u-boot/drivers/net/smc91111.c
Mike Frysinger 6502949291 net: smc91111: use mdelay()
We've already got a mdelay() func in common code, so use that instead.

Signed-off-by: Mike Frysinger <vapier@gentoo.org>
2012-03-27 14:44:12 +02:00

1371 lines
34 KiB
C

/*------------------------------------------------------------------------
. smc91111.c
. This is a driver for SMSC's 91C111 single-chip Ethernet device.
.
. (C) Copyright 2002
. Sysgo Real-Time Solutions, GmbH <www.elinos.com>
. Rolf Offermanns <rof@sysgo.de>
.
. Copyright (C) 2001 Standard Microsystems Corporation (SMSC)
. Developed by Simple Network Magic Corporation (SNMC)
. Copyright (C) 1996 by Erik Stahlman (ES)
.
. This program is free software; you can redistribute it and/or modify
. it under the terms of the GNU General Public License as published by
. the Free Software Foundation; either version 2 of the License, or
. (at your option) any later version.
.
. This program is distributed in the hope that it will be useful,
. but WITHOUT ANY WARRANTY; without even the implied warranty of
. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
. GNU General Public License for more details.
.
. You should have received a copy of the GNU General Public License
. along with this program; if not, write to the Free Software
. Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
.
. Information contained in this file was obtained from the LAN91C111
. manual from SMC. To get a copy, if you really want one, you can find
. information under www.smsc.com.
.
.
. "Features" of the SMC chip:
. Integrated PHY/MAC for 10/100BaseT Operation
. Supports internal and external MII
. Integrated 8K packet memory
. EEPROM interface for configuration
.
. Arguments:
. io = for the base address
. irq = for the IRQ
.
. author:
. Erik Stahlman ( erik@vt.edu )
. Daris A Nevil ( dnevil@snmc.com )
.
.
. Hardware multicast code from Peter Cammaert ( pc@denkart.be )
.
. Sources:
. o SMSC LAN91C111 databook (www.smsc.com)
. o smc9194.c by Erik Stahlman
. o skeleton.c by Donald Becker ( becker@cesdis.gsfc.nasa.gov )
.
. History:
. 06/19/03 Richard Woodruff Made u-boot environment aware and added mac addr checks.
. 10/17/01 Marco Hasewinkel Modify for DNP/1110
. 07/25/01 Woojung Huh Modify for ADS Bitsy
. 04/25/01 Daris A Nevil Initial public release through SMSC
. 03/16/01 Daris A Nevil Modified smc9194.c for use with LAN91C111
----------------------------------------------------------------------------*/
#include <common.h>
#include <command.h>
#include <config.h>
#include <malloc.h>
#include "smc91111.h"
#include <net.h>
/* Use power-down feature of the chip */
#define POWER_DOWN 0
#define NO_AUTOPROBE
#define SMC_DEBUG 0
#if SMC_DEBUG > 1
static const char version[] =
"smc91111.c:v1.0 04/25/01 by Daris A Nevil (dnevil@snmc.com)\n";
#endif
/* Autonegotiation timeout in seconds */
#ifndef CONFIG_SMC_AUTONEG_TIMEOUT
#define CONFIG_SMC_AUTONEG_TIMEOUT 10
#endif
/*------------------------------------------------------------------------
.
. Configuration options, for the experienced user to change.
.
-------------------------------------------------------------------------*/
/*
. Wait time for memory to be free. This probably shouldn't be
. tuned that much, as waiting for this means nothing else happens
. in the system
*/
#define MEMORY_WAIT_TIME 16
#if (SMC_DEBUG > 2 )
#define PRINTK3(args...) printf(args)
#else
#define PRINTK3(args...)
#endif
#if SMC_DEBUG > 1
#define PRINTK2(args...) printf(args)
#else
#define PRINTK2(args...)
#endif
#ifdef SMC_DEBUG
#define PRINTK(args...) printf(args)
#else
#define PRINTK(args...)
#endif
/*------------------------------------------------------------------------
.
. The internal workings of the driver. If you are changing anything
. here with the SMC stuff, you should have the datasheet and know
. what you are doing.
.
-------------------------------------------------------------------------*/
/* Memory sizing constant */
#define LAN91C111_MEMORY_MULTIPLIER (1024*2)
#ifndef CONFIG_SMC91111_BASE
#error "SMC91111 Base address must be passed to initialization funciton"
/* #define CONFIG_SMC91111_BASE 0x20000300 */
#endif
#define SMC_DEV_NAME "SMC91111"
#define SMC_PHY_ADDR 0x0000
#define SMC_ALLOC_MAX_TRY 5
#define SMC_TX_TIMEOUT 30
#define SMC_PHY_CLOCK_DELAY 1000
#define ETH_ZLEN 60
#ifdef CONFIG_SMC_USE_32_BIT
#define USE_32_BIT 1
#else
#undef USE_32_BIT
#endif
#ifdef SHARED_RESOURCES
extern void swap_to(int device_id);
#else
# define swap_to(x)
#endif
#ifndef CONFIG_SMC91111_EXT_PHY
static void smc_phy_configure(struct eth_device *dev);
#endif /* !CONFIG_SMC91111_EXT_PHY */
/*
------------------------------------------------------------
.
. Internal routines
.
------------------------------------------------------------
*/
#ifdef CONFIG_SMC_USE_IOFUNCS
/*
* input and output functions
*
* Implemented due to inx,outx macros accessing the device improperly
* and putting the device into an unkown state.
*
* For instance, on Sharp LPD7A400 SDK, affects were chip memory
* could not be free'd (hence the alloc failures), duplicate packets,
* packets being corrupt (shifted) on the wire, etc. Switching to the
* inx,outx functions fixed this problem.
*/
#define barrier() __asm__ __volatile__("": : :"memory")
static inline word SMC_inw(struct eth_device *dev, dword offset)
{
word v;
v = *((volatile word*)(dev->iobase + offset));
barrier(); *(volatile u32*)(0xc0000000);
return v;
}
static inline void SMC_outw(struct eth_device *dev, word value, dword offset)
{
*((volatile word*)(dev->iobase + offset)) = value;
barrier(); *(volatile u32*)(0xc0000000);
}
static inline byte SMC_inb(struct eth_device *dev, dword offset)
{
word _w;
_w = SMC_inw(dev, offset & ~((dword)1));
return (offset & 1) ? (byte)(_w >> 8) : (byte)(_w);
}
static inline void SMC_outb(struct eth_device *dev, byte value, dword offset)
{
word _w;
_w = SMC_inw(dev, offset & ~((dword)1));
if (offset & 1)
*((volatile word*)(dev->iobase + (offset & ~((dword)1)))) =
(value<<8) | (_w & 0x00ff);
else
*((volatile word*)(dev->iobase + offset)) =
value | (_w & 0xff00);
}
static inline void SMC_insw(struct eth_device *dev, dword offset,
volatile uchar* buf, dword len)
{
volatile word *p = (volatile word *)buf;
while (len-- > 0) {
*p++ = SMC_inw(dev, offset);
barrier();
*((volatile u32*)(0xc0000000));
}
}
static inline void SMC_outsw(struct eth_device *dev, dword offset,
uchar* buf, dword len)
{
volatile word *p = (volatile word *)buf;
while (len-- > 0) {
SMC_outw(dev, *p++, offset);
barrier();
*(volatile u32*)(0xc0000000);
}
}
#endif /* CONFIG_SMC_USE_IOFUNCS */
/*
. A rather simple routine to print out a packet for debugging purposes.
*/
#if SMC_DEBUG > 2
static void print_packet( byte *, int );
#endif
#define tx_done(dev) 1
static int poll4int (struct eth_device *dev, byte mask, int timeout)
{
int tmo = get_timer (0) + timeout * CONFIG_SYS_HZ;
int is_timeout = 0;
word old_bank = SMC_inw (dev, BSR_REG);
PRINTK2 ("Polling...\n");
SMC_SELECT_BANK (dev, 2);
while ((SMC_inw (dev, SMC91111_INT_REG) & mask) == 0) {
if (get_timer (0) >= tmo) {
is_timeout = 1;
break;
}
}
/* restore old bank selection */
SMC_SELECT_BANK (dev, old_bank);
if (is_timeout)
return 1;
else
return 0;
}
/* Only one release command at a time, please */
static inline void smc_wait_mmu_release_complete (struct eth_device *dev)
{
int count = 0;
/* assume bank 2 selected */
while (SMC_inw (dev, MMU_CMD_REG) & MC_BUSY) {
udelay (1); /* Wait until not busy */
if (++count > 200)
break;
}
}
/*
. Function: smc_reset( void )
. Purpose:
. This sets the SMC91111 chip to its normal state, hopefully from whatever
. mess that any other DOS driver has put it in.
.
. Maybe I should reset more registers to defaults in here? SOFTRST should
. do that for me.
.
. Method:
. 1. send a SOFT RESET
. 2. wait for it to finish
. 3. enable autorelease mode
. 4. reset the memory management unit
. 5. clear all interrupts
.
*/
static void smc_reset (struct eth_device *dev)
{
PRINTK2 ("%s: smc_reset\n", SMC_DEV_NAME);
/* This resets the registers mostly to defaults, but doesn't
affect EEPROM. That seems unnecessary */
SMC_SELECT_BANK (dev, 0);
SMC_outw (dev, RCR_SOFTRST, RCR_REG);
/* Setup the Configuration Register */
/* This is necessary because the CONFIG_REG is not affected */
/* by a soft reset */
SMC_SELECT_BANK (dev, 1);
#if defined(CONFIG_SMC91111_EXT_PHY)
SMC_outw (dev, CONFIG_DEFAULT | CONFIG_EXT_PHY, CONFIG_REG);
#else
SMC_outw (dev, CONFIG_DEFAULT, CONFIG_REG);
#endif
/* Release from possible power-down state */
/* Configuration register is not affected by Soft Reset */
SMC_outw (dev, SMC_inw (dev, CONFIG_REG) | CONFIG_EPH_POWER_EN,
CONFIG_REG);
SMC_SELECT_BANK (dev, 0);
/* this should pause enough for the chip to be happy */
udelay (10);
/* Disable transmit and receive functionality */
SMC_outw (dev, RCR_CLEAR, RCR_REG);
SMC_outw (dev, TCR_CLEAR, TCR_REG);
/* set the control register */
SMC_SELECT_BANK (dev, 1);
SMC_outw (dev, CTL_DEFAULT, CTL_REG);
/* Reset the MMU */
SMC_SELECT_BANK (dev, 2);
smc_wait_mmu_release_complete (dev);
SMC_outw (dev, MC_RESET, MMU_CMD_REG);
while (SMC_inw (dev, MMU_CMD_REG) & MC_BUSY)
udelay (1); /* Wait until not busy */
/* Note: It doesn't seem that waiting for the MMU busy is needed here,
but this is a place where future chipsets _COULD_ break. Be wary
of issuing another MMU command right after this */
/* Disable all interrupts */
SMC_outb (dev, 0, IM_REG);
}
/*
. Function: smc_enable
. Purpose: let the chip talk to the outside work
. Method:
. 1. Enable the transmitter
. 2. Enable the receiver
. 3. Enable interrupts
*/
static void smc_enable(struct eth_device *dev)
{
PRINTK2("%s: smc_enable\n", SMC_DEV_NAME);
SMC_SELECT_BANK( dev, 0 );
/* see the header file for options in TCR/RCR DEFAULT*/
SMC_outw( dev, TCR_DEFAULT, TCR_REG );
SMC_outw( dev, RCR_DEFAULT, RCR_REG );
/* clear MII_DIS */
/* smc_write_phy_register(PHY_CNTL_REG, 0x0000); */
}
/*
. Function: smc_halt
. Purpose: closes down the SMC91xxx chip.
. Method:
. 1. zero the interrupt mask
. 2. clear the enable receive flag
. 3. clear the enable xmit flags
.
. TODO:
. (1) maybe utilize power down mode.
. Why not yet? Because while the chip will go into power down mode,
. the manual says that it will wake up in response to any I/O requests
. in the register space. Empirical results do not show this working.
*/
static void smc_halt(struct eth_device *dev)
{
PRINTK2("%s: smc_halt\n", SMC_DEV_NAME);
/* no more interrupts for me */
SMC_SELECT_BANK( dev, 2 );
SMC_outb( dev, 0, IM_REG );
/* and tell the card to stay away from that nasty outside world */
SMC_SELECT_BANK( dev, 0 );
SMC_outb( dev, RCR_CLEAR, RCR_REG );
SMC_outb( dev, TCR_CLEAR, TCR_REG );
swap_to(FLASH);
}
/*
. Function: smc_send(struct net_device * )
. Purpose:
. This sends the actual packet to the SMC9xxx chip.
.
. Algorithm:
. First, see if a saved_skb is available.
. ( this should NOT be called if there is no 'saved_skb'
. Now, find the packet number that the chip allocated
. Point the data pointers at it in memory
. Set the length word in the chip's memory
. Dump the packet to chip memory
. Check if a last byte is needed ( odd length packet )
. if so, set the control flag right
. Tell the card to send it
. Enable the transmit interrupt, so I know if it failed
. Free the kernel data if I actually sent it.
*/
static int smc_send(struct eth_device *dev, volatile void *packet,
int packet_length)
{
byte packet_no;
byte *buf;
int length;
int numPages;
int try = 0;
int time_out;
byte status;
byte saved_pnr;
word saved_ptr;
/* save PTR and PNR registers before manipulation */
SMC_SELECT_BANK (dev, 2);
saved_pnr = SMC_inb( dev, PN_REG );
saved_ptr = SMC_inw( dev, PTR_REG );
PRINTK3 ("%s: smc_hardware_send_packet\n", SMC_DEV_NAME);
length = ETH_ZLEN < packet_length ? packet_length : ETH_ZLEN;
/* allocate memory
** The MMU wants the number of pages to be the number of 256 bytes
** 'pages', minus 1 ( since a packet can't ever have 0 pages :) )
**
** The 91C111 ignores the size bits, but the code is left intact
** for backwards and future compatibility.
**
** Pkt size for allocating is data length +6 (for additional status
** words, length and ctl!)
**
** If odd size then last byte is included in this header.
*/
numPages = ((length & 0xfffe) + 6);
numPages >>= 8; /* Divide by 256 */
if (numPages > 7) {
printf ("%s: Far too big packet error. \n", SMC_DEV_NAME);
return 0;
}
/* now, try to allocate the memory */
SMC_SELECT_BANK (dev, 2);
SMC_outw (dev, MC_ALLOC | numPages, MMU_CMD_REG);
/* FIXME: the ALLOC_INT bit never gets set *
* so the following will always give a *
* memory allocation error. *
* same code works in armboot though *
* -ro
*/
again:
try++;
time_out = MEMORY_WAIT_TIME;
do {
status = SMC_inb (dev, SMC91111_INT_REG);
if (status & IM_ALLOC_INT) {
/* acknowledge the interrupt */
SMC_outb (dev, IM_ALLOC_INT, SMC91111_INT_REG);
break;
}
} while (--time_out);
if (!time_out) {
PRINTK2 ("%s: memory allocation, try %d failed ...\n",
SMC_DEV_NAME, try);
if (try < SMC_ALLOC_MAX_TRY)
goto again;
else
return 0;
}
PRINTK2 ("%s: memory allocation, try %d succeeded ...\n",
SMC_DEV_NAME, try);
buf = (byte *) packet;
/* If I get here, I _know_ there is a packet slot waiting for me */
packet_no = SMC_inb (dev, AR_REG);
if (packet_no & AR_FAILED) {
/* or isn't there? BAD CHIP! */
printf ("%s: Memory allocation failed. \n", SMC_DEV_NAME);
return 0;
}
/* we have a packet address, so tell the card to use it */
#ifndef CONFIG_XAENIAX
SMC_outb (dev, packet_no, PN_REG);
#else
/* On Xaeniax board, we can't use SMC_outb here because that way
* the Allocate MMU command will end up written to the command register
* as well, which will lead to a problem.
*/
SMC_outl (dev, packet_no << 16, 0);
#endif
/* do not write new ptr value if Write data fifo not empty */
while ( saved_ptr & PTR_NOTEMPTY )
printf ("Write data fifo not empty!\n");
/* point to the beginning of the packet */
SMC_outw (dev, PTR_AUTOINC, PTR_REG);
PRINTK3 ("%s: Trying to xmit packet of length %x\n",
SMC_DEV_NAME, length);
#if SMC_DEBUG > 2
printf ("Transmitting Packet\n");
print_packet (buf, length);
#endif
/* send the packet length ( +6 for status, length and ctl byte )
and the status word ( set to zeros ) */
#ifdef USE_32_BIT
SMC_outl (dev, (length + 6) << 16, SMC91111_DATA_REG);
#else
SMC_outw (dev, 0, SMC91111_DATA_REG);
/* send the packet length ( +6 for status words, length, and ctl */
SMC_outw (dev, (length + 6), SMC91111_DATA_REG);
#endif
/* send the actual data
. I _think_ it's faster to send the longs first, and then
. mop up by sending the last word. It depends heavily
. on alignment, at least on the 486. Maybe it would be
. a good idea to check which is optimal? But that could take
. almost as much time as is saved?
*/
#ifdef USE_32_BIT
SMC_outsl (dev, SMC91111_DATA_REG, buf, length >> 2);
#ifndef CONFIG_XAENIAX
if (length & 0x2)
SMC_outw (dev, *((word *) (buf + (length & 0xFFFFFFFC))),
SMC91111_DATA_REG);
#else
/* On XANEIAX, we can only use 32-bit writes, so we need to handle
* unaligned tail part specially. The standard code doesn't work.
*/
if ((length & 3) == 3) {
u16 * ptr = (u16*) &buf[length-3];
SMC_outl(dev, (*ptr) | ((0x2000 | buf[length-1]) << 16),
SMC91111_DATA_REG);
} else if ((length & 2) == 2) {
u16 * ptr = (u16*) &buf[length-2];
SMC_outl(dev, *ptr, SMC91111_DATA_REG);
} else if (length & 1) {
SMC_outl(dev, (0x2000 | buf[length-1]), SMC91111_DATA_REG);
} else {
SMC_outl(dev, 0, SMC91111_DATA_REG);
}
#endif
#else
SMC_outsw (dev, SMC91111_DATA_REG, buf, (length) >> 1);
#endif /* USE_32_BIT */
#ifndef CONFIG_XAENIAX
/* Send the last byte, if there is one. */
if ((length & 1) == 0) {
SMC_outw (dev, 0, SMC91111_DATA_REG);
} else {
SMC_outw (dev, buf[length - 1] | 0x2000, SMC91111_DATA_REG);
}
#endif
/* and let the chipset deal with it */
SMC_outw (dev, MC_ENQUEUE, MMU_CMD_REG);
/* poll for TX INT */
/* if (poll4int (dev, IM_TX_INT, SMC_TX_TIMEOUT)) { */
/* poll for TX_EMPTY INT - autorelease enabled */
if (poll4int(dev, IM_TX_EMPTY_INT, SMC_TX_TIMEOUT)) {
/* sending failed */
PRINTK2 ("%s: TX timeout, sending failed...\n", SMC_DEV_NAME);
/* release packet */
/* no need to release, MMU does that now */
#ifdef CONFIG_XAENIAX
SMC_outw (dev, MC_FREEPKT, MMU_CMD_REG);
#endif
/* wait for MMU getting ready (low) */
while (SMC_inw (dev, MMU_CMD_REG) & MC_BUSY) {
udelay (10);
}
PRINTK2 ("MMU ready\n");
return 0;
} else {
/* ack. int */
SMC_outb (dev, IM_TX_EMPTY_INT, SMC91111_INT_REG);
/* SMC_outb (IM_TX_INT, SMC91111_INT_REG); */
PRINTK2 ("%s: Sent packet of length %d \n", SMC_DEV_NAME,
length);
/* release packet */
/* no need to release, MMU does that now */
#ifdef CONFIG_XAENIAX
SMC_outw (dev, MC_FREEPKT, MMU_CMD_REG);
#endif
/* wait for MMU getting ready (low) */
while (SMC_inw (dev, MMU_CMD_REG) & MC_BUSY) {
udelay (10);
}
PRINTK2 ("MMU ready\n");
}
/* restore previously saved registers */
#ifndef CONFIG_XAENIAX
SMC_outb( dev, saved_pnr, PN_REG );
#else
/* On Xaeniax board, we can't use SMC_outb here because that way
* the Allocate MMU command will end up written to the command register
* as well, which will lead to a problem.
*/
SMC_outl(dev, saved_pnr << 16, 0);
#endif
SMC_outw( dev, saved_ptr, PTR_REG );
return length;
}
static int smc_write_hwaddr(struct eth_device *dev)
{
int i;
swap_to(ETHERNET);
SMC_SELECT_BANK (dev, 1);
#ifdef USE_32_BIT
for (i = 0; i < 6; i += 2) {
word address;
address = dev->enetaddr[i + 1] << 8;
address |= dev->enetaddr[i];
SMC_outw(dev, address, (ADDR0_REG + i));
}
#else
for (i = 0; i < 6; i++)
SMC_outb(dev, dev->enetaddr[i], (ADDR0_REG + i));
#endif
swap_to(FLASH);
return 0;
}
/*
* Open and Initialize the board
*
* Set up everything, reset the card, etc ..
*
*/
static int smc_init(struct eth_device *dev, bd_t *bd)
{
swap_to(ETHERNET);
PRINTK2 ("%s: smc_init\n", SMC_DEV_NAME);
/* reset the hardware */
smc_reset (dev);
smc_enable (dev);
/* Configure the PHY */
#ifndef CONFIG_SMC91111_EXT_PHY
smc_phy_configure (dev);
#endif
/* conservative setting (10Mbps, HalfDuplex, no AutoNeg.) */
/* SMC_SELECT_BANK(dev, 0); */
/* SMC_outw(dev, 0, RPC_REG); */
printf(SMC_DEV_NAME ": MAC %pM\n", dev->enetaddr);
return 0;
}
/*-------------------------------------------------------------
.
. smc_rcv - receive a packet from the card
.
. There is ( at least ) a packet waiting to be read from
. chip-memory.
.
. o Read the status
. o If an error, record it
. o otherwise, read in the packet
--------------------------------------------------------------
*/
static int smc_rcv(struct eth_device *dev)
{
int packet_number;
word status;
word packet_length;
int is_error = 0;
#ifdef USE_32_BIT
dword stat_len;
#endif
byte saved_pnr;
word saved_ptr;
SMC_SELECT_BANK(dev, 2);
/* save PTR and PTR registers */
saved_pnr = SMC_inb( dev, PN_REG );
saved_ptr = SMC_inw( dev, PTR_REG );
packet_number = SMC_inw( dev, RXFIFO_REG );
if ( packet_number & RXFIFO_REMPTY ) {
return 0;
}
PRINTK3("%s: smc_rcv\n", SMC_DEV_NAME);
/* start reading from the start of the packet */
SMC_outw( dev, PTR_READ | PTR_RCV | PTR_AUTOINC, PTR_REG );
/* First two words are status and packet_length */
#ifdef USE_32_BIT
stat_len = SMC_inl(dev, SMC91111_DATA_REG);
status = stat_len & 0xffff;
packet_length = stat_len >> 16;
#else
status = SMC_inw( dev, SMC91111_DATA_REG );
packet_length = SMC_inw( dev, SMC91111_DATA_REG );
#endif
packet_length &= 0x07ff; /* mask off top bits */
PRINTK2("RCV: STATUS %4x LENGTH %4x\n", status, packet_length );
if ( !(status & RS_ERRORS ) ){
/* Adjust for having already read the first two words */
packet_length -= 4; /*4; */
/* set odd length for bug in LAN91C111, */
/* which never sets RS_ODDFRAME */
/* TODO ? */
#ifdef USE_32_BIT
PRINTK3(" Reading %d dwords (and %d bytes) \n",
packet_length >> 2, packet_length & 3 );
/* QUESTION: Like in the TX routine, do I want
to send the DWORDs or the bytes first, or some
mixture. A mixture might improve already slow PIO
performance */
SMC_insl( dev, SMC91111_DATA_REG, NetRxPackets[0],
packet_length >> 2 );
/* read the left over bytes */
if (packet_length & 3) {
int i;
byte *tail = (byte *)(NetRxPackets[0] +
(packet_length & ~3));
dword leftover = SMC_inl(dev, SMC91111_DATA_REG);
for (i=0; i<(packet_length & 3); i++)
*tail++ = (byte) (leftover >> (8*i)) & 0xff;
}
#else
PRINTK3(" Reading %d words and %d byte(s) \n",
(packet_length >> 1 ), packet_length & 1 );
SMC_insw(dev, SMC91111_DATA_REG , NetRxPackets[0],
packet_length >> 1);
#endif /* USE_32_BIT */
#if SMC_DEBUG > 2
printf("Receiving Packet\n");
print_packet( NetRxPackets[0], packet_length );
#endif
} else {
/* error ... */
/* TODO ? */
is_error = 1;
}
while ( SMC_inw( dev, MMU_CMD_REG ) & MC_BUSY )
udelay(1); /* Wait until not busy */
/* error or good, tell the card to get rid of this packet */
SMC_outw( dev, MC_RELEASE, MMU_CMD_REG );
while ( SMC_inw( dev, MMU_CMD_REG ) & MC_BUSY )
udelay(1); /* Wait until not busy */
/* restore saved registers */
#ifndef CONFIG_XAENIAX
SMC_outb( dev, saved_pnr, PN_REG );
#else
/* On Xaeniax board, we can't use SMC_outb here because that way
* the Allocate MMU command will end up written to the command register
* as well, which will lead to a problem.
*/
SMC_outl( dev, saved_pnr << 16, 0);
#endif
SMC_outw( dev, saved_ptr, PTR_REG );
if (!is_error) {
/* Pass the packet up to the protocol layers. */
NetReceive(NetRxPackets[0], packet_length);
return packet_length;
} else {
return 0;
}
}
#if 0
/*------------------------------------------------------------
. Modify a bit in the LAN91C111 register set
.-------------------------------------------------------------*/
static word smc_modify_regbit(struct eth_device *dev, int bank, int ioaddr, int reg,
unsigned int bit, int val)
{
word regval;
SMC_SELECT_BANK( dev, bank );
regval = SMC_inw( dev, reg );
if (val)
regval |= bit;
else
regval &= ~bit;
SMC_outw( dev, regval, 0 );
return(regval);
}
/*------------------------------------------------------------
. Retrieve a bit in the LAN91C111 register set
.-------------------------------------------------------------*/
static int smc_get_regbit(struct eth_device *dev, int bank, int ioaddr, int reg, unsigned int bit)
{
SMC_SELECT_BANK( dev, bank );
if ( SMC_inw( dev, reg ) & bit)
return(1);
else
return(0);
}
/*------------------------------------------------------------
. Modify a LAN91C111 register (word access only)
.-------------------------------------------------------------*/
static void smc_modify_reg(struct eth_device *dev, int bank, int ioaddr, int reg, word val)
{
SMC_SELECT_BANK( dev, bank );
SMC_outw( dev, val, reg );
}
/*------------------------------------------------------------
. Retrieve a LAN91C111 register (word access only)
.-------------------------------------------------------------*/
static int smc_get_reg(struct eth_device *dev, int bank, int ioaddr, int reg)
{
SMC_SELECT_BANK( dev, bank );
return(SMC_inw( dev, reg ));
}
#endif /* 0 */
/*---PHY CONTROL AND CONFIGURATION----------------------------------------- */
#if (SMC_DEBUG > 2 )
/*------------------------------------------------------------
. Debugging function for viewing MII Management serial bitstream
.-------------------------------------------------------------*/
static void smc_dump_mii_stream (byte * bits, int size)
{
int i;
printf ("BIT#:");
for (i = 0; i < size; ++i) {
printf ("%d", i % 10);
}
printf ("\nMDOE:");
for (i = 0; i < size; ++i) {
if (bits[i] & MII_MDOE)
printf ("1");
else
printf ("0");
}
printf ("\nMDO :");
for (i = 0; i < size; ++i) {
if (bits[i] & MII_MDO)
printf ("1");
else
printf ("0");
}
printf ("\nMDI :");
for (i = 0; i < size; ++i) {
if (bits[i] & MII_MDI)
printf ("1");
else
printf ("0");
}
printf ("\n");
}
#endif
/*------------------------------------------------------------
. Reads a register from the MII Management serial interface
.-------------------------------------------------------------*/
#ifndef CONFIG_SMC91111_EXT_PHY
static word smc_read_phy_register (struct eth_device *dev, byte phyreg)
{
int oldBank;
int i;
byte mask;
word mii_reg;
byte bits[64];
int clk_idx = 0;
int input_idx;
word phydata;
byte phyaddr = SMC_PHY_ADDR;
/* 32 consecutive ones on MDO to establish sync */
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Start code <01> */
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Read command <10> */
bits[clk_idx++] = MII_MDOE | MII_MDO;
bits[clk_idx++] = MII_MDOE;
/* Output the PHY address, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Output the phy register number, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Tristate and turnaround (2 bit times) */
bits[clk_idx++] = 0;
/*bits[clk_idx++] = 0; */
/* Input starts at this bit time */
input_idx = clk_idx;
/* Will input 16 bits */
for (i = 0; i < 16; ++i)
bits[clk_idx++] = 0;
/* Final clock bit */
bits[clk_idx++] = 0;
/* Save the current bank */
oldBank = SMC_inw (dev, BANK_SELECT);
/* Select bank 3 */
SMC_SELECT_BANK (dev, 3);
/* Get the current MII register value */
mii_reg = SMC_inw (dev, MII_REG);
/* Turn off all MII Interface bits */
mii_reg &= ~(MII_MDOE | MII_MCLK | MII_MDI | MII_MDO);
/* Clock all 64 cycles */
for (i = 0; i < sizeof bits; ++i) {
/* Clock Low - output data */
SMC_outw (dev, mii_reg | bits[i], MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Clock Hi - input data */
SMC_outw (dev, mii_reg | bits[i] | MII_MCLK, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
bits[i] |= SMC_inw (dev, MII_REG) & MII_MDI;
}
/* Return to idle state */
/* Set clock to low, data to low, and output tristated */
SMC_outw (dev, mii_reg, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Restore original bank select */
SMC_SELECT_BANK (dev, oldBank);
/* Recover input data */
phydata = 0;
for (i = 0; i < 16; ++i) {
phydata <<= 1;
if (bits[input_idx++] & MII_MDI)
phydata |= 0x0001;
}
#if (SMC_DEBUG > 2 )
printf ("smc_read_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
smc_dump_mii_stream (bits, sizeof bits);
#endif
return (phydata);
}
/*------------------------------------------------------------
. Writes a register to the MII Management serial interface
.-------------------------------------------------------------*/
static void smc_write_phy_register (struct eth_device *dev, byte phyreg,
word phydata)
{
int oldBank;
int i;
word mask;
word mii_reg;
byte bits[65];
int clk_idx = 0;
byte phyaddr = SMC_PHY_ADDR;
/* 32 consecutive ones on MDO to establish sync */
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Start code <01> */
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Write command <01> */
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
/* Output the PHY address, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Output the phy register number, msb first */
mask = (byte) 0x10;
for (i = 0; i < 5; ++i) {
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Tristate and turnaround (2 bit times) */
bits[clk_idx++] = 0;
bits[clk_idx++] = 0;
/* Write out 16 bits of data, msb first */
mask = 0x8000;
for (i = 0; i < 16; ++i) {
if (phydata & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
/* Shift to next lowest bit */
mask >>= 1;
}
/* Final clock bit (tristate) */
bits[clk_idx++] = 0;
/* Save the current bank */
oldBank = SMC_inw (dev, BANK_SELECT);
/* Select bank 3 */
SMC_SELECT_BANK (dev, 3);
/* Get the current MII register value */
mii_reg = SMC_inw (dev, MII_REG);
/* Turn off all MII Interface bits */
mii_reg &= ~(MII_MDOE | MII_MCLK | MII_MDI | MII_MDO);
/* Clock all cycles */
for (i = 0; i < sizeof bits; ++i) {
/* Clock Low - output data */
SMC_outw (dev, mii_reg | bits[i], MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Clock Hi - input data */
SMC_outw (dev, mii_reg | bits[i] | MII_MCLK, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
bits[i] |= SMC_inw (dev, MII_REG) & MII_MDI;
}
/* Return to idle state */
/* Set clock to low, data to low, and output tristated */
SMC_outw (dev, mii_reg, MII_REG);
udelay (SMC_PHY_CLOCK_DELAY);
/* Restore original bank select */
SMC_SELECT_BANK (dev, oldBank);
#if (SMC_DEBUG > 2 )
printf ("smc_write_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
smc_dump_mii_stream (bits, sizeof bits);
#endif
}
#endif /* !CONFIG_SMC91111_EXT_PHY */
/*------------------------------------------------------------
. Configures the specified PHY using Autonegotiation. Calls
. smc_phy_fixed() if the user has requested a certain config.
.-------------------------------------------------------------*/
#ifndef CONFIG_SMC91111_EXT_PHY
static void smc_phy_configure (struct eth_device *dev)
{
int timeout;
word my_phy_caps; /* My PHY capabilities */
word my_ad_caps; /* My Advertised capabilities */
word status = 0; /*;my status = 0 */
PRINTK3 ("%s: smc_program_phy()\n", SMC_DEV_NAME);
/* Reset the PHY, setting all other bits to zero */
smc_write_phy_register (dev, PHY_CNTL_REG, PHY_CNTL_RST);
/* Wait for the reset to complete, or time out */
timeout = 6; /* Wait up to 3 seconds */
while (timeout--) {
if (!(smc_read_phy_register (dev, PHY_CNTL_REG)
& PHY_CNTL_RST)) {
/* reset complete */
break;
}
mdelay(500); /* wait 500 millisecs */
}
if (timeout < 1) {
printf ("%s:PHY reset timed out\n", SMC_DEV_NAME);
goto smc_phy_configure_exit;
}
/* Read PHY Register 18, Status Output */
/* lp->lastPhy18 = smc_read_phy_register(PHY_INT_REG); */
/* Enable PHY Interrupts (for register 18) */
/* Interrupts listed here are disabled */
smc_write_phy_register (dev, PHY_MASK_REG, 0xffff);
/* Configure the Receive/Phy Control register */
SMC_SELECT_BANK (dev, 0);
SMC_outw (dev, RPC_DEFAULT, RPC_REG);
/* Copy our capabilities from PHY_STAT_REG to PHY_AD_REG */
my_phy_caps = smc_read_phy_register (dev, PHY_STAT_REG);
my_ad_caps = PHY_AD_CSMA; /* I am CSMA capable */
if (my_phy_caps & PHY_STAT_CAP_T4)
my_ad_caps |= PHY_AD_T4;
if (my_phy_caps & PHY_STAT_CAP_TXF)
my_ad_caps |= PHY_AD_TX_FDX;
if (my_phy_caps & PHY_STAT_CAP_TXH)
my_ad_caps |= PHY_AD_TX_HDX;
if (my_phy_caps & PHY_STAT_CAP_TF)
my_ad_caps |= PHY_AD_10_FDX;
if (my_phy_caps & PHY_STAT_CAP_TH)
my_ad_caps |= PHY_AD_10_HDX;
/* Update our Auto-Neg Advertisement Register */
smc_write_phy_register (dev, PHY_AD_REG, my_ad_caps);
/* Read the register back. Without this, it appears that when */
/* auto-negotiation is restarted, sometimes it isn't ready and */
/* the link does not come up. */
smc_read_phy_register(dev, PHY_AD_REG);
PRINTK2 ("%s: phy caps=%x\n", SMC_DEV_NAME, my_phy_caps);
PRINTK2 ("%s: phy advertised caps=%x\n", SMC_DEV_NAME, my_ad_caps);
/* Restart auto-negotiation process in order to advertise my caps */
smc_write_phy_register (dev, PHY_CNTL_REG,
PHY_CNTL_ANEG_EN | PHY_CNTL_ANEG_RST);
/* Wait for the auto-negotiation to complete. This may take from */
/* 2 to 3 seconds. */
/* Wait for the reset to complete, or time out */
timeout = CONFIG_SMC_AUTONEG_TIMEOUT * 2;
while (timeout--) {
status = smc_read_phy_register (dev, PHY_STAT_REG);
if (status & PHY_STAT_ANEG_ACK) {
/* auto-negotiate complete */
break;
}
mdelay(500); /* wait 500 millisecs */
/* Restart auto-negotiation if remote fault */
if (status & PHY_STAT_REM_FLT) {
printf ("%s: PHY remote fault detected\n",
SMC_DEV_NAME);
/* Restart auto-negotiation */
printf ("%s: PHY restarting auto-negotiation\n",
SMC_DEV_NAME);
smc_write_phy_register (dev, PHY_CNTL_REG,
PHY_CNTL_ANEG_EN |
PHY_CNTL_ANEG_RST |
PHY_CNTL_SPEED |
PHY_CNTL_DPLX);
}
}
if (timeout < 1) {
printf ("%s: PHY auto-negotiate timed out\n", SMC_DEV_NAME);
}
/* Fail if we detected an auto-negotiate remote fault */
if (status & PHY_STAT_REM_FLT) {
printf ("%s: PHY remote fault detected\n", SMC_DEV_NAME);
}
/* Re-Configure the Receive/Phy Control register */
SMC_outw (dev, RPC_DEFAULT, RPC_REG);
smc_phy_configure_exit: ;
}
#endif /* !CONFIG_SMC91111_EXT_PHY */
#if SMC_DEBUG > 2
static void print_packet( byte * buf, int length )
{
int i;
int remainder;
int lines;
printf("Packet of length %d \n", length );
#if SMC_DEBUG > 3
lines = length / 16;
remainder = length % 16;
for ( i = 0; i < lines ; i ++ ) {
int cur;
for ( cur = 0; cur < 8; cur ++ ) {
byte a, b;
a = *(buf ++ );
b = *(buf ++ );
printf("%02x%02x ", a, b );
}
printf("\n");
}
for ( i = 0; i < remainder/2 ; i++ ) {
byte a, b;
a = *(buf ++ );
b = *(buf ++ );
printf("%02x%02x ", a, b );
}
printf("\n");
#endif
}
#endif
int smc91111_initialize(u8 dev_num, int base_addr)
{
struct smc91111_priv *priv;
struct eth_device *dev;
int i;
priv = malloc(sizeof(*priv));
if (!priv)
return 0;
dev = malloc(sizeof(*dev));
if (!dev) {
free(priv);
return 0;
}
memset(dev, 0, sizeof(*dev));
priv->dev_num = dev_num;
dev->priv = priv;
dev->iobase = base_addr;
swap_to(ETHERNET);
SMC_SELECT_BANK(dev, 1);
for (i = 0; i < 6; ++i)
dev->enetaddr[i] = SMC_inb(dev, (ADDR0_REG + i));
swap_to(FLASH);
dev->init = smc_init;
dev->halt = smc_halt;
dev->send = smc_send;
dev->recv = smc_rcv;
dev->write_hwaddr = smc_write_hwaddr;
sprintf(dev->name, "%s-%hu", SMC_DEV_NAME, dev_num);
eth_register(dev);
return 0;
}