u-boot/drivers/mtd/nand/mxs_nand.c
Scott Wood ceee07b658 mtd: nand: Sync with Linux v4.6
Updates the NAND code to match Linux v4.6.  The previous sync was from
Linux v4.1 in commit d3963721d9.

Note that none of the individual NAND drivers tracked Linux closely
enough to be synced themselves, other than manually applying a few
cross-tree changes.

Signed-off-by: Scott Wood <oss@buserror.net>
Tested-by: Heiko Schocher <hs@denx.de>
2016-06-03 20:27:48 -05:00

1213 lines
33 KiB
C

/*
* Freescale i.MX28 NAND flash driver
*
* Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
* on behalf of DENX Software Engineering GmbH
*
* Based on code from LTIB:
* Freescale GPMI NFC NAND Flash Driver
*
* Copyright (C) 2010 Freescale Semiconductor, Inc.
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/types.h>
#include <malloc.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/imx-common/regs-bch.h>
#include <asm/imx-common/regs-gpmi.h>
#include <asm/arch/sys_proto.h>
#include <asm/imx-common/dma.h>
#define MXS_NAND_DMA_DESCRIPTOR_COUNT 4
#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512
#if (defined(CONFIG_MX6) || defined(CONFIG_MX7))
#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2
#else
#define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0
#endif
#define MXS_NAND_METADATA_SIZE 10
#define MXS_NAND_BITS_PER_ECC_LEVEL 13
#define MXS_NAND_COMMAND_BUFFER_SIZE 32
#define MXS_NAND_BCH_TIMEOUT 10000
struct mxs_nand_info {
int cur_chip;
uint32_t cmd_queue_len;
uint32_t data_buf_size;
uint8_t *cmd_buf;
uint8_t *data_buf;
uint8_t *oob_buf;
uint8_t marking_block_bad;
uint8_t raw_oob_mode;
/* Functions with altered behaviour */
int (*hooked_read_oob)(struct mtd_info *mtd,
loff_t from, struct mtd_oob_ops *ops);
int (*hooked_write_oob)(struct mtd_info *mtd,
loff_t to, struct mtd_oob_ops *ops);
int (*hooked_block_markbad)(struct mtd_info *mtd,
loff_t ofs);
/* DMA descriptors */
struct mxs_dma_desc **desc;
uint32_t desc_index;
};
struct nand_ecclayout fake_ecc_layout;
static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE;
static int galois_field = 13;
/*
* Cache management functions
*/
#ifndef CONFIG_SYS_DCACHE_OFF
static void mxs_nand_flush_data_buf(struct mxs_nand_info *info)
{
uint32_t addr = (uint32_t)info->data_buf;
flush_dcache_range(addr, addr + info->data_buf_size);
}
static void mxs_nand_inval_data_buf(struct mxs_nand_info *info)
{
uint32_t addr = (uint32_t)info->data_buf;
invalidate_dcache_range(addr, addr + info->data_buf_size);
}
static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info)
{
uint32_t addr = (uint32_t)info->cmd_buf;
flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE);
}
#else
static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {}
static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {}
static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {}
#endif
static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info)
{
struct mxs_dma_desc *desc;
if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) {
printf("MXS NAND: Too many DMA descriptors requested\n");
return NULL;
}
desc = info->desc[info->desc_index];
info->desc_index++;
return desc;
}
static void mxs_nand_return_dma_descs(struct mxs_nand_info *info)
{
int i;
struct mxs_dma_desc *desc;
for (i = 0; i < info->desc_index; i++) {
desc = info->desc[i];
memset(desc, 0, sizeof(struct mxs_dma_desc));
desc->address = (dma_addr_t)desc;
}
info->desc_index = 0;
}
static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size)
{
return page_data_size / chunk_data_size;
}
static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength)
{
return ecc_strength * galois_field;
}
static uint32_t mxs_nand_aux_status_offset(void)
{
return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3;
}
static inline uint32_t mxs_nand_get_ecc_strength(uint32_t page_data_size,
uint32_t page_oob_size)
{
int ecc_strength;
int max_ecc_strength_supported;
/* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */
if (is_cpu_type(MXC_CPU_MX6SX) || is_soc_type(MXC_SOC_MX7))
max_ecc_strength_supported = 62;
else
max_ecc_strength_supported = 40;
/*
* Determine the ECC layout with the formula:
* ECC bits per chunk = (total page spare data bits) /
* (bits per ECC level) / (chunks per page)
* where:
* total page spare data bits =
* (page oob size - meta data size) * (bits per byte)
*/
ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8)
/ (galois_field *
mxs_nand_ecc_chunk_cnt(page_data_size));
return min(round_down(ecc_strength, 2), max_ecc_strength_supported);
}
static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size,
uint32_t ecc_strength)
{
uint32_t chunk_data_size_in_bits;
uint32_t chunk_ecc_size_in_bits;
uint32_t chunk_total_size_in_bits;
uint32_t block_mark_chunk_number;
uint32_t block_mark_chunk_bit_offset;
uint32_t block_mark_bit_offset;
chunk_data_size_in_bits = chunk_data_size * 8;
chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength);
chunk_total_size_in_bits =
chunk_data_size_in_bits + chunk_ecc_size_in_bits;
/* Compute the bit offset of the block mark within the physical page. */
block_mark_bit_offset = page_data_size * 8;
/* Subtract the metadata bits. */
block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8;
/*
* Compute the chunk number (starting at zero) in which the block mark
* appears.
*/
block_mark_chunk_number =
block_mark_bit_offset / chunk_total_size_in_bits;
/*
* Compute the bit offset of the block mark within its chunk, and
* validate it.
*/
block_mark_chunk_bit_offset = block_mark_bit_offset -
(block_mark_chunk_number * chunk_total_size_in_bits);
if (block_mark_chunk_bit_offset > chunk_data_size_in_bits)
return 1;
/*
* Now that we know the chunk number in which the block mark appears,
* we can subtract all the ECC bits that appear before it.
*/
block_mark_bit_offset -=
block_mark_chunk_number * chunk_ecc_size_in_bits;
return block_mark_bit_offset;
}
static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd)
{
uint32_t ecc_strength;
ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3;
}
static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd)
{
uint32_t ecc_strength;
ecc_strength = mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize);
return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7;
}
/*
* Wait for BCH complete IRQ and clear the IRQ
*/
static int mxs_nand_wait_for_bch_complete(void)
{
struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
int timeout = MXS_NAND_BCH_TIMEOUT;
int ret;
ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg,
BCH_CTRL_COMPLETE_IRQ, timeout);
writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr);
return ret;
}
/*
* This is the function that we install in the cmd_ctrl function pointer of the
* owning struct nand_chip. The only functions in the reference implementation
* that use these functions pointers are cmdfunc and select_chip.
*
* In this driver, we implement our own select_chip, so this function will only
* be called by the reference implementation's cmdfunc. For this reason, we can
* ignore the chip enable bit and concentrate only on sending bytes to the NAND
* Flash.
*/
static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
struct mxs_dma_desc *d;
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
int ret;
/*
* If this condition is true, something is _VERY_ wrong in MTD
* subsystem!
*/
if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) {
printf("MXS NAND: Command queue too long\n");
return;
}
/*
* Every operation begins with a command byte and a series of zero or
* more address bytes. These are distinguished by either the Address
* Latch Enable (ALE) or Command Latch Enable (CLE) signals being
* asserted. When MTD is ready to execute the command, it will
* deasert both latch enables.
*
* Rather than run a separate DMA operation for every single byte, we
* queue them up and run a single DMA operation for the entire series
* of command and data bytes.
*/
if (ctrl & (NAND_ALE | NAND_CLE)) {
if (data != NAND_CMD_NONE)
nand_info->cmd_buf[nand_info->cmd_queue_len++] = data;
return;
}
/*
* If control arrives here, MTD has deasserted both the ALE and CLE,
* which means it's ready to run an operation. Check if we have any
* bytes to send.
*/
if (nand_info->cmd_queue_len == 0)
return;
/* Compile the DMA descriptor -- a descriptor that sends command. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM |
MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
(nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET);
d->cmd.address = (dma_addr_t)nand_info->cmd_buf;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_WRITE |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_CLE |
GPMI_CTRL0_ADDRESS_INCREMENT |
nand_info->cmd_queue_len;
mxs_dma_desc_append(channel, d);
/* Flush caches */
mxs_nand_flush_cmd_buf(nand_info);
/* Execute the DMA chain. */
ret = mxs_dma_go(channel);
if (ret)
printf("MXS NAND: Error sending command\n");
mxs_nand_return_dma_descs(nand_info);
/* Reset the command queue. */
nand_info->cmd_queue_len = 0;
}
/*
* Test if the NAND flash is ready.
*/
static int mxs_nand_device_ready(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
struct mxs_gpmi_regs *gpmi_regs =
(struct mxs_gpmi_regs *)MXS_GPMI_BASE;
uint32_t tmp;
tmp = readl(&gpmi_regs->hw_gpmi_stat);
tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip);
return tmp & 1;
}
/*
* Select the NAND chip.
*/
static void mxs_nand_select_chip(struct mtd_info *mtd, int chip)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
nand_info->cur_chip = chip;
}
/*
* Handle block mark swapping.
*
* Note that, when this function is called, it doesn't know whether it's
* swapping the block mark, or swapping it *back* -- but it doesn't matter
* because the the operation is the same.
*/
static void mxs_nand_swap_block_mark(struct mtd_info *mtd,
uint8_t *data_buf, uint8_t *oob_buf)
{
uint32_t bit_offset;
uint32_t buf_offset;
uint32_t src;
uint32_t dst;
bit_offset = mxs_nand_mark_bit_offset(mtd);
buf_offset = mxs_nand_mark_byte_offset(mtd);
/*
* Get the byte from the data area that overlays the block mark. Since
* the ECC engine applies its own view to the bits in the page, the
* physical block mark won't (in general) appear on a byte boundary in
* the data.
*/
src = data_buf[buf_offset] >> bit_offset;
src |= data_buf[buf_offset + 1] << (8 - bit_offset);
dst = oob_buf[0];
oob_buf[0] = src;
data_buf[buf_offset] &= ~(0xff << bit_offset);
data_buf[buf_offset + 1] &= 0xff << bit_offset;
data_buf[buf_offset] |= dst << bit_offset;
data_buf[buf_offset + 1] |= dst >> (8 - bit_offset);
}
/*
* Read data from NAND.
*/
static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
struct mxs_dma_desc *d;
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
int ret;
if (length > NAND_MAX_PAGESIZE) {
printf("MXS NAND: DMA buffer too big\n");
return;
}
if (!buf) {
printf("MXS NAND: DMA buffer is NULL\n");
return;
}
/* Compile the DMA descriptor - a descriptor that reads data. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ |
MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
(length << MXS_DMA_DESC_BYTES_OFFSET);
d->cmd.address = (dma_addr_t)nand_info->data_buf;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_READ |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA |
length;
mxs_dma_desc_append(channel, d);
/*
* A DMA descriptor that waits for the command to end and the chip to
* become ready.
*
* I think we actually should *not* be waiting for the chip to become
* ready because, after all, we don't care. I think the original code
* did that and no one has re-thought it yet.
*/
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM |
MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
d->cmd.address = 0;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA;
mxs_dma_desc_append(channel, d);
/* Invalidate caches */
mxs_nand_inval_data_buf(nand_info);
/* Execute the DMA chain. */
ret = mxs_dma_go(channel);
if (ret) {
printf("MXS NAND: DMA read error\n");
goto rtn;
}
/* Invalidate caches */
mxs_nand_inval_data_buf(nand_info);
memcpy(buf, nand_info->data_buf, length);
rtn:
mxs_nand_return_dma_descs(nand_info);
}
/*
* Write data to NAND.
*/
static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf,
int length)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
struct mxs_dma_desc *d;
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
int ret;
if (length > NAND_MAX_PAGESIZE) {
printf("MXS NAND: DMA buffer too big\n");
return;
}
if (!buf) {
printf("MXS NAND: DMA buffer is NULL\n");
return;
}
memcpy(nand_info->data_buf, buf, length);
/* Compile the DMA descriptor - a descriptor that writes data. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ |
MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
(length << MXS_DMA_DESC_BYTES_OFFSET);
d->cmd.address = (dma_addr_t)nand_info->data_buf;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_WRITE |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA |
length;
mxs_dma_desc_append(channel, d);
/* Flush caches */
mxs_nand_flush_data_buf(nand_info);
/* Execute the DMA chain. */
ret = mxs_dma_go(channel);
if (ret)
printf("MXS NAND: DMA write error\n");
mxs_nand_return_dma_descs(nand_info);
}
/*
* Read a single byte from NAND.
*/
static uint8_t mxs_nand_read_byte(struct mtd_info *mtd)
{
uint8_t buf;
mxs_nand_read_buf(mtd, &buf, 1);
return buf;
}
/*
* Read a page from NAND.
*/
static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand,
uint8_t *buf, int oob_required,
int page)
{
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
struct mxs_dma_desc *d;
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
uint32_t corrected = 0, failed = 0;
uint8_t *status;
int i, ret;
/* Compile the DMA descriptor - wait for ready. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
(1 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
d->cmd.address = 0;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA;
mxs_dma_desc_append(channel, d);
/* Compile the DMA descriptor - enable the BCH block and read. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
d->cmd.address = 0;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_READ |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA |
(mtd->writesize + mtd->oobsize);
d->cmd.pio_words[1] = 0;
d->cmd.pio_words[2] =
GPMI_ECCCTRL_ENABLE_ECC |
GPMI_ECCCTRL_ECC_CMD_DECODE |
GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize;
d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
mxs_dma_desc_append(channel, d);
/* Compile the DMA descriptor - disable the BCH block. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN |
MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END |
(3 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
d->cmd.address = 0;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA |
(mtd->writesize + mtd->oobsize);
d->cmd.pio_words[1] = 0;
d->cmd.pio_words[2] = 0;
mxs_dma_desc_append(channel, d);
/* Compile the DMA descriptor - deassert the NAND lock and interrupt. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
MXS_DMA_DESC_DEC_SEM;
d->cmd.address = 0;
mxs_dma_desc_append(channel, d);
/* Invalidate caches */
mxs_nand_inval_data_buf(nand_info);
/* Execute the DMA chain. */
ret = mxs_dma_go(channel);
if (ret) {
printf("MXS NAND: DMA read error\n");
goto rtn;
}
ret = mxs_nand_wait_for_bch_complete();
if (ret) {
printf("MXS NAND: BCH read timeout\n");
goto rtn;
}
/* Invalidate caches */
mxs_nand_inval_data_buf(nand_info);
/* Read DMA completed, now do the mark swapping. */
mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
/* Loop over status bytes, accumulating ECC status. */
status = nand_info->oob_buf + mxs_nand_aux_status_offset();
for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) {
if (status[i] == 0x00)
continue;
if (status[i] == 0xff)
continue;
if (status[i] == 0xfe) {
failed++;
continue;
}
corrected += status[i];
}
/* Propagate ECC status to the owning MTD. */
mtd->ecc_stats.failed += failed;
mtd->ecc_stats.corrected += corrected;
/*
* It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for
* details about our policy for delivering the OOB.
*
* We fill the caller's buffer with set bits, and then copy the block
* mark to the caller's buffer. Note that, if block mark swapping was
* necessary, it has already been done, so we can rely on the first
* byte of the auxiliary buffer to contain the block mark.
*/
memset(nand->oob_poi, 0xff, mtd->oobsize);
nand->oob_poi[0] = nand_info->oob_buf[0];
memcpy(buf, nand_info->data_buf, mtd->writesize);
rtn:
mxs_nand_return_dma_descs(nand_info);
return ret;
}
/*
* Write a page to NAND.
*/
static int mxs_nand_ecc_write_page(struct mtd_info *mtd,
struct nand_chip *nand, const uint8_t *buf,
int oob_required, int page)
{
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
struct mxs_dma_desc *d;
uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip;
int ret;
memcpy(nand_info->data_buf, buf, mtd->writesize);
memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize);
/* Handle block mark swapping. */
mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf);
/* Compile the DMA descriptor - write data. */
d = mxs_nand_get_dma_desc(nand_info);
d->cmd.data =
MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ |
MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END |
(6 << MXS_DMA_DESC_PIO_WORDS_OFFSET);
d->cmd.address = 0;
d->cmd.pio_words[0] =
GPMI_CTRL0_COMMAND_MODE_WRITE |
GPMI_CTRL0_WORD_LENGTH |
(nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) |
GPMI_CTRL0_ADDRESS_NAND_DATA;
d->cmd.pio_words[1] = 0;
d->cmd.pio_words[2] =
GPMI_ECCCTRL_ENABLE_ECC |
GPMI_ECCCTRL_ECC_CMD_ENCODE |
GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE;
d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf;
d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf;
mxs_dma_desc_append(channel, d);
/* Flush caches */
mxs_nand_flush_data_buf(nand_info);
/* Execute the DMA chain. */
ret = mxs_dma_go(channel);
if (ret) {
printf("MXS NAND: DMA write error\n");
goto rtn;
}
ret = mxs_nand_wait_for_bch_complete();
if (ret) {
printf("MXS NAND: BCH write timeout\n");
goto rtn;
}
rtn:
mxs_nand_return_dma_descs(nand_info);
return 0;
}
/*
* Read OOB from NAND.
*
* This function is a veneer that replaces the function originally installed by
* the NAND Flash MTD code.
*/
static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
int ret;
if (ops->mode == MTD_OPS_RAW)
nand_info->raw_oob_mode = 1;
else
nand_info->raw_oob_mode = 0;
ret = nand_info->hooked_read_oob(mtd, from, ops);
nand_info->raw_oob_mode = 0;
return ret;
}
/*
* Write OOB to NAND.
*
* This function is a veneer that replaces the function originally installed by
* the NAND Flash MTD code.
*/
static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
int ret;
if (ops->mode == MTD_OPS_RAW)
nand_info->raw_oob_mode = 1;
else
nand_info->raw_oob_mode = 0;
ret = nand_info->hooked_write_oob(mtd, to, ops);
nand_info->raw_oob_mode = 0;
return ret;
}
/*
* Mark a block bad in NAND.
*
* This function is a veneer that replaces the function originally installed by
* the NAND Flash MTD code.
*/
static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(chip);
int ret;
nand_info->marking_block_bad = 1;
ret = nand_info->hooked_block_markbad(mtd, ofs);
nand_info->marking_block_bad = 0;
return ret;
}
/*
* There are several places in this driver where we have to handle the OOB and
* block marks. This is the function where things are the most complicated, so
* this is where we try to explain it all. All the other places refer back to
* here.
*
* These are the rules, in order of decreasing importance:
*
* 1) Nothing the caller does can be allowed to imperil the block mark, so all
* write operations take measures to protect it.
*
* 2) In read operations, the first byte of the OOB we return must reflect the
* true state of the block mark, no matter where that block mark appears in
* the physical page.
*
* 3) ECC-based read operations return an OOB full of set bits (since we never
* allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
* return).
*
* 4) "Raw" read operations return a direct view of the physical bytes in the
* page, using the conventional definition of which bytes are data and which
* are OOB. This gives the caller a way to see the actual, physical bytes
* in the page, without the distortions applied by our ECC engine.
*
* What we do for this specific read operation depends on whether we're doing
* "raw" read, or an ECC-based read.
*
* It turns out that knowing whether we want an "ECC-based" or "raw" read is not
* easy. When reading a page, for example, the NAND Flash MTD code calls our
* ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
* ECC-based or raw view of the page is implicit in which function it calls
* (there is a similar pair of ECC-based/raw functions for writing).
*
* Since MTD assumes the OOB is not covered by ECC, there is no pair of
* ECC-based/raw functions for reading or or writing the OOB. The fact that the
* caller wants an ECC-based or raw view of the page is not propagated down to
* this driver.
*
* Since our OOB *is* covered by ECC, we need this information. So, we hook the
* ecc.read_oob and ecc.write_oob function pointers in the owning
* struct mtd_info with our own functions. These hook functions set the
* raw_oob_mode field so that, when control finally arrives here, we'll know
* what to do.
*/
static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
int page)
{
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
/*
* First, fill in the OOB buffer. If we're doing a raw read, we need to
* get the bytes from the physical page. If we're not doing a raw read,
* we need to fill the buffer with set bits.
*/
if (nand_info->raw_oob_mode) {
/*
* If control arrives here, we're doing a "raw" read. Send the
* command to read the conventional OOB and read it.
*/
nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
nand->read_buf(mtd, nand->oob_poi, mtd->oobsize);
} else {
/*
* If control arrives here, we're not doing a "raw" read. Fill
* the OOB buffer with set bits and correct the block mark.
*/
memset(nand->oob_poi, 0xff, mtd->oobsize);
nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
mxs_nand_read_buf(mtd, nand->oob_poi, 1);
}
return 0;
}
/*
* Write OOB data to NAND.
*/
static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
int page)
{
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
uint8_t block_mark = 0;
/*
* There are fundamental incompatibilities between the i.MX GPMI NFC and
* the NAND Flash MTD model that make it essentially impossible to write
* the out-of-band bytes.
*
* We permit *ONE* exception. If the *intent* of writing the OOB is to
* mark a block bad, we can do that.
*/
if (!nand_info->marking_block_bad) {
printf("NXS NAND: Writing OOB isn't supported\n");
return -EIO;
}
/* Write the block mark. */
nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
nand->write_buf(mtd, &block_mark, 1);
nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
/* Check if it worked. */
if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL)
return -EIO;
return 0;
}
/*
* Claims all blocks are good.
*
* In principle, this function is *only* called when the NAND Flash MTD system
* isn't allowed to keep an in-memory bad block table, so it is forced to ask
* the driver for bad block information.
*
* In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so
* this function is *only* called when we take it away.
*
* Thus, this function is only called when we want *all* blocks to look good,
* so it *always* return success.
*/
static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs)
{
return 0;
}
/*
* Nominally, the purpose of this function is to look for or create the bad
* block table. In fact, since the we call this function at the very end of
* the initialization process started by nand_scan(), and we doesn't have a
* more formal mechanism, we "hook" this function to continue init process.
*
* At this point, the physical NAND Flash chips have been identified and
* counted, so we know the physical geometry. This enables us to make some
* important configuration decisions.
*
* The return value of this function propogates directly back to this driver's
* call to nand_scan(). Anything other than zero will cause this driver to
* tear everything down and declare failure.
*/
static int mxs_nand_scan_bbt(struct mtd_info *mtd)
{
struct nand_chip *nand = mtd_to_nand(mtd);
struct mxs_nand_info *nand_info = nand_get_controller_data(nand);
struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE;
uint32_t tmp;
if (mtd->oobsize > MXS_NAND_CHUNK_DATA_CHUNK_SIZE) {
galois_field = 14;
chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 2;
}
if (mtd->oobsize > chunk_data_size) {
printf("Not support the NAND chips whose oob size is larger then %d bytes!\n", chunk_data_size);
return -EINVAL;
}
/* Configure BCH and set NFC geometry */
mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
/* Configure layout 0 */
tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1)
<< BCH_FLASHLAYOUT0_NBLOCKS_OFFSET;
tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET;
tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
<< BCH_FLASHLAYOUT0_ECC0_OFFSET;
tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
tmp |= (14 == galois_field ? 1 : 0) <<
BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET;
writel(tmp, &bch_regs->hw_bch_flash0layout0);
tmp = (mtd->writesize + mtd->oobsize)
<< BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET;
tmp |= (mxs_nand_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1)
<< BCH_FLASHLAYOUT1_ECCN_OFFSET;
tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT;
tmp |= (14 == galois_field ? 1 : 0) <<
BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET;
writel(tmp, &bch_regs->hw_bch_flash0layout1);
/* Set *all* chip selects to use layout 0 */
writel(0, &bch_regs->hw_bch_layoutselect);
/* Enable BCH complete interrupt */
writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set);
/* Hook some operations at the MTD level. */
if (mtd->_read_oob != mxs_nand_hook_read_oob) {
nand_info->hooked_read_oob = mtd->_read_oob;
mtd->_read_oob = mxs_nand_hook_read_oob;
}
if (mtd->_write_oob != mxs_nand_hook_write_oob) {
nand_info->hooked_write_oob = mtd->_write_oob;
mtd->_write_oob = mxs_nand_hook_write_oob;
}
if (mtd->_block_markbad != mxs_nand_hook_block_markbad) {
nand_info->hooked_block_markbad = mtd->_block_markbad;
mtd->_block_markbad = mxs_nand_hook_block_markbad;
}
/* We use the reference implementation for bad block management. */
return nand_default_bbt(mtd);
}
/*
* Allocate DMA buffers
*/
int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info)
{
uint8_t *buf;
const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE;
nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT);
/* DMA buffers */
buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size);
if (!buf) {
printf("MXS NAND: Error allocating DMA buffers\n");
return -ENOMEM;
}
memset(buf, 0, nand_info->data_buf_size);
nand_info->data_buf = buf;
nand_info->oob_buf = buf + NAND_MAX_PAGESIZE;
/* Command buffers */
nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT,
MXS_NAND_COMMAND_BUFFER_SIZE);
if (!nand_info->cmd_buf) {
free(buf);
printf("MXS NAND: Error allocating command buffers\n");
return -ENOMEM;
}
memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE);
nand_info->cmd_queue_len = 0;
return 0;
}
/*
* Initializes the NFC hardware.
*/
int mxs_nand_init(struct mxs_nand_info *info)
{
struct mxs_gpmi_regs *gpmi_regs =
(struct mxs_gpmi_regs *)MXS_GPMI_BASE;
struct mxs_bch_regs *bch_regs =
(struct mxs_bch_regs *)MXS_BCH_BASE;
int i = 0, j, ret = 0;
info->desc = malloc(sizeof(struct mxs_dma_desc *) *
MXS_NAND_DMA_DESCRIPTOR_COUNT);
if (!info->desc) {
ret = -ENOMEM;
goto err1;
}
/* Allocate the DMA descriptors. */
for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) {
info->desc[i] = mxs_dma_desc_alloc();
if (!info->desc[i]) {
ret = -ENOMEM;
goto err2;
}
}
/* Init the DMA controller. */
for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0;
j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) {
ret = mxs_dma_init_channel(j);
if (ret)
goto err3;
}
/* Reset the GPMI block. */
mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg);
mxs_reset_block(&bch_regs->hw_bch_ctrl_reg);
/*
* Choose NAND mode, set IRQ polarity, disable write protection and
* select BCH ECC.
*/
clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1,
GPMI_CTRL1_GPMI_MODE,
GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET |
GPMI_CTRL1_BCH_MODE);
return 0;
err3:
for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--)
mxs_dma_release(j);
err2:
for (--i; i >= 0; i--)
mxs_dma_desc_free(info->desc[i]);
free(info->desc);
err1:
if (ret == -ENOMEM)
printf("MXS NAND: Unable to allocate DMA descriptors\n");
return ret;
}
/*!
* This function is called during the driver binding process.
*
* @param pdev the device structure used to store device specific
* information that is used by the suspend, resume and
* remove functions
*
* @return The function always returns 0.
*/
int board_nand_init(struct nand_chip *nand)
{
struct mxs_nand_info *nand_info;
int err;
nand_info = malloc(sizeof(struct mxs_nand_info));
if (!nand_info) {
printf("MXS NAND: Failed to allocate private data\n");
return -ENOMEM;
}
memset(nand_info, 0, sizeof(struct mxs_nand_info));
err = mxs_nand_alloc_buffers(nand_info);
if (err)
goto err1;
err = mxs_nand_init(nand_info);
if (err)
goto err2;
memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout));
nand_set_controller_data(nand, nand_info);
nand->options |= NAND_NO_SUBPAGE_WRITE;
nand->cmd_ctrl = mxs_nand_cmd_ctrl;
nand->dev_ready = mxs_nand_device_ready;
nand->select_chip = mxs_nand_select_chip;
nand->block_bad = mxs_nand_block_bad;
nand->scan_bbt = mxs_nand_scan_bbt;
nand->read_byte = mxs_nand_read_byte;
nand->read_buf = mxs_nand_read_buf;
nand->write_buf = mxs_nand_write_buf;
nand->ecc.read_page = mxs_nand_ecc_read_page;
nand->ecc.write_page = mxs_nand_ecc_write_page;
nand->ecc.read_oob = mxs_nand_ecc_read_oob;
nand->ecc.write_oob = mxs_nand_ecc_write_oob;
nand->ecc.layout = &fake_ecc_layout;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.bytes = 9;
nand->ecc.size = 512;
nand->ecc.strength = 8;
return 0;
err2:
free(nand_info->data_buf);
free(nand_info->cmd_buf);
err1:
free(nand_info);
return err;
}