDevice->RxPacketDescCnt =
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
pDevice->RxJumboDescCnt +
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
pDevice->RxStdDescCnt;
if (pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC) {
pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC;
}
if (pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE) {
pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE;
}
/* Configure the proper ways to get link change interrupt. */
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO) {
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
} else {
pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY;
}
} else if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
/* Auto-polling does not work on 5700_AX and 5700_BX. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT;
}
}
/* Determine the method to get link change status. */
if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO) {
/* The link status bit in the status block does not work on 5700_AX */
/* and 5700_BX chips. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
pDevice->LinkChngMode =
T3_LINK_CHNG_MODE_USE_STATUS_REG;
} else {
pDevice->LinkChngMode =
T3_LINK_CHNG_MODE_USE_STATUS_BLOCK;
}
}
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG;
}
/* Configure PHY led mode. */
if (pDevice->LedMode == LED_MODE_AUTO) {
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
if (pDevice->SubsystemVendorId == T3_SVID_DELL) {
pDevice->LedMode = LED_MODE_LINK10;
} else {
pDevice->LedMode = LED_MODE_THREE_LINK;
if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
pDevice->LedMode = EePhyLedMode;
}
}
/* bug? 5701 in LINK10 mode does not seem to work when */
/* PhyIntMode is LINK_READY. */
if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700
&&
#if INCLUDE_TBI_SUPPORT
pDevice->EnableTbi == FALSE &&
#endif
pDevice->LedMode == LED_MODE_LINK10) {
pDevice->PhyIntMode =
T3_PHY_INT_MODE_MI_INTERRUPT;
pDevice->LinkChngMode =
T3_LINK_CHNG_MODE_USE_STATUS_REG;
}
if (pDevice->EnableTbi) {
pDevice->LedMode = LED_MODE_THREE_LINK;
}
} else {
if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) {
pDevice->LedMode = EePhyLedMode;
} else {
pDevice->LedMode = LED_MODE_OPEN_DRAIN;
}
}
}
/* Enable OneDmaAtOnce. */
if (pDevice->OneDmaAtOnce == BAD_DEFAULT_VALUE) {
pDevice->OneDmaAtOnce = FALSE;
}
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B2) {
pDevice->WolSpeed = WOL_SPEED_10MB;
} else {
pDevice->WolSpeed = WOL_SPEED_100MB;
}
/* Offloadings. */
pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE;
/* Turn off task offloading on Ax. */
if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) {
pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM |
LM_TASK_OFFLOAD_TX_UDP_CHECKSUM);
}
pDevice->PciState = REG_RD (pDevice, PciCfg.PciState);
LM_ReadVPD (pDevice);
LM_ReadBootCodeVersion (pDevice);
LM_GetBusSpeed (pDevice);
return LM_STATUS_SUCCESS;
} /* LM_GetAdapterInfo */
STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid, LM_UINT16 Ssid)
{
static LM_ADAPTER_INFO AdapterArr[] = {
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6,
PHY_BCM5401_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6,
PHY_BCM8002_PHY_ID, 1},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2,
PHY_BCM5701_PHY_ID, 0},
{T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0},
{T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0},
{T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1},
{T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0},
{T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0},
{T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0},
{T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0},
{T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0},
{T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0},
{T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0},
{T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID,
0},
{T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1},
{T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0},
{T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID,
0},
};
LM_UINT32 j;
for (j = 0; j < sizeof (AdapterArr) / sizeof (LM_ADAPTER_INFO); j++) {
if (AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid) {
return &AdapterArr[j];
}
}
return NULL;
}
/******************************************************************************/
/* Description: */
/* This routine sets up receive/transmit buffer descriptions queues. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_InitializeAdapter (PLM_DEVICE_BLOCK pDevice)
{
LM_PHYSICAL_ADDRESS MemPhy;
PLM_UINT8 pMemVirt;
PLM_PACKET pPacket;
LM_STATUS Status;
LM_UINT32 Size;
LM_UINT32 j;
/* Set power state to D0. */
LM_SetPowerState (pDevice, LM_POWER_STATE_D0);
/* Intialize the queues. */
QQ_InitQueue (&pDevice->RxPacketReceivedQ.Container,
MAX_RX_PACKET_DESC_COUNT);
QQ_InitQueue (&pDevice->RxPacketFreeQ.Container,
MAX_RX_PACKET_DESC_COUNT);
QQ_InitQueue (&pDevice->TxPacketFreeQ.Container,
MAX_TX_PACKET_DESC_COUNT);
QQ_InitQueue (&pDevice->TxPacketActiveQ.Container,
MAX_TX_PACKET_DESC_COUNT);
QQ_InitQueue (&pDevice->TxPacketXmittedQ.Container,
MAX_TX_PACKET_DESC_COUNT);
/* Allocate shared memory for: status block, the buffers for receive */
/* rings -- standard, mini, jumbo, and return rings. */
Size = T3_STATUS_BLOCK_SIZE + sizeof (T3_STATS_BLOCK) +
T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) +
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
/* Memory for host based Send BD. */
if (pDevice->NicSendBd == FALSE) {
Size += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
}
/* Allocate the memory block. */
Status =
MM_AllocateSharedMemory (pDevice, Size, (PLM_VOID) & pMemVirt,
&MemPhy, FALSE);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
/* Program DMA Read/Write */
if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) {
pDevice->DmaReadWriteCtrl = 0x763f000f;
} else {
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5704) {
pDevice->DmaReadWriteCtrl = 0x761f0000;
} else {
pDevice->DmaReadWriteCtrl = 0x761b000f;
}
if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 ||
pDevice->ChipRevId == T3_CHIP_ID_5703_A2) {
pDevice->OneDmaAtOnce = TRUE;
}
}
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) {
pDevice->DmaReadWriteCtrl &= 0xfffffff0;
}
if (pDevice->OneDmaAtOnce) {
pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE;
}
REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
if (LM_DmaTest (pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS) {
return LM_STATUS_FAILURE;
}
/* Status block. */
pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt;
pDevice->StatusBlkPhy = MemPhy;
pMemVirt += T3_STATUS_BLOCK_SIZE;
LM_INC_PHYSICAL_ADDRESS (&MemPhy, T3_STATUS_BLOCK_SIZE);
/* Statistics block. */
pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt;
pDevice->StatsBlkPhy = MemPhy;
pMemVirt += sizeof (T3_STATS_BLOCK);
LM_INC_PHYSICAL_ADDRESS (&MemPhy, sizeof (T3_STATS_BLOCK));
/* Receive standard BD buffer. */
pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt;
pDevice->RxStdBdPhy = MemPhy;
pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
LM_INC_PHYSICAL_ADDRESS (&MemPhy,
T3_STD_RCV_RCB_ENTRY_COUNT *
sizeof (T3_RCV_BD));
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Receive jumbo BD buffer. */
pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt;
pDevice->RxJumboBdPhy = MemPhy;
pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
LM_INC_PHYSICAL_ADDRESS (&MemPhy,
T3_JUMBO_RCV_RCB_ENTRY_COUNT *
sizeof (T3_RCV_BD));
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Receive return BD buffer. */
pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt;
pDevice->RcvRetBdPhy = MemPhy;
pMemVirt += T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD);
LM_INC_PHYSICAL_ADDRESS (&MemPhy,
T3_RCV_RETURN_RCB_ENTRY_COUNT *
sizeof (T3_RCV_BD));
/* Set up Send BD. */
if (pDevice->NicSendBd == FALSE) {
pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt;
pDevice->SendBdPhy = MemPhy;
pMemVirt += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT;
LM_INC_PHYSICAL_ADDRESS (&MemPhy,
sizeof (T3_SND_BD) *
T3_SEND_RCB_ENTRY_COUNT);
} else {
pDevice->pSendBdVirt = (PT3_SND_BD)
pDevice->pMemView->uIntMem.First32k.BufferDesc;
pDevice->SendBdPhy.High = 0;
pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR;
}
/* Allocate memory for packet descriptors. */
Size = (pDevice->RxPacketDescCnt +
pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE;
Status = MM_AllocateMemory (pDevice, Size, (PLM_VOID *) & pPacket);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
pDevice->pPacketDescBase = (PLM_VOID) pPacket;
/* Create transmit packet descriptors from the memory block and add them */
/* to the TxPacketFreeQ for each send ring. */
for (j = 0; j < pDevice->TxPacketDescCnt; j++) {
/* Ring index. */
pPacket->Flags = 0;
/* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */
QQ_PushTail (&pDevice->TxPacketFreeQ.Container, pPacket);
/* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
/* is the total size of the packet descriptor including the */
/* os-specific extensions in the UM_PACKET structure. */
pPacket =
(PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
} /* for(j.. */
/* Create receive packet descriptors from the memory block and add them */
/* to the RxPacketFreeQ. Create the Standard packet descriptors. */
for (j = 0; j < pDevice->RxStdDescCnt; j++) {
/* Receive producer ring. */
pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING;
/* Receive buffer size. */
pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE;
/* Add the descriptor to RxPacketFreeQ. */
QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
/* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
/* is the total size of the packet descriptor including the */
/* os-specific extensions in the UM_PACKET structure. */
pPacket =
(PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
} /* for */
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Create the Jumbo packet descriptors. */
for (j = 0; j < pDevice->RxJumboDescCnt; j++) {
/* Receive producer ring. */
pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING;
/* Receive buffer size. */
pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize;
/* Add the descriptor to RxPacketFreeQ. */
QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
/* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */
/* is the total size of the packet descriptor including the */
/* os-specific extensions in the UM_PACKET structure. */
pPacket =
(PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE);
} /* for */
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Initialize the rest of the packet descriptors. */
Status = MM_InitializeUmPackets (pDevice);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
/* if */
/* Default receive mask. */
pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST |
LM_ACCEPT_UNICAST;
/* Make sure we are in the first 32k memory window or NicSendBd. */
REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0);
/* Initialize the hardware. */
Status = LM_ResetAdapter (pDevice);
if (Status != LM_STATUS_SUCCESS) {
return Status;
}
/* We are done with initialization. */
pDevice->InitDone = TRUE;
return LM_STATUS_SUCCESS;
} /* LM_InitializeAdapter */
/******************************************************************************/
/* Description: */
/* This function Enables/Disables a given block. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS
LM_CntrlBlock (PLM_DEVICE_BLOCK pDevice, LM_UINT32 mask, LM_UINT32 cntrl)
{
LM_UINT32 j, i, data;
LM_UINT32 MaxWaitCnt;
MaxWaitCnt = 2;
j = 0;
for (i = 0; i < 32; i++) {
if (!(mask & (1 << i)))
continue;
switch (1 << i) {
case T3_BLOCK_DMA_RD:
data = REG_RD (pDevice, DmaRead.Mode);
if (cntrl == LM_DISABLE) {
data &= ~DMA_READ_MODE_ENABLE;
REG_WR (pDevice, DmaRead.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, DmaRead.Mode) &
DMA_READ_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, DmaRead.Mode,
data | DMA_READ_MODE_ENABLE);
break;
case T3_BLOCK_DMA_COMP:
data = REG_RD (pDevice, DmaComp.Mode);
if (cntrl == LM_DISABLE) {
data &= ~DMA_COMP_MODE_ENABLE;
REG_WR (pDevice, DmaComp.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, DmaComp.Mode) &
DMA_COMP_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, DmaComp.Mode,
data | DMA_COMP_MODE_ENABLE);
break;
case T3_BLOCK_RX_BD_INITIATOR:
data = REG_RD (pDevice, RcvBdIn.Mode);
if (cntrl == LM_DISABLE) {
data &= ~RCV_BD_IN_MODE_ENABLE;
REG_WR (pDevice, RcvBdIn.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, RcvBdIn.Mode) &
RCV_BD_IN_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, RcvBdIn.Mode,
data | RCV_BD_IN_MODE_ENABLE);
break;
case T3_BLOCK_RX_BD_COMP:
data = REG_RD (pDevice, RcvBdComp.Mode);
if (cntrl == LM_DISABLE) {
data &= ~RCV_BD_COMP_MODE_ENABLE;
REG_WR (pDevice, RcvBdComp.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, RcvBdComp.Mode) &
RCV_BD_COMP_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, RcvBdComp.Mode,
data | RCV_BD_COMP_MODE_ENABLE);
break;
case T3_BLOCK_DMA_WR:
data = REG_RD (pDevice, DmaWrite.Mode);
if (cntrl == LM_DISABLE) {
data &= ~DMA_WRITE_MODE_ENABLE;
REG_WR (pDevice, DmaWrite.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, DmaWrite.Mode) &
DMA_WRITE_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, DmaWrite.Mode,
data | DMA_WRITE_MODE_ENABLE);
break;
case T3_BLOCK_MSI_HANDLER:
data = REG_RD (pDevice, Msi.Mode);
if (cntrl == LM_DISABLE) {
data &= ~MSI_MODE_ENABLE;
REG_WR (pDevice, Msi.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, Msi.Mode) &
MSI_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, Msi.Mode,
data | MSI_MODE_ENABLE);
break;
case T3_BLOCK_RX_LIST_PLMT:
data = REG_RD (pDevice, RcvListPlmt.Mode);
if (cntrl == LM_DISABLE) {
data &= ~RCV_LIST_PLMT_MODE_ENABLE;
REG_WR (pDevice, RcvListPlmt.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, RcvListPlmt.Mode)
& RCV_LIST_PLMT_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, RcvListPlmt.Mode,
data | RCV_LIST_PLMT_MODE_ENABLE);
break;
case T3_BLOCK_RX_LIST_SELECTOR:
data = REG_RD (pDevice, RcvListSel.Mode);
if (cntrl == LM_DISABLE) {
data &= ~RCV_LIST_SEL_MODE_ENABLE;
REG_WR (pDevice, RcvListSel.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, RcvListSel.Mode) &
RCV_LIST_SEL_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, RcvListSel.Mode,
data | RCV_LIST_SEL_MODE_ENABLE);
break;
case T3_BLOCK_RX_DATA_INITIATOR:
data = REG_RD (pDevice, RcvDataBdIn.Mode);
if (cntrl == LM_DISABLE) {
data &= ~RCV_DATA_BD_IN_MODE_ENABLE;
REG_WR (pDevice, RcvDataBdIn.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, RcvDataBdIn.Mode)
& RCV_DATA_BD_IN_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, RcvDataBdIn.Mode,
data | RCV_DATA_BD_IN_MODE_ENABLE);
break;
case T3_BLOCK_RX_DATA_COMP:
data = REG_RD (pDevice, RcvDataComp.Mode);
if (cntrl == LM_DISABLE) {
data &= ~RCV_DATA_COMP_MODE_ENABLE;
REG_WR (pDevice, RcvDataComp.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, RcvDataBdIn.Mode)
& RCV_DATA_COMP_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, RcvDataComp.Mode,
data | RCV_DATA_COMP_MODE_ENABLE);
break;
case T3_BLOCK_HOST_COALESING:
data = REG_RD (pDevice, HostCoalesce.Mode);
if (cntrl == LM_DISABLE) {
data &= ~HOST_COALESCE_ENABLE;
REG_WR (pDevice, HostCoalesce.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, SndBdIn.Mode) &
HOST_COALESCE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, HostCoalesce.Mode,
data | HOST_COALESCE_ENABLE);
break;
case T3_BLOCK_MAC_RX_ENGINE:
if (cntrl == LM_DISABLE) {
pDevice->RxMode &= ~RX_MODE_ENABLE;
REG_WR (pDevice, MacCtrl.RxMode,
pDevice->RxMode);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, MacCtrl.RxMode) &
RX_MODE_ENABLE)) {
break;
}
MM_Wait (10);
}
} else {
pDevice->RxMode |= RX_MODE_ENABLE;
REG_WR (pDevice, MacCtrl.RxMode,
pDevice->RxMode);
}
break;
case T3_BLOCK_MBUF_CLUSTER_FREE:
data = REG_RD (pDevice, MbufClusterFree.Mode);
if (cntrl == LM_DISABLE) {
data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE;
REG_WR (pDevice, MbufClusterFree.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD
(pDevice,
MbufClusterFree.
Mode) &
MBUF_CLUSTER_FREE_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, MbufClusterFree.Mode,
data | MBUF_CLUSTER_FREE_MODE_ENABLE);
break;
case T3_BLOCK_SEND_BD_INITIATOR:
data = REG_RD (pDevice, SndBdIn.Mode);
if (cntrl == LM_DISABLE) {
data &= ~SND_BD_IN_MODE_ENABLE;
REG_WR (pDevice, SndBdIn.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, SndBdIn.Mode) &
SND_BD_IN_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, SndBdIn.Mode,
data | SND_BD_IN_MODE_ENABLE);
break;
case T3_BLOCK_SEND_BD_COMP:
data = REG_RD (pDevice, SndBdComp.Mode);
if (cntrl == LM_DISABLE) {
data &= ~SND_BD_COMP_MODE_ENABLE;
REG_WR (pDevice, SndBdComp.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, SndBdComp.Mode) &
SND_BD_COMP_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, SndBdComp.Mode,
data | SND_BD_COMP_MODE_ENABLE);
break;
case T3_BLOCK_SEND_BD_SELECTOR:
data = REG_RD (pDevice, SndBdSel.Mode);
if (cntrl == LM_DISABLE) {
data &= ~SND_BD_SEL_MODE_ENABLE;
REG_WR (pDevice, SndBdSel.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, SndBdSel.Mode) &
SND_BD_SEL_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, SndBdSel.Mode,
data | SND_BD_SEL_MODE_ENABLE);
break;
case T3_BLOCK_SEND_DATA_INITIATOR:
data = REG_RD (pDevice, SndDataIn.Mode);
if (cntrl == LM_DISABLE) {
data &= ~T3_SND_DATA_IN_MODE_ENABLE;
REG_WR (pDevice, SndDataIn.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, SndDataIn.Mode) &
T3_SND_DATA_IN_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, SndDataIn.Mode,
data | T3_SND_DATA_IN_MODE_ENABLE);
break;
case T3_BLOCK_SEND_DATA_COMP:
data = REG_RD (pDevice, SndDataComp.Mode);
if (cntrl == LM_DISABLE) {
data &= ~SND_DATA_COMP_MODE_ENABLE;
REG_WR (pDevice, SndDataComp.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, SndDataComp.Mode)
& SND_DATA_COMP_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, SndDataComp.Mode,
data | SND_DATA_COMP_MODE_ENABLE);
break;
case T3_BLOCK_MAC_TX_ENGINE:
if (cntrl == LM_DISABLE) {
pDevice->TxMode &= ~TX_MODE_ENABLE;
REG_WR (pDevice, MacCtrl.TxMode,
pDevice->TxMode);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, MacCtrl.TxMode) &
TX_MODE_ENABLE))
break;
MM_Wait (10);
}
} else {
pDevice->TxMode |= TX_MODE_ENABLE;
REG_WR (pDevice, MacCtrl.TxMode,
pDevice->TxMode);
}
break;
case T3_BLOCK_MEM_ARBITOR:
data = REG_RD (pDevice, MemArbiter.Mode);
if (cntrl == LM_DISABLE) {
data &= ~T3_MEM_ARBITER_MODE_ENABLE;
REG_WR (pDevice, MemArbiter.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, MemArbiter.Mode) &
T3_MEM_ARBITER_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, MemArbiter.Mode,
data | T3_MEM_ARBITER_MODE_ENABLE);
break;
case T3_BLOCK_MBUF_MANAGER:
data = REG_RD (pDevice, BufMgr.Mode);
if (cntrl == LM_DISABLE) {
data &= ~BUFMGR_MODE_ENABLE;
REG_WR (pDevice, BufMgr.Mode, data);
for (j = 0; j < MaxWaitCnt; j++) {
if (!
(REG_RD (pDevice, BufMgr.Mode) &
BUFMGR_MODE_ENABLE))
break;
MM_Wait (10);
}
} else
REG_WR (pDevice, BufMgr.Mode,
data | BUFMGR_MODE_ENABLE);
break;
case T3_BLOCK_MAC_GLOBAL:
if (cntrl == LM_DISABLE) {
pDevice->MacMode &= ~(MAC_MODE_ENABLE_TDE |
MAC_MODE_ENABLE_RDE |
MAC_MODE_ENABLE_FHDE);
} else {
pDevice->MacMode |= (MAC_MODE_ENABLE_TDE |
MAC_MODE_ENABLE_RDE |
MAC_MODE_ENABLE_FHDE);
}
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
break;
default:
return LM_STATUS_FAILURE;
} /* switch */
if (j >= MaxWaitCnt) {
return LM_STATUS_FAILURE;
}
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* This function reinitializes the adapter. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_ResetAdapter (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT16 Value16;
LM_UINT32 j, k;
/* Disable interrupt. */
LM_DisableInterrupt (pDevice);
/* May get a spurious interrupt */
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED;
/* Disable transmit and receive DMA engines. Abort all pending requests. */
if (pDevice->InitDone) {
LM_Abort (pDevice);
}
pDevice->ShuttingDown = FALSE;
LM_ResetChip (pDevice);
/* Bug: Athlon fix for B3 silicon only. This bit does not do anything */
/* in other chip revisions. */
if (pDevice->DelayPciGrant) {
Value32 = REG_RD (pDevice, PciCfg.ClockCtrl);
REG_WR (pDevice, PciCfg.ClockCtrl, Value32 | BIT_31);
}
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
Value32 = REG_RD (pDevice, PciCfg.PciState);
Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
REG_WR (pDevice, PciCfg.PciState, Value32);
}
}
/* Enable TaggedStatus mode. */
if (pDevice->UseTaggedStatus) {
pDevice->MiscHostCtrl |=
MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE;
}
/* Restore PCI configuration registers. */
MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
pDevice->SavedCacheLineReg);
MM_WriteConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
(pDevice->SubsystemId << 16) | pDevice->
SubsystemVendorId);
/* Clear the statistics block. */
for (j = 0x0300; j < 0x0b00; j++) {
MEM_WR_OFFSET (pDevice, j, 0);
}
/* Initialize the statistis Block */
pDevice->pStatusBlkVirt->Status = 0;
pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
for (j = 0; j < 16; j++) {
pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0;
pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0;
}
for (k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT; k++) {
pDevice->pRxStdBdVirt[k].HostAddr.High = 0;
pDevice->pRxStdBdVirt[k].HostAddr.Low = 0;
}
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Receive jumbo BD buffer. */
for (k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++) {
pDevice->pRxJumboBdVirt[k].HostAddr.High = 0;
pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0;
}
#endif
REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl);
/* GRC mode control register. */
#ifdef BIG_ENDIAN_PCI /* Jimmy, this ifdef block deleted in new code! */
Value32 =
GRC_MODE_WORD_SWAP_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
#else
/* No CPU Swap modes for PCI IO */
Value32 =
#ifdef BIG_ENDIAN_HOST
GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
#else
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA |
#endif
GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP;
#endif /* !BIG_ENDIAN_PCI */
/* Configure send BD mode. */
if (pDevice->NicSendBd == FALSE) {
Value32 |= GRC_MODE_HOST_SEND_BDS;
} else {
Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS;
}
/* Configure pseudo checksum mode. */
if (pDevice->NoTxPseudoHdrChksum) {
Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM;
}
if (pDevice->NoRxPseudoHdrChksum) {
Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM;
}
REG_WR (pDevice, Grc.Mode, Value32);
/* Setup the timer prescalar register. */
REG_WR (pDevice, Grc.MiscCfg, 65 << 1); /* Clock is alwasy 66Mhz. */
/* Set up the MBUF pool base address and size. */
REG_WR (pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase);
REG_WR (pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize);
/* Set up the DMA descriptor pool base address and size. */
REG_WR (pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR);
REG_WR (pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE);
/* Configure MBUF and Threshold watermarks */
/* Configure the DMA read MBUF low water mark. */
if (pDevice->DmaMbufLowMark) {
REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
pDevice->DmaMbufLowMark);
} else {
if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
T3_DEF_DMA_MBUF_LOW_WMARK);
} else {
REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark,
T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO);
}
}
/* Configure the MAC Rx MBUF low water mark. */
if (pDevice->RxMacMbufLowMark) {
REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
pDevice->RxMacMbufLowMark);
} else {
if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
T3_DEF_RX_MAC_MBUF_LOW_WMARK);
} else {
REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark,
T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO);
}
}
/* Configure the MBUF high water mark. */
if (pDevice->MbufHighMark) {
REG_WR (pDevice, BufMgr.MbufHighWaterMark,
pDevice->MbufHighMark);
} else {
if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) {
REG_WR (pDevice, BufMgr.MbufHighWaterMark,
T3_DEF_MBUF_HIGH_WMARK);
} else {
REG_WR (pDevice, BufMgr.MbufHighWaterMark,
T3_DEF_MBUF_HIGH_WMARK_JUMBO);
}
}
REG_WR (pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK);
REG_WR (pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK);
/* Enable buffer manager. */
REG_WR (pDevice, BufMgr.Mode,
BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE);
for (j = 0; j < 2000; j++) {
if (REG_RD (pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE)
break;
MM_Wait (10);
}
if (j >= 2000) {
return LM_STATUS_FAILURE;
}
/* Enable the FTQs. */
REG_WR (pDevice, Ftq.Reset, 0xffffffff);
REG_WR (pDevice, Ftq.Reset, 0);
/* Wait until FTQ is ready */
for (j = 0; j < 2000; j++) {
if (REG_RD (pDevice, Ftq.Reset) == 0)
break;
MM_Wait (10);
}
if (j >= 2000) {
return LM_STATUS_FAILURE;
}
/* Initialize the Standard Receive RCB. */
REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High,
pDevice->RxStdBdPhy.High);
REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low,
pDevice->RxStdBdPhy.Low);
REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags,
MAX_STD_RCV_BUFFER_SIZE << 16);
/* Initialize the Jumbo Receive RCB. */
REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High,
pDevice->RxJumboBdPhy.High);
REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low,
pDevice->RxJumboBdPhy.Low);
REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0);
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Initialize the Mini Receive RCB. */
REG_WR (pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
{
REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr,
(LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR);
REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr,
(LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR);
}
/* Receive BD Ring replenish threshold. */
REG_WR (pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt / 8);
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
REG_WR (pDevice, RcvBdIn.JumboRcvThreshold,
pDevice->RxJumboDescCnt / 8);
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
/* Disable all the unused rings. */
for (j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) {
MEM_WR (pDevice, SendRcb[j].u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
} /* for */
/* Initialize the indices. */
pDevice->SendProdIdx = 0;
pDevice->SendConIdx = 0;
MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, 0);
MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, 0);
/* Set up host or NIC based send RCB. */
if (pDevice->NicSendBd == FALSE) {
MEM_WR (pDevice, SendRcb[0].HostRingAddr.High,
pDevice->SendBdPhy.High);
MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low,
pDevice->SendBdPhy.Low);
/* Set up the NIC ring address in the RCB. */
MEM_WR (pDevice, SendRcb[0].NicRingAddr,
T3_NIC_SND_BUFFER_DESC_ADDR);
/* Setup the RCB. */
MEM_WR (pDevice, SendRcb[0].u.MaxLen_Flags,
T3_SEND_RCB_ENTRY_COUNT << 16);
for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
pDevice->pSendBdVirt[k].HostAddr.High = 0;
pDevice->pSendBdVirt[k].HostAddr.Low = 0;
}
} else {
MEM_WR (pDevice, SendRcb[0].HostRingAddr.High, 0);
MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low, 0);
MEM_WR (pDevice, SendRcb[0].NicRingAddr,
pDevice->SendBdPhy.Low);
for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) {
__raw_writel (0,
&(pDevice->pSendBdVirt[k].HostAddr.High));
__raw_writel (0,
&(pDevice->pSendBdVirt[k].HostAddr.Low));
__raw_writel (0,
&(pDevice->pSendBdVirt[k].u1.Len_Flags));
pDevice->ShadowSendBd[k].HostAddr.High = 0;
pDevice->ShadowSendBd[k].u1.Len_Flags = 0;
}
}
atomic_set (&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT - 1);
/* Configure the receive return rings. */
for (j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++) {
MEM_WR (pDevice, RcvRetRcb[j].u.MaxLen_Flags,
T3_RCB_FLAG_RING_DISABLED);
}
pDevice->RcvRetConIdx = 0;
MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.High,
pDevice->RcvRetBdPhy.High);
MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.Low,
pDevice->RcvRetBdPhy.Low);
/* Set up the NIC ring address in the RCB. */
/* Not very clear from the spec. I am guessing that for Receive */
/* Return Ring, NicRingAddr is not used. */
MEM_WR (pDevice, RcvRetRcb[0].NicRingAddr, 0);
/* Setup the RCB. */
MEM_WR (pDevice, RcvRetRcb[0].u.MaxLen_Flags,
T3_RCV_RETURN_RCB_ENTRY_COUNT << 16);
/* Reinitialize RX ring producer index */
MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low, 0);
MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low, 0);
MB_REG_WR (pDevice, Mailbox.RcvMiniProdIdx.Low, 0);
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
pDevice->RxJumboProdIdx = 0;
pDevice->RxJumboQueuedCnt = 0;
#endif
/* Reinitialize our copy of the indices. */
pDevice->RxStdProdIdx = 0;
pDevice->RxStdQueuedCnt = 0;
#if T3_JUMBO_RCV_ENTRY_COUNT
pDevice->RxJumboProdIdx = 0;
#endif /* T3_JUMBO_RCV_ENTRY_COUNT */
/* Configure the MAC address. */
LM_SetMacAddress (pDevice, pDevice->NodeAddress);
/* Initialize the transmit random backoff seed. */
Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] +
pDevice->NodeAddress[2] + pDevice->NodeAddress[3] +
pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) &
MAC_TX_BACKOFF_SEED_MASK;
REG_WR (pDevice, MacCtrl.TxBackoffSeed, Value32);
/* Receive MTU. Frames larger than the MTU is marked as oversized. */
REG_WR (pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */
/* Configure Time slot/IPG per 802.3 */
REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
/*
* Configure Receive Rules so that packets don't match
* Programmble rule will be queued to Return Ring 1
*/
REG_WR (pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS);
/*
* Configure to have 16 Classes of Services (COS) and one
* queue per class. Bad frames are queued to RRR#1.
* And frames don't match rules are also queued to COS#1.
*/
REG_WR (pDevice, RcvListPlmt.Config, 0x181);
/* Enable Receive Placement Statistics */
REG_WR (pDevice, RcvListPlmt.StatsEnableMask, 0xffffff);
REG_WR (pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE);
/* Enable Send Data Initator Statistics */
REG_WR (pDevice, SndDataIn.StatsEnableMask, 0xffffff);
REG_WR (pDevice, SndDataIn.StatsCtrl,
T3_SND_DATA_IN_STATS_CTRL_ENABLE |
T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE);
/* Disable the host coalescing state machine before configuring it's */
/* parameters. */
REG_WR (pDevice, HostCoalesce.Mode, 0);
for (j = 0; j < 2000; j++) {
Value32 = REG_RD (pDevice, HostCoalesce.Mode);
if (!(Value32 & HOST_COALESCE_ENABLE)) {
break;
}
MM_Wait (10);
}
/* Host coalescing configurations. */
REG_WR (pDevice, HostCoalesce.RxCoalescingTicks,
pDevice->RxCoalescingTicks);
REG_WR (pDevice, HostCoalesce.TxCoalescingTicks,
pDevice->TxCoalescingTicks);
REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFrames,
pDevice->RxMaxCoalescedFrames);
REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFrames,
pDevice->TxMaxCoalescedFrames);
REG_WR (pDevice, HostCoalesce.RxCoalescedTickDuringInt,
pDevice->RxCoalescingTicksDuringInt);
REG_WR (pDevice, HostCoalesce.TxCoalescedTickDuringInt,
pDevice->TxCoalescingTicksDuringInt);
REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt,
pDevice->RxMaxCoalescedFramesDuringInt);
REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt,
pDevice->TxMaxCoalescedFramesDuringInt);
/* Initialize the address of the status block. The NIC will DMA */
/* the status block to this memory which resides on the host. */
REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.High,
pDevice->StatusBlkPhy.High);
REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.Low,
pDevice->StatusBlkPhy.Low);
/* Initialize the address of the statistics block. The NIC will DMA */
/* the statistics to this block of memory. */
REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.High,
pDevice->StatsBlkPhy.High);
REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.Low,
pDevice->StatsBlkPhy.Low);
REG_WR (pDevice, HostCoalesce.StatsCoalescingTicks,
pDevice->StatsCoalescingTicks);
REG_WR (pDevice, HostCoalesce.StatsBlkNicAddr, 0x300);
REG_WR (pDevice, HostCoalesce.StatusBlkNicAddr, 0xb00);
/* Enable Host Coalesing state machine */
REG_WR (pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE |
pDevice->CoalesceMode);
/* Enable the Receive BD Completion state machine. */
REG_WR (pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE |
RCV_BD_COMP_MODE_ATTN_ENABLE);
/* Enable the Receive List Placement state machine. */
REG_WR (pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE);
/* Enable the Receive List Selector state machine. */
REG_WR (pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE |
RCV_LIST_SEL_MODE_ATTN_ENABLE);
/* Enable transmit DMA, clear statistics. */
pDevice->MacMode = MAC_MODE_ENABLE_TX_STATISTICS |
MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE |
MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE;
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS);
/* GRC miscellaneous local control register. */
pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN |
GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM;
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1;
}
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
MM_Wait (40);
/* Reset RX counters. */
for (j = 0; j < sizeof (LM_RX_COUNTERS); j++) {
((PLM_UINT8) & pDevice->RxCounters)[j] = 0;
}
/* Reset TX counters. */
for (j = 0; j < sizeof (LM_TX_COUNTERS); j++) {
((PLM_UINT8) & pDevice->TxCounters)[j] = 0;
}
MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
/* Enable the DMA Completion state machine. */
REG_WR (pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE);
/* Enable the DMA Write state machine. */
Value32 = DMA_WRITE_MODE_ENABLE |
DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE |
DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE |
DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE |
DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE |
DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE;
REG_WR (pDevice, DmaWrite.Mode, Value32);
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
Value16 = REG_RD (pDevice, PciCfg.PciXCommand);
Value16 &=
~(PCIX_CMD_MAX_SPLIT_MASK |
PCIX_CMD_MAX_BURST_MASK);
Value16 |=
((PCIX_CMD_MAX_BURST_CPIOB <<
PCIX_CMD_MAX_BURST_SHL) &
PCIX_CMD_MAX_BURST_MASK);
if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
Value16 |=
(pDevice->
SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL)
& PCIX_CMD_MAX_SPLIT_MASK;
}
REG_WR (pDevice, PciCfg.PciXCommand, Value16);
}
}
/* Enable the Read DMA state machine. */
Value32 = DMA_READ_MODE_ENABLE |
DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE |
DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE |
DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE |
DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE |
DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE |
DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE |
DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE |
DMA_READ_MODE_LONG_READ_ATTN_ENABLE;
if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) {
Value32 |= DMA_READ_MODE_SPLIT_ENABLE;
}
REG_WR (pDevice, DmaRead.Mode, Value32);
/* Enable the Receive Data Completion state machine. */
REG_WR (pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE |
RCV_DATA_COMP_MODE_ATTN_ENABLE);
/* Enable the Mbuf Cluster Free state machine. */
REG_WR (pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE);
/* Enable the Send Data Completion state machine. */
REG_WR (pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE);
/* Enable the Send BD Completion state machine. */
REG_WR (pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE |
SND_BD_COMP_MODE_ATTN_ENABLE);
/* Enable the Receive BD Initiator state machine. */
REG_WR (pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE |
RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE);
/* Enable the Receive Data and Receive BD Initiator state machine. */
REG_WR (pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE |
RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE);
/* Enable the Send Data Initiator state machine. */
REG_WR (pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE);
/* Enable the Send BD Initiator state machine. */
REG_WR (pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE |
SND_BD_IN_MODE_ATTN_ENABLE);
/* Enable the Send BD Selector state machine. */
REG_WR (pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE |
SND_BD_SEL_MODE_ATTN_ENABLE);
#if INCLUDE_5701_AX_FIX
/* Load the firmware for the 5701_A0 workaround. */
if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0) {
LM_LoadRlsFirmware (pDevice);
}
#endif
/* Enable the transmitter. */
pDevice->TxMode = TX_MODE_ENABLE;
REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
/* Enable the receiver. */
pDevice->RxMode = RX_MODE_ENABLE;
REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
if (pDevice->RestoreOnWakeUp) {
pDevice->RestoreOnWakeUp = FALSE;
pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg;
pDevice->RequestedMediaType = pDevice->WakeUpRequestedMediaType;
}
/* Disable auto polling. */
pDevice->MiMode = 0xc0000;
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 = LED_CTRL_PHY_MODE_1;
} else {
if (pDevice->LedMode == LED_MODE_OUTPUT) {
Value32 = LED_CTRL_PHY_MODE_2;
} else {
Value32 = LED_CTRL_PHY_MODE_1;
}
}
REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
/* Activate Link to enable MAC state machine */
REG_WR (pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN);
if (pDevice->EnableTbi) {
REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_RESET);
MM_Wait (10);
REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1) {
REG_WR (pDevice, MacCtrl.SerdesCfg, 0x616000);
}
}
/* Setup the phy chip. */
LM_SetupPhy (pDevice);
if (!pDevice->EnableTbi) {
/* Clear CRC stats */
LM_ReadPhy (pDevice, 0x1e, &Value32);
LM_WritePhy (pDevice, 0x1e, Value32 | 0x8000);
LM_ReadPhy (pDevice, 0x14, &Value32);
}
/* Set up the receive mask. */
LM_SetReceiveMask (pDevice, pDevice->ReceiveMask);
/* Queue Rx packet buffers. */
if (pDevice->QueueRxPackets) {
LM_QueueRxPackets (pDevice);
}
/* Enable interrupt to the host. */
if (pDevice->InitDone) {
LM_EnableInterrupt (pDevice);
}
return LM_STATUS_SUCCESS;
} /* LM_ResetAdapter */
/******************************************************************************/
/* Description: */
/* This routine disables the adapter from generating interrupts. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_DisableInterrupt (PLM_DEVICE_BLOCK pDevice)
{
REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl |
MISC_HOST_CTRL_MASK_PCI_INT);
MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 1);
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* This routine enables the adapter to generate interrupts. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_EnableInterrupt (PLM_DEVICE_BLOCK pDevice)
{
REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl &
~MISC_HOST_CTRL_MASK_PCI_INT);
MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0);
if (pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) {
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_SET_INT);
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* This routine puts a packet on the wire if there is a transmit DMA */
/* descriptor available; otherwise the packet is queued for later */
/* transmission. If the second argue is NULL, this routine will put */
/* the queued packet on the wire if possible. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
#if 0
LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
LM_UINT32 FragCount;
PT3_SND_BD pSendBd;
PT3_SND_BD pShadowSendBd;
LM_UINT32 Value32, Len;
LM_UINT32 Idx;
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
return LM_5700SendPacket (pDevice, pPacket);
}
/* Update the SendBdLeft count. */
atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
/* Initalize the send buffer descriptors. */
Idx = pDevice->SendProdIdx;
pSendBd = &pDevice->pSendBdVirt[Idx];
/* Next producer index. */
if (pDevice->NicSendBd == TRUE) {
T3_64BIT_HOST_ADDR paddr;
pShadowSendBd = &pDevice->ShadowSendBd[Idx];
for (FragCount = 0;;) {
MM_MapTxDma (pDevice, pPacket, &paddr, &Len, FragCount);
/* Initialize the pointer to the send buffer fragment. */
if (paddr.High != pShadowSendBd->HostAddr.High) {
__raw_writel (paddr.High,
&(pSendBd->HostAddr.High));
pShadowSendBd->HostAddr.High = paddr.High;
}
__raw_writel (paddr.Low, &(pSendBd->HostAddr.Low));
/* Setup the control flags and send buffer size. */
Value32 = (Len << 16) | pPacket->Flags;
Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
FragCount++;
if (FragCount >= pPacket->u.Tx.FragCount) {
Value32 |= SND_BD_FLAG_END;
if (Value32 != pShadowSendBd->u1.Len_Flags) {
__raw_writel (Value32,
&(pSendBd->u1.Len_Flags));
pShadowSendBd->u1.Len_Flags = Value32;
}
if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
__raw_writel (pPacket->VlanTag,
&(pSendBd->u2.VlanTag));
}
break;
} else {
if (Value32 != pShadowSendBd->u1.Len_Flags) {
__raw_writel (Value32,
&(pSendBd->u1.Len_Flags));
pShadowSendBd->u1.Len_Flags = Value32;
}
if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
__raw_writel (pPacket->VlanTag,
&(pSendBd->u2.VlanTag));
}
}
pSendBd++;
pShadowSendBd++;
if (Idx == 0) {
pSendBd = &pDevice->pSendBdVirt[0];
pShadowSendBd = &pDevice->ShadowSendBd[0];
}
} /* for */
/* Put the packet descriptor in the ActiveQ. */
QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
wmb ();
MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
} else {
for (FragCount = 0;;) {
/* Initialize the pointer to the send buffer fragment. */
MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
FragCount);
pSendBd->u2.VlanTag = pPacket->VlanTag;
/* Setup the control flags and send buffer size. */
Value32 = (Len << 16) | pPacket->Flags;
Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
FragCount++;
if (FragCount >= pPacket->u.Tx.FragCount) {
pSendBd->u1.Len_Flags =
Value32 | SND_BD_FLAG_END;
break;
} else {
pSendBd->u1.Len_Flags = Value32;
}
pSendBd++;
if (Idx == 0) {
pSendBd = &pDevice->pSendBdVirt[0];
}
} /* for */
/* Put the packet descriptor in the ActiveQ. */
QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
wmb ();
MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
}
/* Update the producer index. */
pDevice->SendProdIdx = Idx;
return LM_STATUS_SUCCESS;
}
#endif
LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket)
{
LM_UINT32 FragCount;
PT3_SND_BD pSendBd, pTmpSendBd, pShadowSendBd;
T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT];
LM_UINT32 StartIdx, Idx;
while (1) {
/* Initalize the send buffer descriptors. */
StartIdx = Idx = pDevice->SendProdIdx;
if (pDevice->NicSendBd) {
pTmpSendBd = pSendBd = &NicSendBdArr[0];
} else {
pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx];
}
/* Next producer index. */
for (FragCount = 0;;) {
LM_UINT32 Value32, Len;
/* Initialize the pointer to the send buffer fragment. */
MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len,
FragCount);
pSendBd->u2.VlanTag = pPacket->VlanTag;
/* Setup the control flags and send buffer size. */
Value32 = (Len << 16) | pPacket->Flags;
Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
FragCount++;
if (FragCount >= pPacket->u.Tx.FragCount) {
pSendBd->u1.Len_Flags =
Value32 | SND_BD_FLAG_END;
break;
} else {
pSendBd->u1.Len_Flags = Value32;
}
pSendBd++;
if ((Idx == 0) && !pDevice->NicSendBd) {
pSendBd = &pDevice->pSendBdVirt[0];
}
} /* for */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
if (LM_Test4GBoundary (pDevice, pPacket, pTmpSendBd) ==
LM_STATUS_SUCCESS) {
if (MM_CoalesceTxBuffer (pDevice, pPacket) !=
LM_STATUS_SUCCESS) {
QQ_PushHead (&pDevice->TxPacketFreeQ.
Container, pPacket);
return LM_STATUS_FAILURE;
}
continue;
}
}
break;
}
/* Put the packet descriptor in the ActiveQ. */
QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket);
if (pDevice->NicSendBd) {
pSendBd = &pDevice->pSendBdVirt[StartIdx];
pShadowSendBd = &pDevice->ShadowSendBd[StartIdx];
while (StartIdx != Idx) {
LM_UINT32 Value32;
if ((Value32 = pTmpSendBd->HostAddr.High) !=
pShadowSendBd->HostAddr.High) {
__raw_writel (Value32,
&(pSendBd->HostAddr.High));
pShadowSendBd->HostAddr.High = Value32;
}
__raw_writel (pTmpSendBd->HostAddr.Low,
&(pSendBd->HostAddr.Low));
if ((Value32 = pTmpSendBd->u1.Len_Flags) !=
pShadowSendBd->u1.Len_Flags) {
__raw_writel (Value32,
&(pSendBd->u1.Len_Flags));
pShadowSendBd->u1.Len_Flags = Value32;
}
if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) {
__raw_writel (pTmpSendBd->u2.VlanTag,
&(pSendBd->u2.VlanTag));
}
StartIdx =
(StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
if (StartIdx == 0)
pSendBd = &pDevice->pSendBdVirt[0];
else
pSendBd++;
pTmpSendBd++;
}
wmb ();
MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx);
}
} else {
wmb ();
MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx);
if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) {
MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low,
Idx);
}
}
/* Update the SendBdLeft count. */
atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
/* Update the producer index. */
pDevice->SendProdIdx = Idx;
return LM_STATUS_SUCCESS;
}
STATIC LM_STATUS
LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket,
PT3_SND_BD pSendBd)
{
int FragCount;
LM_UINT32 Idx, Base, Len;
Idx = pDevice->SendProdIdx;
for (FragCount = 0;;) {
Len = pSendBd->u1.Len_Flags >> 16;
if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) &&
(pSendBd->HostAddr.High == 0) &&
((Base + 8 + Len) < Base)) {
return LM_STATUS_SUCCESS;
}
FragCount++;
if (FragCount >= pPacket->u.Tx.FragCount) {
break;
}
pSendBd++;
if (!pDevice->NicSendBd) {
Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK;
if (Idx == 0) {
pSendBd = &pDevice->pSendBdVirt[0];
}
}
}
return LM_STATUS_FAILURE;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
__inline static unsigned long
ComputeCrc32 (unsigned char *pBuffer, unsigned long BufferSize)
{
unsigned long Reg;
unsigned long Tmp;
unsigned long j, k;
Reg = 0xffffffff;
for (j = 0; j < BufferSize; j++) {
Reg ^= pBuffer[j];
for (k = 0; k < 8; k++) {
Tmp = Reg & 0x01;
Reg >>= 1;
if (Tmp) {
Reg ^= 0xedb88320;
}
}
}
return ~Reg;
} /* ComputeCrc32 */
/******************************************************************************/
/* Description: */
/* This routine sets the receive control register according to ReceiveMask */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_SetReceiveMask (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask)
{
LM_UINT32 ReceiveMask;
LM_UINT32 RxMode;
LM_UINT32 j, k;
ReceiveMask = Mask;
RxMode = pDevice->RxMode;
if (Mask & LM_ACCEPT_UNICAST) {
Mask &= ~LM_ACCEPT_UNICAST;
}
if (Mask & LM_ACCEPT_MULTICAST) {
Mask &= ~LM_ACCEPT_MULTICAST;
}
if (Mask & LM_ACCEPT_ALL_MULTICAST) {
Mask &= ~LM_ACCEPT_ALL_MULTICAST;
}
if (Mask & LM_ACCEPT_BROADCAST) {
Mask &= ~LM_ACCEPT_BROADCAST;
}
RxMode &= ~RX_MODE_PROMISCUOUS_MODE;
if (Mask & LM_PROMISCUOUS_MODE) {
RxMode |= RX_MODE_PROMISCUOUS_MODE;
Mask &= ~LM_PROMISCUOUS_MODE;
}
RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED);
if (Mask & LM_ACCEPT_ERROR_PACKET) {
RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED;
Mask &= ~LM_ACCEPT_ERROR_PACKET;
}
/* Make sure all the bits are valid before committing changes. */
if (Mask) {
return LM_STATUS_FAILURE;
}
/* Commit the new filter. */
pDevice->RxMode = RxMode;
REG_WR (pDevice, MacCtrl.RxMode, RxMode);
pDevice->ReceiveMask = ReceiveMask;
/* Set up the MC hash table. */
if (ReceiveMask & LM_ACCEPT_ALL_MULTICAST) {
for (k = 0; k < 4; k++) {
REG_WR (pDevice, MacCtrl.HashReg[k], 0xffffffff);
}
} else if (ReceiveMask & LM_ACCEPT_MULTICAST) {
LM_UINT32 HashReg[4];
HashReg[0] = 0;
HashReg[1] = 0;
HashReg[2] = 0;
HashReg[3] = 0;
for (j = 0; j < pDevice->McEntryCount; j++) {
LM_UINT32 RegIndex;
LM_UINT32 Bitpos;
LM_UINT32 Crc32;
Crc32 =
ComputeCrc32 (pDevice->McTable[j],
ETHERNET_ADDRESS_SIZE);
/* The most significant 7 bits of the CRC32 (no inversion), */
/* are used to index into one of the possible 128 bit positions. */
Bitpos = ~Crc32 & 0x7f;
/* Hash register index. */
RegIndex = (Bitpos & 0x60) >> 5;
/* Bit to turn on within a hash register. */
Bitpos &= 0x1f;
/* Enable the multicast bit. */
HashReg[RegIndex] |= (1 << Bitpos);
}
/* REV_AX has problem with multicast filtering where it uses both */
/* DA and SA to perform hashing. */
for (k = 0; k < 4; k++) {
REG_WR (pDevice, MacCtrl.HashReg[k], HashReg[k]);
}
} else {
/* Reject all multicast frames. */
for (j = 0; j < 4; j++) {
REG_WR (pDevice, MacCtrl.HashReg[j], 0);
}
}
/* By default, Tigon3 will accept broadcast frames. We need to setup */
if (ReceiveMask & LM_ACCEPT_BROADCAST) {
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK);
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK);
} else {
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE1_RULE);
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE1_VALUE);
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule,
REJECT_BROADCAST_RULE2_RULE);
REG_WR (pDevice,
MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value,
REJECT_BROADCAST_RULE2_VALUE);
}
/* disable the rest of the rules. */
for (j = RCV_LAST_RULE_IDX; j < 16; j++) {
REG_WR (pDevice, MacCtrl.RcvRules[j].Rule, 0);
REG_WR (pDevice, MacCtrl.RcvRules[j].Value, 0);
}
return LM_STATUS_SUCCESS;
} /* LM_SetReceiveMask */
/******************************************************************************/
/* Description: */
/* Disable the interrupt and put the transmitter and receiver engines in */
/* an idle state. Also aborts all pending send requests and receive */
/* buffers. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice)
{
PLM_PACKET pPacket;
LM_UINT Idx;
LM_DisableInterrupt (pDevice);
/* Disable all the state machines. */
LM_CntrlBlock (pDevice, T3_BLOCK_MAC_RX_ENGINE, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_INITIATOR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_PLMT, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_SELECTOR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_INITIATOR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_COMP, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_COMP, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_SELECTOR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_INITIATOR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_INITIATOR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_DMA_RD, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_COMP, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_DMA_COMP, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_COMP, LM_DISABLE);
/* Clear TDE bit */
pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE;
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
LM_CntrlBlock (pDevice, T3_BLOCK_MAC_TX_ENGINE, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_HOST_COALESING, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_DMA_WR, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_CLUSTER_FREE, LM_DISABLE);
/* Reset all FTQs */
REG_WR (pDevice, Ftq.Reset, 0xffffffff);
REG_WR (pDevice, Ftq.Reset, 0x0);
LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_MANAGER, LM_DISABLE);
LM_CntrlBlock (pDevice, T3_BLOCK_MEM_ARBITOR, LM_DISABLE);
MM_ACQUIRE_INT_LOCK (pDevice);
/* Abort packets that have already queued to go out. */
pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
while (pPacket) {
pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED;
pDevice->TxCounters.TxPacketAbortedCnt++;
atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
pPacket = (PLM_PACKET)
QQ_PopHead (&pDevice->TxPacketActiveQ.Container);
}
/* Cleanup the receive return rings. */
LM_ServiceRxInterrupt (pDevice);
/* Don't want to indicate rx packets in Ndis miniport shutdown context. */
/* Doing so may cause system crash. */
if (!pDevice->ShuttingDown) {
/* Indicate packets to the protocol. */
MM_IndicateTxPackets (pDevice);
/* Indicate received packets to the protocols. */
MM_IndicateRxPackets (pDevice);
} else {
/* Move the receive packet descriptors in the ReceivedQ to the */
/* free queue. */
for (;;) {
pPacket =
(PLM_PACKET) QQ_PopHead (&pDevice->
RxPacketReceivedQ.
Container);
if (pPacket == NULL) {
break;
}
QQ_PushTail (&pDevice->RxPacketFreeQ.Container,
pPacket);
}
}
/* Clean up the Std Receive Producer ring. */
Idx = pDevice->pStatusBlkVirt->RcvStdConIdx;
while (Idx != pDevice->RxStdProdIdx) {
pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
MM_UINT_PTR (pDevice->pRxStdBdVirt[Idx].
Opaque));
QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
Idx = (Idx + 1) & T3_STD_RCV_RCB_ENTRY_COUNT_MASK;
} /* while */
/* Reinitialize our copy of the indices. */
pDevice->RxStdProdIdx = 0;
#if T3_JUMBO_RCV_RCB_ENTRY_COUNT
/* Clean up the Jumbo Receive Producer ring. */
Idx = pDevice->pStatusBlkVirt->RcvJumboConIdx;
while (Idx != pDevice->RxJumboProdIdx) {
pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
MM_UINT_PTR (pDevice->
pRxJumboBdVirt[Idx].
Opaque));
QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
Idx = (Idx + 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK;
} /* while */
/* Reinitialize our copy of the indices. */
pDevice->RxJumboProdIdx = 0;
#endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */
MM_RELEASE_INT_LOCK (pDevice);
/* Initialize the statistis Block */
pDevice->pStatusBlkVirt->Status = 0;
pDevice->pStatusBlkVirt->RcvStdConIdx = 0;
pDevice->pStatusBlkVirt->RcvJumboConIdx = 0;
pDevice->pStatusBlkVirt->RcvMiniConIdx = 0;
return LM_STATUS_SUCCESS;
} /* LM_Abort */
/******************************************************************************/
/* Description: */
/* Disable the interrupt and put the transmitter and receiver engines in */
/* an idle state. Aborts all pending send requests and receive buffers. */
/* Also free all the receive buffers. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_Halt (PLM_DEVICE_BLOCK pDevice)
{
PLM_PACKET pPacket;
LM_UINT32 EntryCnt;
LM_Abort (pDevice);
/* Get the number of entries in the queue. */
EntryCnt = QQ_GetEntryCnt (&pDevice->RxPacketFreeQ.Container);
/* Make sure all the packets have been accounted for. */
for (EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++) {
pPacket =
(PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container);
if (pPacket == 0)
break;
MM_FreeRxBuffer (pDevice, pPacket);
QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket);
}
LM_ResetChip (pDevice);
/* Restore PCI configuration registers. */
MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG,
pDevice->SavedCacheLineReg);
LM_RegWrInd (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG,
(pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId);
/* Reprogram the MAC address. */
LM_SetMacAddress (pDevice, pDevice->NodeAddress);
return LM_STATUS_SUCCESS;
} /* LM_Halt */
STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT32 j;
/* Wait for access to the nvram interface before resetting. This is */
/* a workaround to prevent EEPROM corruption. */
if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
/* Request access to the flash interface. */
REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1);
for (j = 0; j < 100000; j++) {
Value32 = REG_RD (pDevice, Nvram.SwArb);
if (Value32 & SW_ARB_GNT1) {
break;
}
MM_Wait (10);
}
}
/* Global reset. */
REG_WR (pDevice, Grc.MiscCfg, GRC_MISC_CFG_CORE_CLOCK_RESET);
MM_Wait (40);
MM_Wait (40);
MM_Wait (40);
/* make sure we re-enable indirect accesses */
MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
pDevice->MiscHostCtrl);
/* Set MAX PCI retry to zero. */
Value32 =
T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE;
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
Value32 |= T3_PCI_STATE_RETRY_SAME_DMA;
}
}
MM_WriteConfig32 (pDevice, T3_PCI_STATE_REG, Value32);
/* Restore PCI command register. */
MM_WriteConfig32 (pDevice, PCI_COMMAND_REG,
pDevice->PciCommandStatusWords);
/* Disable PCI-X relaxed ordering bit. */
MM_ReadConfig32 (pDevice, PCIX_CAP_REG, &Value32);
Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING;
MM_WriteConfig32 (pDevice, PCIX_CAP_REG, Value32);
/* Enable memory arbiter. */
REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE);
#ifdef BIG_ENDIAN_PCI /* This from jfd */
Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA;
#else
#ifdef BIG_ENDIAN_HOST
/* Reconfigure the mode register. */
Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA |
GRC_MODE_WORD_SWAP_NON_FRAME_DATA |
GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA;
#else
/* Reconfigure the mode register. */
Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA;
#endif
#endif
REG_WR (pDevice, Grc.Mode, Value32);
/* Prevent PXE from restarting. */
MEM_WR_OFFSET (pDevice, 0x0b50, T3_MAGIC_NUM);
if (pDevice->EnableTbi) {
pDevice->MacMode = MAC_MODE_PORT_MODE_TBI;
REG_WR (pDevice, MacCtrl.Mode, MAC_MODE_PORT_MODE_TBI);
} else {
REG_WR (pDevice, MacCtrl.Mode, 0);
}
/* Wait for the firmware to finish initialization. */
for (j = 0; j < 100000; j++) {
MM_Wait (10);
Value32 = MEM_RD_OFFSET (pDevice, 0x0b50);
if (Value32 == ~T3_MAGIC_NUM) {
break;
}
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
__inline static void LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice)
{
PLM_PACKET pPacket;
LM_UINT32 HwConIdx;
LM_UINT32 SwConIdx;
HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
/* Get our copy of the consumer index. The buffer descriptors */
/* that are in between the consumer indices are freed. */
SwConIdx = pDevice->SendConIdx;
/* Move the packets from the TxPacketActiveQ that are sent out to */
/* the TxPacketXmittedQ. Packets that are sent use the */
/* descriptors that are between SwConIdx and HwConIdx. */
while (SwConIdx != HwConIdx) {
/* Get the packet that was sent from the TxPacketActiveQ. */
pPacket =
(PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.
Container);
/* Set the return status. */
pPacket->PacketStatus = LM_STATUS_SUCCESS;
/* Put the packet in the TxPacketXmittedQ for indication later. */
QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket);
/* Move to the next packet's BD. */
SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) &
T3_SEND_RCB_ENTRY_COUNT_MASK;
/* Update the number of unused BDs. */
atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft);
/* Get the new updated HwConIdx. */
HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx;
} /* while */
/* Save the new SwConIdx. */
pDevice->SendConIdx = SwConIdx;
} /* LM_ServiceTxInterrupt */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
__inline static void LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice)
{
PLM_PACKET pPacket;
PT3_RCV_BD pRcvBd;
LM_UINT32 HwRcvRetProdIdx;
LM_UINT32 SwRcvRetConIdx;
/* Loop thru the receive return rings for received packets. */
HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
SwRcvRetConIdx = pDevice->RcvRetConIdx;
while (SwRcvRetConIdx != HwRcvRetProdIdx) {
pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx];
/* Get the received packet descriptor. */
pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) +
MM_UINT_PTR (pRcvBd->Opaque));
/* Check the error flag. */
if (pRcvBd->ErrorFlag &&
pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
pPacket->PacketStatus = LM_STATUS_FAILURE;
pDevice->RxCounters.RxPacketErrCnt++;
if (pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) {
pDevice->RxCounters.RxErrCrcCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) {
pDevice->RxCounters.RxErrCollCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) {
pDevice->RxCounters.RxErrLinkLostCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) {
pDevice->RxCounters.RxErrPhyDecodeCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) {
pDevice->RxCounters.RxErrOddNibbleCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) {
pDevice->RxCounters.RxErrMacAbortCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) {
pDevice->RxCounters.RxErrShortPacketCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) {
pDevice->RxCounters.RxErrNoResourceCnt++;
}
if (pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) {
pDevice->RxCounters.RxErrLargePacketCnt++;
}
} else {
pPacket->PacketStatus = LM_STATUS_SUCCESS;
pPacket->PacketSize = pRcvBd->Len - 4;
pPacket->Flags = pRcvBd->Flags;
if (pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) {
pPacket->VlanTag = pRcvBd->VlanTag;
}
pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum;
}
/* Put the packet descriptor containing the received packet */
/* buffer in the RxPacketReceivedQ for indication later. */
QQ_PushTail (&pDevice->RxPacketReceivedQ.Container, pPacket);
/* Go to the next buffer descriptor. */
SwRcvRetConIdx = (SwRcvRetConIdx + 1) &
T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK;
/* Get the updated HwRcvRetProdIdx. */
HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx;
} /* while */
pDevice->RcvRetConIdx = SwRcvRetConIdx;
/* Update the receive return ring consumer index. */
MB_REG_WR (pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx);
} /* LM_ServiceRxInterrupt */
/******************************************************************************/
/* Description: */
/* This is the interrupt event handler routine. It acknowledges all */
/* pending interrupts and process all pending events. */
/* */
/* Return: */
/* LM_STATUS_SUCCESS */
/******************************************************************************/
LM_STATUS LM_ServiceInterrupts (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
int ServicePhyInt = FALSE;
/* Setup the phy chip whenever the link status changes. */
if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG) {
Value32 = REG_RD (pDevice, MacCtrl.Status);
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
if (Value32 & MAC_STATUS_MI_INTERRUPT) {
ServicePhyInt = TRUE;
}
} else if (Value32 & MAC_STATUS_LINK_STATE_CHANGED) {
ServicePhyInt = TRUE;
}
} else {
if (pDevice->pStatusBlkVirt->
Status & STATUS_BLOCK_LINK_CHANGED_STATUS) {
pDevice->pStatusBlkVirt->Status =
STATUS_BLOCK_UPDATED | (pDevice->pStatusBlkVirt->
Status &
~STATUS_BLOCK_LINK_CHANGED_STATUS);
ServicePhyInt = TRUE;
}
}
#if INCLUDE_TBI_SUPPORT
if (pDevice->IgnoreTbiLinkChange == TRUE) {
ServicePhyInt = FALSE;
}
#endif
if (ServicePhyInt == TRUE) {
LM_SetupPhy (pDevice);
}
/* Service receive and transmit interrupts. */
LM_ServiceRxInterrupt (pDevice);
LM_ServiceTxInterrupt (pDevice);
/* No spinlock for this queue since this routine is serialized. */
if (!QQ_Empty (&pDevice->RxPacketReceivedQ.Container)) {
/* Indicate receive packets. */
MM_IndicateRxPackets (pDevice);
/* LM_QueueRxPackets(pDevice); */
}
/* No spinlock for this queue since this routine is serialized. */
if (!QQ_Empty (&pDevice->TxPacketXmittedQ.Container)) {
MM_IndicateTxPackets (pDevice);
}
return LM_STATUS_SUCCESS;
} /* LM_ServiceInterrupts */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_MulticastAdd (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
{
PLM_UINT8 pEntry;
LM_UINT32 j;
pEntry = pDevice->McTable[0];
for (j = 0; j < pDevice->McEntryCount; j++) {
if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
/* Found a match, increment the instance count. */
pEntry[LM_MC_INSTANCE_COUNT_INDEX] += 1;
return LM_STATUS_SUCCESS;
}
pEntry += LM_MC_ENTRY_SIZE;
}
if (pDevice->McEntryCount >= LM_MAX_MC_TABLE_SIZE) {
return LM_STATUS_FAILURE;
}
pEntry = pDevice->McTable[pDevice->McEntryCount];
COPY_ETH_ADDRESS (pMcAddress, pEntry);
pEntry[LM_MC_INSTANCE_COUNT_INDEX] = 1;
pDevice->McEntryCount++;
LM_SetReceiveMask (pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST);
return LM_STATUS_SUCCESS;
} /* LM_MulticastAdd */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_MulticastDel (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress)
{
PLM_UINT8 pEntry;
LM_UINT32 j;
pEntry = pDevice->McTable[0];
for (j = 0; j < pDevice->McEntryCount; j++) {
if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) {
/* Found a match, decrement the instance count. */
pEntry[LM_MC_INSTANCE_COUNT_INDEX] -= 1;
/* No more instance left, remove the address from the table. */
/* Move the last entry in the table to the delete slot. */
if (pEntry[LM_MC_INSTANCE_COUNT_INDEX] == 0 &&
pDevice->McEntryCount > 1) {
COPY_ETH_ADDRESS (pDevice->
McTable[pDevice->
McEntryCount - 1],
pEntry);
pEntry[LM_MC_INSTANCE_COUNT_INDEX] =
pDevice->McTable[pDevice->McEntryCount - 1]
[LM_MC_INSTANCE_COUNT_INDEX];
}
pDevice->McEntryCount--;
/* Update the receive mask if the table is empty. */
if (pDevice->McEntryCount == 0) {
LM_SetReceiveMask (pDevice,
pDevice->
ReceiveMask &
~LM_ACCEPT_MULTICAST);
}
return LM_STATUS_SUCCESS;
}
pEntry += LM_MC_ENTRY_SIZE;
}
return LM_STATUS_FAILURE;
} /* LM_MulticastDel */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_MulticastClear (PLM_DEVICE_BLOCK pDevice)
{
pDevice->McEntryCount = 0;
LM_SetReceiveMask (pDevice,
pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST);
return LM_STATUS_SUCCESS;
} /* LM_MulticastClear */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_SetMacAddress (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMacAddress)
{
LM_UINT32 j;
for (j = 0; j < 4; j++) {
REG_WR (pDevice, MacCtrl.MacAddr[j].High,
(pMacAddress[0] << 8) | pMacAddress[1]);
REG_WR (pDevice, MacCtrl.MacAddr[j].Low,
(pMacAddress[2] << 24) | (pMacAddress[3] << 16) |
(pMacAddress[4] << 8) | pMacAddress[5]);
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* Sets up the default line speed, and duplex modes based on the requested */
/* media type. */
/* */
/* Return: */
/* None. */
/******************************************************************************/
static LM_STATUS
LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE RequestedMediaType,
PLM_MEDIA_TYPE pMediaType,
PLM_LINE_SPEED pLineSpeed,
PLM_DUPLEX_MODE pDuplexMode)
{
*pMediaType = LM_MEDIA_TYPE_AUTO;
*pLineSpeed = LM_LINE_SPEED_UNKNOWN;
*pDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
/* determine media type */
switch (RequestedMediaType) {
case LM_REQUESTED_MEDIA_TYPE_BNC:
*pMediaType = LM_MEDIA_TYPE_BNC;
*pLineSpeed = LM_LINE_SPEED_10MBPS;
*pDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_AUTO:
*pMediaType = LM_MEDIA_TYPE_UTP;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS:
*pMediaType = LM_MEDIA_TYPE_UTP;
*pLineSpeed = LM_LINE_SPEED_10MBPS;
*pDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX:
*pMediaType = LM_MEDIA_TYPE_UTP;
*pLineSpeed = LM_LINE_SPEED_10MBPS;
*pDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS:
*pMediaType = LM_MEDIA_TYPE_UTP;
*pLineSpeed = LM_LINE_SPEED_100MBPS;
*pDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX:
*pMediaType = LM_MEDIA_TYPE_UTP;
*pLineSpeed = LM_LINE_SPEED_100MBPS;
*pDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS:
*pMediaType = LM_MEDIA_TYPE_UTP;
*pLineSpeed = LM_LINE_SPEED_1000MBPS;
*pDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX:
*pMediaType = LM_MEDIA_TYPE_UTP;
*pLineSpeed = LM_LINE_SPEED_1000MBPS;
*pDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS:
*pMediaType = LM_MEDIA_TYPE_FIBER;
*pLineSpeed = LM_LINE_SPEED_100MBPS;
*pDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS_FULL_DUPLEX:
*pMediaType = LM_MEDIA_TYPE_FIBER;
*pLineSpeed = LM_LINE_SPEED_100MBPS;
*pDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS:
*pMediaType = LM_MEDIA_TYPE_FIBER;
*pLineSpeed = LM_LINE_SPEED_1000MBPS;
*pDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX:
*pMediaType = LM_MEDIA_TYPE_FIBER;
*pLineSpeed = LM_LINE_SPEED_1000MBPS;
*pDuplexMode = LM_DUPLEX_MODE_FULL;
break;
default:
break;
} /* switch */
return LM_STATUS_SUCCESS;
} /* LM_TranslateRequestedMediaType */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/* LM_STATUS_LINK_ACTIVE */
/* LM_STATUS_LINK_DOWN */
/******************************************************************************/
static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice)
{
LM_LINE_SPEED CurrentLineSpeed;
LM_DUPLEX_MODE CurrentDuplexMode;
LM_STATUS CurrentLinkStatus;
LM_UINT32 Value32;
LM_UINT32 j;
#if 1 /* jmb: bugfix -- moved here, out of code that sets initial pwr state */
LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x2);
#endif
if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) {
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
if (!pDevice->InitDone) {
Value32 = 0;
}
if (!(Value32 & PHY_STATUS_LINK_PASS)) {
LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232);
LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f);
LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
for (j = 0; j < 1000; j++) {
MM_Wait (10);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
if (Value32 & PHY_STATUS_LINK_PASS) {
MM_Wait (40);
break;
}
}
if ((pDevice->PhyId & PHY_ID_REV_MASK) ==
PHY_BCM5401_B0_REV) {
if (!(Value32 & PHY_STATUS_LINK_PASS)
&& (pDevice->OldLineSpeed ==
LM_LINE_SPEED_1000MBPS)) {
LM_WritePhy (pDevice, PHY_CTRL_REG,
PHY_CTRL_PHY_RESET);
for (j = 0; j < 100; j++) {
MM_Wait (10);
LM_ReadPhy (pDevice,
PHY_CTRL_REG,
&Value32);
if (!
(Value32 &
PHY_CTRL_PHY_RESET)) {
MM_Wait (40);
break;
}
}
LM_WritePhy (pDevice, BCM5401_AUX_CTRL,
0x0c20);
LM_WritePhy (pDevice,
BCM540X_DSP_ADDRESS_REG,
0x0012);
LM_WritePhy (pDevice,
BCM540X_DSP_RW_PORT,
0x1804);
LM_WritePhy (pDevice,
BCM540X_DSP_ADDRESS_REG,
0x0013);
LM_WritePhy (pDevice,
BCM540X_DSP_RW_PORT,
0x1204);
LM_WritePhy (pDevice,
BCM540X_DSP_ADDRESS_REG,
0x8006);
LM_WritePhy (pDevice,
BCM540X_DSP_RW_PORT,
0x0132);
LM_WritePhy (pDevice,
BCM540X_DSP_ADDRESS_REG,
0x8006);
LM_WritePhy (pDevice,
BCM540X_DSP_RW_PORT,
0x0232);
LM_WritePhy (pDevice,
BCM540X_DSP_ADDRESS_REG,
0x201f);
LM_WritePhy (pDevice,
BCM540X_DSP_RW_PORT,
0x0a20);
}
}
}
} else if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
/* Bug: 5701 A0, B0 TX CRC workaround. */
LM_WritePhy (pDevice, 0x15, 0x0a75);
LM_WritePhy (pDevice, 0x1c, 0x8c68);
LM_WritePhy (pDevice, 0x1c, 0x8d68);
LM_WritePhy (pDevice, 0x1c, 0x8c68);
}
/* Acknowledge interrupts. */
LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32);
/* Configure the interrupt mask. */
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
LM_WritePhy (pDevice, BCM540X_INT_MASK_REG,
~BCM540X_INT_LINK_CHANGE);
}
/* Configure PHY led mode. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701 ||
(T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700)) {
if (pDevice->LedMode == LED_MODE_THREE_LINK) {
LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG,
BCM540X_EXT_CTRL_LINK3_LED_MODE);
} else {
LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG, 0);
}
}
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
/* Get current link and duplex mode. */
for (j = 0; j < 100; j++) {
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
if (Value32 & PHY_STATUS_LINK_PASS) {
break;
}
MM_Wait (40);
}
if (Value32 & PHY_STATUS_LINK_PASS) {
/* Determine the current line and duplex settings. */
LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
for (j = 0; j < 2000; j++) {
MM_Wait (10);
LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32);
if (Value32) {
break;
}
}
switch (Value32 & BCM540X_AUX_SPEED_MASK) {
case BCM540X_AUX_10BASET_HD:
CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case BCM540X_AUX_10BASET_FD:
CurrentLineSpeed = LM_LINE_SPEED_10MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case BCM540X_AUX_100BASETX_HD:
CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case BCM540X_AUX_100BASETX_FD:
CurrentLineSpeed = LM_LINE_SPEED_100MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
break;
case BCM540X_AUX_100BASET_HD:
CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_HALF;
break;
case BCM540X_AUX_100BASET_FD:
CurrentLineSpeed = LM_LINE_SPEED_1000MBPS;
CurrentDuplexMode = LM_DUPLEX_MODE_FULL;
break;
default:
CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN;
CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN;
break;
}
/* Make sure we are in auto-neg mode. */
for (j = 0; j < 200; j++) {
LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
if (Value32 && Value32 != 0x7fff) {
break;
}
if (Value32 == 0 && pDevice->RequestedMediaType ==
LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS) {
break;
}
MM_Wait (10);
}
/* Use the current line settings for "auto" mode. */
if (pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO
|| pDevice->RequestedMediaType ==
LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
if (Value32 & PHY_CTRL_AUTO_NEG_ENABLE) {
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
/* We may be exiting low power mode and the link is in */
/* 10mb. In this case, we need to restart autoneg. */
LM_ReadPhy (pDevice, BCM540X_1000BASET_CTRL_REG,
&Value32);
pDevice->advertising1000 = Value32;
/* 5702FE supports 10/100Mb only. */
if (T3_ASIC_REV (pDevice->ChipRevId) !=
T3_ASIC_REV_5703
|| pDevice->BondId !=
GRC_MISC_BD_ID_5702FE) {
if (!
(Value32 &
(BCM540X_AN_AD_1000BASET_HALF |
BCM540X_AN_AD_1000BASET_FULL))) {
CurrentLinkStatus =
LM_STATUS_LINK_SETTING_MISMATCH;
}
}
} else {
CurrentLinkStatus =
LM_STATUS_LINK_SETTING_MISMATCH;
}
} else {
/* Force line settings. */
/* Use the current setting if it matches the user's requested */
/* setting. */
LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
if ((pDevice->LineSpeed == CurrentLineSpeed) &&
(pDevice->DuplexMode == CurrentDuplexMode)) {
if ((pDevice->DisableAutoNeg &&
!(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) ||
(!pDevice->DisableAutoNeg &&
(Value32 & PHY_CTRL_AUTO_NEG_ENABLE))) {
CurrentLinkStatus =
LM_STATUS_LINK_ACTIVE;
} else {
CurrentLinkStatus =
LM_STATUS_LINK_SETTING_MISMATCH;
}
} else {
CurrentLinkStatus =
LM_STATUS_LINK_SETTING_MISMATCH;
}
}
/* Save line settings. */
pDevice->LineSpeed = CurrentLineSpeed;
pDevice->DuplexMode = CurrentDuplexMode;
pDevice->MediaType = LM_MEDIA_TYPE_UTP;
}
return CurrentLinkStatus;
} /* LM_InitBcm540xPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS
LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice,
LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd)
{
LM_FLOW_CONTROL FlowCap;
/* Resolve flow control. */
FlowCap = LM_FLOW_CONTROL_NONE;
/* See Table 28B-3 of 802.3ab-1999 spec. */
if (pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE) {
if (LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) {
if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
if (RemotePhyAd &
PHY_LINK_PARTNER_PAUSE_CAPABLE) {
FlowCap =
LM_FLOW_CONTROL_TRANSMIT_PAUSE |
LM_FLOW_CONTROL_RECEIVE_PAUSE;
} else if (RemotePhyAd &
PHY_LINK_PARTNER_ASYM_PAUSE) {
FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
} else {
if (RemotePhyAd &
PHY_LINK_PARTNER_PAUSE_CAPABLE) {
FlowCap =
LM_FLOW_CONTROL_TRANSMIT_PAUSE |
LM_FLOW_CONTROL_RECEIVE_PAUSE;
}
}
} else if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) {
if ((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) &&
(RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)) {
FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE;
}
}
} else {
FlowCap = pDevice->FlowControlCap;
}
/* Enable/disable rx PAUSE. */
pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL;
if (FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE &&
(pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)) {
pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE;
pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL;
}
REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode);
/* Enable/disable tx PAUSE. */
pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL;
if (FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE &&
(pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE ||
pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)) {
pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE;
pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL;
}
REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode);
return LM_STATUS_SUCCESS;
}
#if INCLUDE_TBI_SUPPORT
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
LM_UINT32 j;
Value32 = REG_RD (pDevice, MacCtrl.Status);
/* Reset the SERDES during init and when we have link. */
if (!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED) {
/* Set PLL lock range. */
LM_WritePhy (pDevice, 0x16, 0x8007);
/* Software reset. */
LM_WritePhy (pDevice, 0x00, 0x8000);
/* Wait for reset to complete. */
for (j = 0; j < 500; j++) {
MM_Wait (10);
}
/* Config mode; seletct PMA/Ch 1 regs. */
LM_WritePhy (pDevice, 0x10, 0x8411);
/* Enable auto-lock and comdet, select txclk for tx. */
LM_WritePhy (pDevice, 0x11, 0x0a10);
LM_WritePhy (pDevice, 0x18, 0x00a0);
LM_WritePhy (pDevice, 0x16, 0x41ff);
/* Assert and deassert POR. */
LM_WritePhy (pDevice, 0x13, 0x0400);
MM_Wait (40);
LM_WritePhy (pDevice, 0x13, 0x0000);
LM_WritePhy (pDevice, 0x11, 0x0a50);
MM_Wait (40);
LM_WritePhy (pDevice, 0x11, 0x0a10);
/* Delay for signal to stabilize. */
for (j = 0; j < 15000; j++) {
MM_Wait (10);
}
/* Deselect the channel register so we can read the PHY id later. */
LM_WritePhy (pDevice, 0x10, 0x8011);
}
return LM_STATUS_SUCCESS;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS CurrentLinkStatus;
AUTONEG_STATUS AnStatus = 0;
LM_UINT32 Value32;
LM_UINT32 Cnt;
LM_UINT32 j, k;
pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK);
/* Initialize the send_config register. */
REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
/* Enable TBI and full duplex mode. */
pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI;
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
/* Initialize the BCM8002 SERDES PHY. */
switch (pDevice->PhyId & PHY_ID_MASK) {
case PHY_BCM8002_PHY_ID:
LM_InitBcm800xPhy (pDevice);
break;
default:
break;
}
/* Enable link change interrupt. */
REG_WR (pDevice, MacCtrl.MacEvent,
MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
/* Default to link down. */
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
/* Get the link status. */
Value32 = REG_RD (pDevice, MacCtrl.Status);
if (Value32 & MAC_STATUS_PCS_SYNCED) {
if ((pDevice->RequestedMediaType ==
LM_REQUESTED_MEDIA_TYPE_AUTO)
|| (pDevice->DisableAutoNeg == FALSE)) {
/* auto-negotiation mode. */
/* Initialize the autoneg default capaiblities. */
AutonegInit (&pDevice->AnInfo);
/* Set the context pointer to point to the main device structure. */
pDevice->AnInfo.pContext = pDevice;
/* Setup flow control advertisement register. */
Value32 = GetPhyAdFlowCntrlSettings (pDevice);
if (Value32 & PHY_AN_AD_PAUSE_CAPABLE) {
pDevice->AnInfo.mr_adv_sym_pause = 1;
} else {
pDevice->AnInfo.mr_adv_sym_pause = 0;
}
if (Value32 & PHY_AN_AD_ASYM_PAUSE) {
pDevice->AnInfo.mr_adv_asym_pause = 1;
} else {
pDevice->AnInfo.mr_adv_asym_pause = 0;
}
/* Try to autoneg up to six times. */
if (pDevice->IgnoreTbiLinkChange) {
Cnt = 1;
} else {
Cnt = 6;
}
for (j = 0; j < Cnt; j++) {
REG_WR (pDevice, MacCtrl.TxAutoNeg, 0);
Value32 =
pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK;
REG_WR (pDevice, MacCtrl.Mode, Value32);
MM_Wait (20);
REG_WR (pDevice, MacCtrl.Mode,
pDevice->
MacMode | MAC_MODE_SEND_CONFIGS);
MM_Wait (20);
pDevice->AnInfo.State = AN_STATE_UNKNOWN;
pDevice->AnInfo.CurrentTime_us = 0;
REG_WR (pDevice, Grc.Timer, 0);
for (k = 0;
(pDevice->AnInfo.CurrentTime_us < 75000)
&& (k < 75000); k++) {
AnStatus =
Autoneg8023z (&pDevice->AnInfo);
if ((AnStatus == AUTONEG_STATUS_DONE) ||
(AnStatus == AUTONEG_STATUS_FAILED))
{
break;
}
pDevice->AnInfo.CurrentTime_us =
REG_RD (pDevice, Grc.Timer);
}
if ((AnStatus == AUTONEG_STATUS_DONE) ||
(AnStatus == AUTONEG_STATUS_FAILED)) {
break;
}
if (j >= 1) {
if (!(REG_RD (pDevice, MacCtrl.Status) &
MAC_STATUS_PCS_SYNCED)) {
break;
}
}
}
/* Stop sending configs. */
MM_AnTxIdle (&pDevice->AnInfo);
/* Resolve flow control settings. */
if ((AnStatus == AUTONEG_STATUS_DONE) &&
pDevice->AnInfo.mr_an_complete
&& pDevice->AnInfo.mr_link_ok
&& pDevice->AnInfo.mr_lp_adv_full_duplex) {
LM_UINT32 RemotePhyAd;
LM_UINT32 LocalPhyAd;
LocalPhyAd = 0;
if (pDevice->AnInfo.mr_adv_sym_pause) {
LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE;
}
if (pDevice->AnInfo.mr_adv_asym_pause) {
LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE;
}
RemotePhyAd = 0;
if (pDevice->AnInfo.mr_lp_adv_sym_pause) {
RemotePhyAd |=
PHY_LINK_PARTNER_PAUSE_CAPABLE;
}
if (pDevice->AnInfo.mr_lp_adv_asym_pause) {
RemotePhyAd |=
PHY_LINK_PARTNER_ASYM_PAUSE;
}
LM_SetFlowControl (pDevice, LocalPhyAd,
RemotePhyAd);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
for (j = 0; j < 30; j++) {
MM_Wait (20);
REG_WR (pDevice, MacCtrl.Status,
MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
MM_Wait (20);
if ((REG_RD (pDevice, MacCtrl.Status) &
(MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED)) == 0)
break;
}
if (pDevice->PollTbiLink) {
Value32 = REG_RD (pDevice, MacCtrl.Status);
if (Value32 & MAC_STATUS_RECEIVING_CFG) {
pDevice->IgnoreTbiLinkChange = TRUE;
} else {
pDevice->IgnoreTbiLinkChange = FALSE;
}
}
Value32 = REG_RD (pDevice, MacCtrl.Status);
if (CurrentLinkStatus == LM_STATUS_LINK_DOWN &&
(Value32 & MAC_STATUS_PCS_SYNCED) &&
((Value32 & MAC_STATUS_RECEIVING_CFG) == 0)) {
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
} else {
/* We are forcing line speed. */
pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE;
LM_SetFlowControl (pDevice, 0, 0);
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_SEND_CONFIGS);
}
}
/* Set the link polarity bit. */
pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED |
(pDevice->pStatusBlkVirt->
Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS);
for (j = 0; j < 100; j++) {
REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
MM_Wait (5);
if ((REG_RD (pDevice, MacCtrl.Status) &
(MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0)
break;
}
Value32 = REG_RD (pDevice, MacCtrl.Status);
if ((Value32 & MAC_STATUS_PCS_SYNCED) == 0) {
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
if (pDevice->DisableAutoNeg == FALSE) {
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode |
MAC_MODE_SEND_CONFIGS);
MM_Wait (1);
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
}
}
/* Initialize the current link status. */
if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS;
pDevice->DuplexMode = LM_DUPLEX_MODE_FULL;
REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_1000MBPS_LED_ON);
} else {
pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN;
pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN;
REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_OVERRIDE_TRAFFIC_LED);
}
/* Indicate link status. */
if (pDevice->LinkStatus != CurrentLinkStatus) {
pDevice->LinkStatus = CurrentLinkStatus;
MM_IndicateStatus (pDevice, CurrentLinkStatus);
}
return LM_STATUS_SUCCESS;
}
#endif /* INCLUDE_TBI_SUPPORT */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS CurrentLinkStatus;
LM_UINT32 Value32;
/* Assume there is not link first. */
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
/* Disable phy link change attention. */
REG_WR (pDevice, MacCtrl.MacEvent, 0);
/* Clear link change attention. */
REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
/* Disable auto-polling for the moment. */
pDevice->MiMode = 0xc0000;
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
MM_Wait (40);
/* Determine the requested line speed and duplex. */
pDevice->OldLineSpeed = pDevice->LineSpeed;
LM_TranslateRequestedMediaType (pDevice->RequestedMediaType,
&pDevice->MediaType,
&pDevice->LineSpeed,
&pDevice->DuplexMode);
/* Initialize the phy chip. */
switch (pDevice->PhyId & PHY_ID_MASK) {
case PHY_BCM5400_PHY_ID:
case PHY_BCM5401_PHY_ID:
case PHY_BCM5411_PHY_ID:
case PHY_BCM5701_PHY_ID:
case PHY_BCM5703_PHY_ID:
case PHY_BCM5704_PHY_ID:
CurrentLinkStatus = LM_InitBcm540xPhy (pDevice);
break;
default:
break;
}
if (CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH) {
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
}
/* Setup flow control. */
pDevice->FlowControl = LM_FLOW_CONTROL_NONE;
if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
LM_FLOW_CONTROL FlowCap; /* Flow control capability. */
FlowCap = LM_FLOW_CONTROL_NONE;
if (pDevice->DuplexMode == LM_DUPLEX_MODE_FULL) {
if (pDevice->DisableAutoNeg == FALSE ||
pDevice->RequestedMediaType ==
LM_REQUESTED_MEDIA_TYPE_AUTO
|| pDevice->RequestedMediaType ==
LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
LM_UINT32 ExpectedPhyAd;
LM_UINT32 LocalPhyAd;
LM_UINT32 RemotePhyAd;
LM_ReadPhy (pDevice, PHY_AN_AD_REG,
&LocalPhyAd);
pDevice->advertising = LocalPhyAd;
LocalPhyAd &=
(PHY_AN_AD_ASYM_PAUSE |
PHY_AN_AD_PAUSE_CAPABLE);
ExpectedPhyAd =
GetPhyAdFlowCntrlSettings (pDevice);
if (LocalPhyAd != ExpectedPhyAd) {
CurrentLinkStatus = LM_STATUS_LINK_DOWN;
} else {
LM_ReadPhy (pDevice,
PHY_LINK_PARTNER_ABILITY_REG,
&RemotePhyAd);
LM_SetFlowControl (pDevice, LocalPhyAd,
RemotePhyAd);
}
} else {
pDevice->FlowControlCap &=
~LM_FLOW_CONTROL_AUTO_PAUSE;
LM_SetFlowControl (pDevice, 0, 0);
}
}
}
if (CurrentLinkStatus == LM_STATUS_LINK_DOWN) {
LM_ForceAutoNeg (pDevice, pDevice->RequestedMediaType);
/* If we force line speed, we make get link right away. */
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
if (Value32 & PHY_STATUS_LINK_PASS) {
CurrentLinkStatus = LM_STATUS_LINK_ACTIVE;
}
}
/* GMII interface. */
pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK;
if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS ||
pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) {
pDevice->MacMode |= MAC_MODE_PORT_MODE_MII;
} else {
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
}
} else {
pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII;
}
/* Set the MAC to operate in the appropriate duplex mode. */
pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX;
if (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF) {
pDevice->MacMode |= MAC_MODE_HALF_DUPLEX;
}
/* Set the link polarity bit. */
pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY;
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
if ((pDevice->LedMode == LED_MODE_LINK10) ||
(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE &&
pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)) {
pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
}
} else {
if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) {
pDevice->MacMode |= MAC_MODE_LINK_POLARITY;
}
/* Set LED mode. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 = LED_CTRL_PHY_MODE_1;
} else {
if (pDevice->LedMode == LED_MODE_OUTPUT) {
Value32 = LED_CTRL_PHY_MODE_2;
} else {
Value32 = LED_CTRL_PHY_MODE_1;
}
}
REG_WR (pDevice, MacCtrl.LedCtrl, Value32);
}
REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode);
/* Enable auto polling. */
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE;
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
}
/* Enable phy link change attention. */
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) {
REG_WR (pDevice, MacCtrl.MacEvent,
MAC_EVENT_ENABLE_MI_INTERRUPT);
} else {
REG_WR (pDevice, MacCtrl.MacEvent,
MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN);
}
if ((T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) &&
(CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) &&
(pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
(((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) &&
(pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) ||
!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))) {
MM_Wait (120);
REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED |
MAC_STATUS_CFG_CHANGED);
MEM_WR_OFFSET (pDevice, T3_FIRMWARE_MAILBOX,
T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE);
}
/* Indicate link status. */
if (pDevice->LinkStatus != CurrentLinkStatus) {
pDevice->LinkStatus = CurrentLinkStatus;
MM_IndicateStatus (pDevice, CurrentLinkStatus);
}
return LM_STATUS_SUCCESS;
} /* LM_SetupCopperPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_SetupPhy (PLM_DEVICE_BLOCK pDevice)
{
LM_STATUS LmStatus;
LM_UINT32 Value32;
#if INCLUDE_TBI_SUPPORT
if (pDevice->EnableTbi) {
LmStatus = LM_SetupFiberPhy (pDevice);
} else
#endif /* INCLUDE_TBI_SUPPORT */
{
LmStatus = LM_SetupCopperPhy (pDevice);
}
if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) {
if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) {
Value32 = REG_RD (pDevice, PciCfg.PciState);
REG_WR (pDevice, PciCfg.PciState,
Value32 | T3_PCI_STATE_RETRY_SAME_DMA);
}
}
if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) &&
(pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)) {
REG_WR (pDevice, MacCtrl.TxLengths, 0x26ff);
} else {
REG_WR (pDevice, MacCtrl.TxLengths, 0x2620);
}
return LmStatus;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_ReadPhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, PLM_UINT32 pData32)
{
LM_UINT32 Value32;
LM_UINT32 j;
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
~MI_MODE_AUTO_POLLING_ENABLE);
MM_Wait (40);
}
Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
MI_COM_FIRST_PHY_REG_ADDR_BIT) | MI_COM_CMD_READ | MI_COM_START;
REG_WR (pDevice, MacCtrl.MiCom, Value32);
for (j = 0; j < 20; j++) {
MM_Wait (25);
Value32 = REG_RD (pDevice, MacCtrl.MiCom);
if (!(Value32 & MI_COM_BUSY)) {
MM_Wait (5);
Value32 = REG_RD (pDevice, MacCtrl.MiCom);
Value32 &= MI_COM_PHY_DATA_MASK;
break;
}
}
if (Value32 & MI_COM_BUSY) {
Value32 = 0;
}
*pData32 = Value32;
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
MM_Wait (40);
}
} /* LM_ReadPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_VOID
LM_WritePhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, LM_UINT32 Data32)
{
LM_UINT32 Value32;
LM_UINT32 j;
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode &
~MI_MODE_AUTO_POLLING_ENABLE);
MM_Wait (40);
}
Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) |
((PhyReg & MI_COM_PHY_REG_ADDR_MASK) <<
MI_COM_FIRST_PHY_REG_ADDR_BIT) | (Data32 & MI_COM_PHY_DATA_MASK) |
MI_COM_CMD_WRITE | MI_COM_START;
REG_WR (pDevice, MacCtrl.MiCom, Value32);
for (j = 0; j < 20; j++) {
MM_Wait (25);
Value32 = REG_RD (pDevice, MacCtrl.MiCom);
if (!(Value32 & MI_COM_BUSY)) {
MM_Wait (5);
break;
}
}
if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) {
REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode);
MM_Wait (40);
}
} /* LM_WritePhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_SetPowerState (PLM_DEVICE_BLOCK pDevice, LM_POWER_STATE PowerLevel)
{
LM_UINT32 PmeSupport;
LM_UINT32 Value32;
LM_UINT32 PmCtrl;
/* make sureindirect accesses are enabled */
MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG,
pDevice->MiscHostCtrl);
/* Clear the PME_ASSERT bit and the power state bits. Also enable */
/* the PME bit. */
MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl);
PmCtrl |= T3_PM_PME_ASSERTED;
PmCtrl &= ~T3_PM_POWER_STATE_MASK;
/* Set the appropriate power state. */
if (PowerLevel == LM_POWER_STATE_D0) {
/* Bring the card out of low power mode. */
PmCtrl |= T3_PM_POWER_STATE_D0;
MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl);
MM_Wait (40);
#if 0 /* Bugfix by jmb...can't call WritePhy here because pDevice not fully initialized */
LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x02);
#endif
return LM_STATUS_SUCCESS;
} else if (PowerLevel == LM_POWER_STATE_D1) {
PmCtrl |= T3_PM_POWER_STATE_D1;
} else if (PowerLevel == LM_POWER_STATE_D2) {
PmCtrl |= T3_PM_POWER_STATE_D2;
} else if (PowerLevel == LM_POWER_STATE_D3) {
PmCtrl |= T3_PM_POWER_STATE_D3;
} else {
return LM_STATUS_FAILURE;
}
PmCtrl |= T3_PM_PME_ENABLE;
/* Mask out all interrupts so LM_SetupPhy won't be called while we are */
/* setting new line speed. */
Value32 = REG_RD (pDevice, PciCfg.MiscHostCtrl);
REG_WR (pDevice, PciCfg.MiscHostCtrl,
Value32 | MISC_HOST_CTRL_MASK_PCI_INT);
if (!pDevice->RestoreOnWakeUp) {
pDevice->RestoreOnWakeUp = TRUE;
pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg;
pDevice->WakeUpRequestedMediaType = pDevice->RequestedMediaType;
}
/* Force auto-negotiation to 10 line speed. */
pDevice->DisableAutoNeg = FALSE;
pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS;
LM_SetupPhy (pDevice);
/* Put the driver in the initial state, and go through the power down */
/* sequence. */
LM_Halt (pDevice);
MM_ReadConfig32 (pDevice, T3_PCI_PM_CAP_REG, &PmeSupport);
if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) {
/* Enable WOL. */
LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x5a);
MM_Wait (40);
/* Set LED mode. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 = LED_CTRL_PHY_MODE_1;
} else {
if (pDevice->LedMode == LED_MODE_OUTPUT) {
Value32 = LED_CTRL_PHY_MODE_2;
} else {
Value32 = LED_CTRL_PHY_MODE_1;
}
}
Value32 = MAC_MODE_PORT_MODE_MII;
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) {
if (pDevice->LedMode == LED_MODE_LINK10 ||
pDevice->WolSpeed == WOL_SPEED_10MB) {
Value32 |= MAC_MODE_LINK_POLARITY;
}
} else {
Value32 |= MAC_MODE_LINK_POLARITY;
}
REG_WR (pDevice, MacCtrl.Mode, Value32);
MM_Wait (40);
MM_Wait (40);
MM_Wait (40);
/* Always enable magic packet wake-up if we have vaux. */
if ((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) &&
(pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET)) {
Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE;
}
REG_WR (pDevice, MacCtrl.Mode, Value32);
/* Enable the receiver. */
REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_ENABLE);
}
/* Disable tx/rx clocks, and seletect an alternate clock. */
if (pDevice->WolSpeed == WOL_SPEED_100MB) {
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 =
T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK;
} else {
Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK;
}
REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
MM_Wait (40);
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 =
T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK |
T3_PCI_44MHZ_CORE_CLOCK;
} else {
Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
T3_PCI_44MHZ_CORE_CLOCK;
}
REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
MM_Wait (40);
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 =
T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_44MHZ_CORE_CLOCK;
} else {
Value32 = T3_PCI_44MHZ_CORE_CLOCK;
}
REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
} else {
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
Value32 =
T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK |
T3_PCI_SELECT_ALTERNATE_CLOCK |
T3_PCI_POWER_DOWN_PCI_PLL133;
} else {
Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK |
T3_PCI_POWER_DOWN_PCI_PLL133;
}
REG_WR (pDevice, PciCfg.ClockCtrl, Value32);
}
MM_Wait (40);
if (!pDevice->EepromWp
&& (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)) {
/* Switch adapter to auxilliary power. */
if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 ||
T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) {
/* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait (40);
} else {
/* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
MM_Wait (40);
/* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2);
MM_Wait (40);
/* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */
REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl |
GRC_MISC_LOCAL_CTRL_GPIO_OE0 |
GRC_MISC_LOCAL_CTRL_GPIO_OE1 |
GRC_MISC_LOCAL_CTRL_GPIO_OE2 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 |
GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1);
MM_Wait (40);
}
}
/* Set the phy to low power mode. */
/* Put the the hardware in low power mode. */
MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl);
return LM_STATUS_SUCCESS;
} /* LM_SetPowerState */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice)
{
LM_UINT32 Value32;
Value32 = 0;
/* Auto negotiation flow control only when autonegotiation is enabled. */
if (pDevice->DisableAutoNeg == FALSE ||
pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO ||
pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) {
/* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */
if ((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) ||
((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)
&& (pDevice->
FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) {
Value32 |= PHY_AN_AD_PAUSE_CAPABLE;
} else if (pDevice->
FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) {
Value32 |= PHY_AN_AD_ASYM_PAUSE;
} else if (pDevice->
FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) {
Value32 |=
PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE;
}
}
return Value32;
}
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/* LM_STATUS_FAILURE */
/* LM_STATUS_SUCCESS */
/* */
/******************************************************************************/
static LM_STATUS
LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice,
LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
{
LM_MEDIA_TYPE MediaType;
LM_LINE_SPEED LineSpeed;
LM_DUPLEX_MODE DuplexMode;
LM_UINT32 NewPhyCtrl;
LM_UINT32 Value32;
LM_UINT32 Cnt;
/* Get the interface type, line speed, and duplex mode. */
LM_TranslateRequestedMediaType (RequestedMediaType, &MediaType,
&LineSpeed, &DuplexMode);
if (pDevice->RestoreOnWakeUp) {
LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF;
if (pDevice->WolSpeed == WOL_SPEED_100MB) {
Value32 |=
PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
}
Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
}
/* Setup the auto-negotiation advertisement register. */
else if (LineSpeed == LM_LINE_SPEED_UNKNOWN) {
/* Setup the 10/100 Mbps auto-negotiation advertisement register. */
Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD |
PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL |
PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF;
Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
/* Advertise 1000Mbps */
Value32 =
BCM540X_AN_AD_1000BASET_HALF | BCM540X_AN_AD_1000BASET_FULL;
#if INCLUDE_5701_AX_FIX
/* Bug: workaround for CRC error in gigabit mode when we are in */
/* slave mode. This will force the PHY to operate in */
/* master mode. */
if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 ||
pDevice->ChipRevId == T3_CHIP_ID_5701_B0) {
Value32 |= BCM540X_CONFIG_AS_MASTER |
BCM540X_ENABLE_CONFIG_AS_MASTER;
}
#endif
LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, Value32);
pDevice->advertising1000 = Value32;
} else {
if (LineSpeed == LM_LINE_SPEED_1000MBPS) {
Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
if (DuplexMode != LM_DUPLEX_MODE_FULL) {
Value32 = BCM540X_AN_AD_1000BASET_HALF;
} else {
Value32 = BCM540X_AN_AD_1000BASET_FULL;
}
LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG,
Value32);
pDevice->advertising1000 = Value32;
} else if (LineSpeed == LM_LINE_SPEED_100MBPS) {
LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
if (DuplexMode != LM_DUPLEX_MODE_FULL) {
Value32 = PHY_AN_AD_100BASETX_HALF;
} else {
Value32 = PHY_AN_AD_100BASETX_FULL;
}
Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
} else if (LineSpeed == LM_LINE_SPEED_10MBPS) {
LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0);
pDevice->advertising1000 = 0;
if (DuplexMode != LM_DUPLEX_MODE_FULL) {
Value32 = PHY_AN_AD_10BASET_HALF;
} else {
Value32 = PHY_AN_AD_10BASET_FULL;
}
Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD;
Value32 |= GetPhyAdFlowCntrlSettings (pDevice);
LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32);
pDevice->advertising = Value32;
}
}
/* Force line speed if auto-negotiation is disabled. */
if (pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN) {
/* This code path is executed only when there is link. */
pDevice->MediaType = MediaType;
pDevice->LineSpeed = LineSpeed;
pDevice->DuplexMode = DuplexMode;
/* Force line seepd. */
NewPhyCtrl = 0;
switch (LineSpeed) {
case LM_LINE_SPEED_10MBPS:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS;
break;
case LM_LINE_SPEED_100MBPS:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS;
break;
case LM_LINE_SPEED_1000MBPS:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
break;
default:
NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS;
break;
}
if (DuplexMode == LM_DUPLEX_MODE_FULL) {
NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE;
}
/* Don't do anything if the PHY_CTRL is already what we wanted. */
LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32);
if (Value32 != NewPhyCtrl) {
/* Temporary bring the link down before forcing line speed. */
LM_WritePhy (pDevice, PHY_CTRL_REG,
PHY_CTRL_LOOPBACK_MODE);
/* Wait for link to go down. */
for (Cnt = 0; Cnt < 15000; Cnt++) {
MM_Wait (10);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32);
if (!(Value32 & PHY_STATUS_LINK_PASS)) {
MM_Wait (40);
break;
}
}
LM_WritePhy (pDevice, PHY_CTRL_REG, NewPhyCtrl);
MM_Wait (40);
}
} else {
LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE |
PHY_CTRL_RESTART_AUTO_NEG);
}
return LM_STATUS_SUCCESS;
} /* LM_ForceAutoNegBcm540xPhy */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
static LM_STATUS
LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice,
LM_REQUESTED_MEDIA_TYPE RequestedMediaType)
{
LM_STATUS LmStatus;
/* Initialize the phy chip. */
switch (pDevice->PhyId & PHY_ID_MASK) {
case PHY_BCM5400_PHY_ID:
case PHY_BCM5401_PHY_ID:
case PHY_BCM5411_PHY_ID:
case PHY_BCM5701_PHY_ID:
case PHY_BCM5703_PHY_ID:
case PHY_BCM5704_PHY_ID:
LmStatus =
LM_ForceAutoNegBcm540xPhy (pDevice, RequestedMediaType);
break;
default:
LmStatus = LM_STATUS_FAILURE;
break;
}
return LmStatus;
} /* LM_ForceAutoNeg */
/******************************************************************************/
/* Description: */
/* */
/* Return: */
/******************************************************************************/
LM_STATUS LM_LoadFirmware (PLM_DEVICE_BLOCK pDevice,
PT3_FWIMG_INFO pFwImg,
LM_UINT32 LoadCpu, LM_UINT32 StartCpu)
{
LM_UINT32 i;
LM_UINT32 address;
if (LoadCpu & T3_RX_CPU_ID) {
if (LM_HaltCpu (pDevice, T3_RX_CPU_ID) != LM_STATUS_SUCCESS) {
return LM_STATUS_FAILURE;
}
/* First of all clear scrach pad memory */
for (i = 0; i < T3_RX_CPU_SPAD_SIZE; i += 4) {
LM_RegWrInd (pDevice, T3_RX_CPU_SPAD_ADDR + i, 0);
}
/* Copy code first */
address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
for (i = 0; i <= pFwImg->Text.Length; i += 4) {
LM_RegWrInd (pDevice, address + i,
((LM_UINT32 *) pFwImg->Text.Buffer)[i /
4]);
}
address =
T3_RX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
LM_RegWrInd (pDevice, address + i,
((LM_UINT32 *) pFwImg->ROnlyData.
Buffer)[i / 4]);
}
address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
for (i = 0; i <= pFwImg->Data.Length; i += 4) {
LM_RegWrInd (pDevice, address + i,
((LM_UINT32 *) pFwImg->Data.Buffer)[i /
4]);
}
}
if (LoadCpu & T3_TX_CPU_ID) {
if (LM_HaltCpu (pDevice, T3_TX_CPU_ID) != LM_STATUS_SUCCESS) {
return LM_STATUS_FAILURE;
}
/* First of all clear scrach pad memory */
for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i += 4) {
LM_RegWrInd (pDevice, T3_TX_CPU_SPAD_ADDR + i, 0);
}
/* Copy code first */
address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff);
for (i = 0; i <= pFwImg->Text.Length; i += 4) {
LM_RegWrInd (pDevice, address + i,
((LM_UINT32 *) pFwImg->Text.Buffer)[i /
4]);
}
address =
T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff);
for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) {
LM_RegWrInd (pDevice, address + i,
((LM_UINT32 *) pFwImg->ROnlyData.
Buffer)[i / 4]);
}
address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff);
for (i = 0; i <= pFwImg->Data.Length; i += 4) {
LM_RegWrInd (pDevice, address + i,
((LM_UINT32 *) pFwImg->Data.Buffer)[i /
4]);
}
}
if (StartCpu & T3_RX_CPU_ID) {
/* Start Rx CPU */
REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
for (i = 0; i < 5; i++) {
if (pFwImg->StartAddress ==
REG_RD (pDevice, rxCpu.reg.PC))
break;
REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress);
MM_Wait (1000);
}
REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
REG_WR (pDevice, rxCpu.reg.mode, 0);
}
if (StartCpu & T3_TX_CPU_ID) {
/* Start Tx CPU */
REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
for (i = 0; i < 5; i++) {
if (pFwImg->StartAddress ==
REG_RD (pDevice, txCpu.reg.PC))
break;
REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress);
MM_Wait (1000);
}
REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
REG_WR (pDevice, txCpu.reg.mode, 0);
}
return LM_STATUS_SUCCESS;
}
STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number)
{
LM_UINT32 i;
if (cpu_number == T3_RX_CPU_ID) {
for (i = 0; i < 10000; i++) {
REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
if (REG_RD (pDevice, rxCpu.reg.mode) & CPU_MODE_HALT)
break;
}
REG_WR (pDevice, rxCpu.reg.state, 0xffffffff);
REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT);
MM_Wait (10);
} else {
for (i = 0; i < 10000; i++) {
REG_WR (pDevice, txCpu.reg.state, 0xffffffff);
REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT);
if (REG_RD (pDevice, txCpu.reg.mode) & CPU_MODE_HALT)
break;
}
}
return ((i == 10000) ? LM_STATUS_FAILURE : LM_STATUS_SUCCESS);
}
int LM_BlinkLED (PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec)
{
LM_UINT32 Oldcfg;
int j;
int ret = 0;
if (BlinkDurationSec == 0) {
return 0;
}
if (BlinkDurationSec > 120) {
BlinkDurationSec = 120;
}
Oldcfg = REG_RD (pDevice, MacCtrl.LedCtrl);
for (j = 0; j < BlinkDurationSec * 2; j++) {
if (j % 2) {
/* Turn on the LEDs. */
REG_WR (pDevice, MacCtrl.LedCtrl,
LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_1000MBPS_LED_ON |
LED_CTRL_100MBPS_LED_ON |
LED_CTRL_10MBPS_LED_ON |
LED_CTRL_OVERRIDE_TRAFFIC_LED |
LED_CTRL_BLINK_TRAFFIC_LED |
LED_CTRL_TRAFFIC_LED);
} else {
/* Turn off the LEDs. */
REG_WR (pDevice, MacCtrl.LedCtrl,
LED_CTRL_OVERRIDE_LINK_LED |
LED_CTRL_OVERRIDE_TRAFFIC_LED);
}
#ifndef EMBEDDED
current->state = TASK_INTERRUPTIBLE;
if (schedule_timeout (HZ / 2) != 0) {
ret = -EINTR;
break;
}
#else
udelay (100000); /* 1s sleep */
#endif
}
REG_WR (pDevice, MacCtrl.LedCtrl, Oldcfg);
return ret;
}
int t3_do_dma (PLM_DEVICE_BLOCK pDevice,
LM_PHYSICAL_ADDRESS host_addr_phy, int length, int dma_read)
{
T3_DMA_DESC dma_desc;
int i;
LM_UINT32 dma_desc_addr;
LM_UINT32 value32;
REG_WR (pDevice, BufMgr.Mode, 0);
REG_WR (pDevice, Ftq.Reset, 0);
dma_desc.host_addr.High = host_addr_phy.High;
dma_desc.host_addr.Low = host_addr_phy.Low;
dma_desc.nic_mbuf = 0x2100;
dma_desc.len = length;
dma_desc.flags = 0x00000004; /* Generate Rx-CPU event */
if (dma_read) {
dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) |
T3_QID_DMA_HIGH_PRI_READ;
REG_WR (pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE);
} else {
dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) |
T3_QID_DMA_HIGH_PRI_WRITE;
REG_WR (pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE);
}
dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR;
/* Writing this DMA descriptor to DMA memory */
for (i = 0; i < sizeof (T3_DMA_DESC); i += 4) {
value32 = *((PLM_UINT32) (((PLM_UINT8) & dma_desc) + i));
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG,
dma_desc_addr + i);
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG,
cpu_to_le32 (value32));
}
MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0);
if (dma_read)
REG_WR (pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue,
dma_desc_addr);
else
REG_WR (pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue,
dma_desc_addr);
for (i = 0; i < 40; i++) {
if (dma_read)
value32 =
REG_RD (pDevice,
Ftq.RcvBdCompFtqFifoEnqueueDequeue);
else
value32 =
REG_RD (pDevice,
Ftq.RcvDataCompFtqFifoEnqueueDequeue);
if ((value32 & 0xffff) == dma_desc_addr)
break;
MM_Wait (10);
}
return LM_STATUS_SUCCESS;
}
STATIC LM_STATUS
LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt,
LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize)
{
int j;
LM_UINT32 *ptr;
int dma_success = 0;
if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 &&
T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) {
return LM_STATUS_SUCCESS;
}
while (!dma_success) {
/* Fill data with incremental patterns */
ptr = (LM_UINT32 *) pBufferVirt;
for (j = 0; j < BufferSize / 4; j++)
*ptr++ = j;
if (t3_do_dma (pDevice, BufferPhy, BufferSize, 1) ==
LM_STATUS_FAILURE) {
return LM_STATUS_FAILURE;
}
MM_Wait (40);
ptr = (LM_UINT32 *) pBufferVirt;
/* Fill data with zero */
for (j = 0; j < BufferSize / 4; j++)
*ptr++ = 0;
if (t3_do_dma (pDevice, BufferPhy, BufferSize, 0) ==
LM_STATUS_FAILURE) {
return LM_STATUS_FAILURE;
}
MM_Wait (40);
/* Check for data */
ptr = (LM_UINT32 *) pBufferVirt;
for (j = 0; j < BufferSize / 4; j++) {
if (*ptr++ != j) {
if ((pDevice->
DmaReadWriteCtrl &
DMA_CTRL_WRITE_BOUNDARY_MASK)
== DMA_CTRL_WRITE_BOUNDARY_DISABLE) {
pDevice->DmaReadWriteCtrl =
(pDevice->
DmaReadWriteCtrl &
~DMA_CTRL_WRITE_BOUNDARY_MASK) |
DMA_CTRL_WRITE_BOUNDARY_16;
REG_WR (pDevice,
PciCfg.DmaReadWriteCtrl,
pDevice->DmaReadWriteCtrl);
break;
} else {
return LM_STATUS_FAILURE;
}
}
}
if (j == (BufferSize / 4))
dma_success = 1;
}
return LM_STATUS_SUCCESS;
}
#endif