u-boot/drivers/mmc/sdhci.c
Faiz Abbas d1c0a2200a mmc: sdhci: Add support for HOST_CONTROL2 and setting UHS timings
The HOST_CONTROL2 register is a part of SDHC v3.00 and not just specific
to arasan/zynq controllers. Add the same to sdhci.h.

Also create a common API to set UHS timings in HOST_CONTROL2.

Signed-off-by: Faiz Abbas <faiz_abbas@ti.com>
Reviewed-by: Tom Rini <trini@konsulko.com>
2019-07-17 11:12:08 -04:00

879 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2011, Marvell Semiconductor Inc.
* Lei Wen <leiwen@marvell.com>
*
* Back ported to the 8xx platform (from the 8260 platform) by
* Murray.Jensen@cmst.csiro.au, 27-Jan-01.
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <mmc.h>
#include <sdhci.h>
#include <dm.h>
#if defined(CONFIG_FIXED_SDHCI_ALIGNED_BUFFER)
void *aligned_buffer = (void *)CONFIG_FIXED_SDHCI_ALIGNED_BUFFER;
#else
void *aligned_buffer;
#endif
static void sdhci_reset(struct sdhci_host *host, u8 mask)
{
unsigned long timeout;
/* Wait max 100 ms */
timeout = 100;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) {
if (timeout == 0) {
printf("%s: Reset 0x%x never completed.\n",
__func__, (int)mask);
return;
}
timeout--;
udelay(1000);
}
}
static void sdhci_cmd_done(struct sdhci_host *host, struct mmc_cmd *cmd)
{
int i;
if (cmd->resp_type & MMC_RSP_136) {
/* CRC is stripped so we need to do some shifting. */
for (i = 0; i < 4; i++) {
cmd->response[i] = sdhci_readl(host,
SDHCI_RESPONSE + (3-i)*4) << 8;
if (i != 3)
cmd->response[i] |= sdhci_readb(host,
SDHCI_RESPONSE + (3-i)*4-1);
}
} else {
cmd->response[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
static void sdhci_transfer_pio(struct sdhci_host *host, struct mmc_data *data)
{
int i;
char *offs;
for (i = 0; i < data->blocksize; i += 4) {
offs = data->dest + i;
if (data->flags == MMC_DATA_READ)
*(u32 *)offs = sdhci_readl(host, SDHCI_BUFFER);
else
sdhci_writel(host, *(u32 *)offs, SDHCI_BUFFER);
}
}
#if CONFIG_IS_ENABLED(MMC_SDHCI_ADMA)
static void sdhci_adma_desc(struct sdhci_host *host, char *buf, u16 len,
bool end)
{
struct sdhci_adma_desc *desc;
u8 attr;
desc = &host->adma_desc_table[host->desc_slot];
attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
if (!end)
host->desc_slot++;
else
attr |= ADMA_DESC_ATTR_END;
desc->attr = attr;
desc->len = len;
desc->reserved = 0;
desc->addr_lo = (dma_addr_t)buf;
#ifdef CONFIG_DMA_ADDR_T_64BIT
desc->addr_hi = (u64)buf >> 32;
#endif
}
static void sdhci_prepare_adma_table(struct sdhci_host *host,
struct mmc_data *data)
{
uint trans_bytes = data->blocksize * data->blocks;
uint desc_count = DIV_ROUND_UP(trans_bytes, ADMA_MAX_LEN);
int i = desc_count;
char *buf;
host->desc_slot = 0;
if (data->flags & MMC_DATA_READ)
buf = data->dest;
else
buf = (char *)data->src;
while (--i) {
sdhci_adma_desc(host, buf, ADMA_MAX_LEN, false);
buf += ADMA_MAX_LEN;
trans_bytes -= ADMA_MAX_LEN;
}
sdhci_adma_desc(host, buf, trans_bytes, true);
flush_cache((dma_addr_t)host->adma_desc_table,
ROUND(desc_count * sizeof(struct sdhci_adma_desc),
ARCH_DMA_MINALIGN));
}
#elif defined(CONFIG_MMC_SDHCI_SDMA)
static void sdhci_prepare_adma_table(struct sdhci_host *host,
struct mmc_data *data)
{}
#endif
#if (defined(CONFIG_MMC_SDHCI_SDMA) || CONFIG_IS_ENABLED(MMC_SDHCI_ADMA))
static void sdhci_prepare_dma(struct sdhci_host *host, struct mmc_data *data,
int *is_aligned, int trans_bytes)
{
unsigned char ctrl;
if (data->flags == MMC_DATA_READ)
host->start_addr = (dma_addr_t)data->dest;
else
host->start_addr = (dma_addr_t)data->src;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if (host->flags & USE_ADMA64)
ctrl |= SDHCI_CTRL_ADMA64;
else if (host->flags & USE_ADMA)
ctrl |= SDHCI_CTRL_ADMA32;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
if (host->flags & USE_SDMA) {
if ((host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) &&
(host->start_addr & 0x7) != 0x0) {
*is_aligned = 0;
host->start_addr = (unsigned long)aligned_buffer;
if (data->flags != MMC_DATA_READ)
memcpy(aligned_buffer, data->src, trans_bytes);
}
#if defined(CONFIG_FIXED_SDHCI_ALIGNED_BUFFER)
/*
* Always use this bounce-buffer when
* CONFIG_FIXED_SDHCI_ALIGNED_BUFFER is defined
*/
*is_aligned = 0;
host->start_addr = (unsigned long)aligned_buffer;
if (data->flags != MMC_DATA_READ)
memcpy(aligned_buffer, data->src, trans_bytes);
#endif
sdhci_writel(host, host->start_addr, SDHCI_DMA_ADDRESS);
} else if (host->flags & (USE_ADMA | USE_ADMA64)) {
sdhci_prepare_adma_table(host, data);
sdhci_writel(host, (u32)host->adma_addr, SDHCI_ADMA_ADDRESS);
if (host->flags & USE_ADMA64)
sdhci_writel(host, (u64)host->adma_addr >> 32,
SDHCI_ADMA_ADDRESS_HI);
}
flush_cache(host->start_addr, ROUND(trans_bytes, ARCH_DMA_MINALIGN));
}
#else
static void sdhci_prepare_dma(struct sdhci_host *host, struct mmc_data *data,
int *is_aligned, int trans_bytes)
{}
#endif
static int sdhci_transfer_data(struct sdhci_host *host, struct mmc_data *data)
{
dma_addr_t start_addr = host->start_addr;
unsigned int stat, rdy, mask, timeout, block = 0;
bool transfer_done = false;
timeout = 1000000;
rdy = SDHCI_INT_SPACE_AVAIL | SDHCI_INT_DATA_AVAIL;
mask = SDHCI_DATA_AVAILABLE | SDHCI_SPACE_AVAILABLE;
do {
stat = sdhci_readl(host, SDHCI_INT_STATUS);
if (stat & SDHCI_INT_ERROR) {
pr_debug("%s: Error detected in status(0x%X)!\n",
__func__, stat);
return -EIO;
}
if (!transfer_done && (stat & rdy)) {
if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & mask))
continue;
sdhci_writel(host, rdy, SDHCI_INT_STATUS);
sdhci_transfer_pio(host, data);
data->dest += data->blocksize;
if (++block >= data->blocks) {
/* Keep looping until the SDHCI_INT_DATA_END is
* cleared, even if we finished sending all the
* blocks.
*/
transfer_done = true;
continue;
}
}
if ((host->flags & USE_DMA) && !transfer_done &&
(stat & SDHCI_INT_DMA_END)) {
sdhci_writel(host, SDHCI_INT_DMA_END, SDHCI_INT_STATUS);
if (host->flags & USE_SDMA) {
start_addr &=
~(SDHCI_DEFAULT_BOUNDARY_SIZE - 1);
start_addr += SDHCI_DEFAULT_BOUNDARY_SIZE;
sdhci_writel(host, start_addr,
SDHCI_DMA_ADDRESS);
}
}
if (timeout-- > 0)
udelay(10);
else {
printf("%s: Transfer data timeout\n", __func__);
return -ETIMEDOUT;
}
} while (!(stat & SDHCI_INT_DATA_END));
return 0;
}
/*
* No command will be sent by driver if card is busy, so driver must wait
* for card ready state.
* Every time when card is busy after timeout then (last) timeout value will be
* increased twice but only if it doesn't exceed global defined maximum.
* Each function call will use last timeout value.
*/
#define SDHCI_CMD_MAX_TIMEOUT 3200
#define SDHCI_CMD_DEFAULT_TIMEOUT 100
#define SDHCI_READ_STATUS_TIMEOUT 1000
#ifdef CONFIG_DM_MMC
static int sdhci_send_command(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
#else
static int sdhci_send_command(struct mmc *mmc, struct mmc_cmd *cmd,
struct mmc_data *data)
{
#endif
struct sdhci_host *host = mmc->priv;
unsigned int stat = 0;
int ret = 0;
int trans_bytes = 0, is_aligned = 1;
u32 mask, flags, mode;
unsigned int time = 0;
int mmc_dev = mmc_get_blk_desc(mmc)->devnum;
ulong start = get_timer(0);
host->start_addr = 0;
/* Timeout unit - ms */
static unsigned int cmd_timeout = SDHCI_CMD_DEFAULT_TIMEOUT;
mask = SDHCI_CMD_INHIBIT | SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION ||
((cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200) && !data))
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (time >= cmd_timeout) {
printf("%s: MMC: %d busy ", __func__, mmc_dev);
if (2 * cmd_timeout <= SDHCI_CMD_MAX_TIMEOUT) {
cmd_timeout += cmd_timeout;
printf("timeout increasing to: %u ms.\n",
cmd_timeout);
} else {
puts("timeout.\n");
return -ECOMM;
}
}
time++;
udelay(1000);
}
sdhci_writel(host, SDHCI_INT_ALL_MASK, SDHCI_INT_STATUS);
mask = SDHCI_INT_RESPONSE;
if ((cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200) && !data)
mask = SDHCI_INT_DATA_AVAIL;
if (!(cmd->resp_type & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->resp_type & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->resp_type & MMC_RSP_BUSY) {
flags = SDHCI_CMD_RESP_SHORT_BUSY;
if (data)
mask |= SDHCI_INT_DATA_END;
} else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->resp_type & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->resp_type & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
if (data || cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)
flags |= SDHCI_CMD_DATA;
/* Set Transfer mode regarding to data flag */
if (data) {
sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
mode = SDHCI_TRNS_BLK_CNT_EN;
trans_bytes = data->blocks * data->blocksize;
if (data->blocks > 1)
mode |= SDHCI_TRNS_MULTI;
if (data->flags == MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & USE_DMA) {
mode |= SDHCI_TRNS_DMA;
sdhci_prepare_dma(host, data, &is_aligned, trans_bytes);
}
sdhci_writew(host, SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
data->blocksize),
SDHCI_BLOCK_SIZE);
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
} else if (cmd->resp_type & MMC_RSP_BUSY) {
sdhci_writeb(host, 0xe, SDHCI_TIMEOUT_CONTROL);
}
sdhci_writel(host, cmd->cmdarg, SDHCI_ARGUMENT);
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->cmdidx, flags), SDHCI_COMMAND);
start = get_timer(0);
do {
stat = sdhci_readl(host, SDHCI_INT_STATUS);
if (stat & SDHCI_INT_ERROR)
break;
if (get_timer(start) >= SDHCI_READ_STATUS_TIMEOUT) {
if (host->quirks & SDHCI_QUIRK_BROKEN_R1B) {
return 0;
} else {
printf("%s: Timeout for status update!\n",
__func__);
return -ETIMEDOUT;
}
}
} while ((stat & mask) != mask);
if ((stat & (SDHCI_INT_ERROR | mask)) == mask) {
sdhci_cmd_done(host, cmd);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
} else
ret = -1;
if (!ret && data)
ret = sdhci_transfer_data(host, data);
if (host->quirks & SDHCI_QUIRK_WAIT_SEND_CMD)
udelay(1000);
stat = sdhci_readl(host, SDHCI_INT_STATUS);
sdhci_writel(host, SDHCI_INT_ALL_MASK, SDHCI_INT_STATUS);
if (!ret) {
if ((host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) &&
!is_aligned && (data->flags == MMC_DATA_READ))
memcpy(data->dest, aligned_buffer, trans_bytes);
return 0;
}
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
if (stat & SDHCI_INT_TIMEOUT)
return -ETIMEDOUT;
else
return -ECOMM;
}
#if defined(CONFIG_DM_MMC) && defined(MMC_SUPPORTS_TUNING)
static int sdhci_execute_tuning(struct udevice *dev, uint opcode)
{
int err;
struct mmc *mmc = mmc_get_mmc_dev(dev);
struct sdhci_host *host = mmc->priv;
debug("%s\n", __func__);
if (host->ops && host->ops->platform_execute_tuning) {
err = host->ops->platform_execute_tuning(mmc, opcode);
if (err)
return err;
return 0;
}
return 0;
}
#endif
int sdhci_set_clock(struct mmc *mmc, unsigned int clock)
{
struct sdhci_host *host = mmc->priv;
unsigned int div, clk = 0, timeout;
/* Wait max 20 ms */
timeout = 200;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) &
(SDHCI_CMD_INHIBIT | SDHCI_DATA_INHIBIT)) {
if (timeout == 0) {
printf("%s: Timeout to wait cmd & data inhibit\n",
__func__);
return -EBUSY;
}
timeout--;
udelay(100);
}
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return 0;
if (host->ops && host->ops->set_delay)
host->ops->set_delay(host);
if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) {
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk / div) <= clock)
break;
}
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
div--;
} else {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock) {
div = 1;
} else {
for (div = 2;
div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
div >>= 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
div >>= 1;
}
if (host->ops && host->ops->set_clock)
host->ops->set_clock(host, div);
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = 20;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
printf("%s: Internal clock never stabilised.\n",
__func__);
return -EBUSY;
}
timeout--;
udelay(1000);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
return 0;
}
static void sdhci_set_power(struct sdhci_host *host, unsigned short power)
{
u8 pwr = 0;
if (power != (unsigned short)-1) {
switch (1 << power) {
case MMC_VDD_165_195:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
}
}
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
return;
}
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
}
void sdhci_set_uhs_timing(struct sdhci_host *host)
{
struct mmc *mmc = (struct mmc *)host->mmc;
u32 reg;
reg = sdhci_readw(host, SDHCI_HOST_CONTROL2);
reg &= ~SDHCI_CTRL_UHS_MASK;
switch (mmc->selected_mode) {
case UHS_SDR50:
case MMC_HS_52:
reg |= SDHCI_CTRL_UHS_SDR50;
break;
case UHS_DDR50:
case MMC_DDR_52:
reg |= SDHCI_CTRL_UHS_DDR50;
break;
case UHS_SDR104:
case MMC_HS_200:
reg |= SDHCI_CTRL_UHS_SDR104;
break;
default:
reg |= SDHCI_CTRL_UHS_SDR12;
}
sdhci_writew(host, reg, SDHCI_HOST_CONTROL2);
}
#ifdef CONFIG_DM_MMC
static int sdhci_set_ios(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
#else
static int sdhci_set_ios(struct mmc *mmc)
{
#endif
u32 ctrl;
struct sdhci_host *host = mmc->priv;
if (host->ops && host->ops->set_control_reg)
host->ops->set_control_reg(host);
if (mmc->clock != host->clock)
sdhci_set_clock(mmc, mmc->clock);
if (mmc->clk_disable)
sdhci_set_clock(mmc, 0);
/* Set bus width */
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (mmc->bus_width == 8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
if ((SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) ||
(host->quirks & SDHCI_QUIRK_USE_WIDE8))
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if ((SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) ||
(host->quirks & SDHCI_QUIRK_USE_WIDE8))
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (mmc->bus_width == 4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
if (mmc->clock > 26000000)
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
if ((host->quirks & SDHCI_QUIRK_NO_HISPD_BIT) ||
(host->quirks & SDHCI_QUIRK_BROKEN_HISPD_MODE))
ctrl &= ~SDHCI_CTRL_HISPD;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/* If available, call the driver specific "post" set_ios() function */
if (host->ops && host->ops->set_ios_post)
return host->ops->set_ios_post(host);
return 0;
}
static int sdhci_init(struct mmc *mmc)
{
struct sdhci_host *host = mmc->priv;
#if CONFIG_IS_ENABLED(DM_MMC) && CONFIG_IS_ENABLED(DM_GPIO)
struct udevice *dev = mmc->dev;
gpio_request_by_name(dev, "cd-gpio", 0,
&host->cd_gpio, GPIOD_IS_IN);
#endif
sdhci_reset(host, SDHCI_RESET_ALL);
if ((host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR) && !aligned_buffer) {
aligned_buffer = memalign(8, 512*1024);
if (!aligned_buffer) {
printf("%s: Aligned buffer alloc failed!!!\n",
__func__);
return -ENOMEM;
}
}
sdhci_set_power(host, fls(mmc->cfg->voltages) - 1);
if (host->ops && host->ops->get_cd)
host->ops->get_cd(host);
/* Enable only interrupts served by the SD controller */
sdhci_writel(host, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK,
SDHCI_INT_ENABLE);
/* Mask all sdhci interrupt sources */
sdhci_writel(host, 0x0, SDHCI_SIGNAL_ENABLE);
return 0;
}
#ifdef CONFIG_DM_MMC
int sdhci_probe(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
return sdhci_init(mmc);
}
int sdhci_get_cd(struct udevice *dev)
{
struct mmc *mmc = mmc_get_mmc_dev(dev);
struct sdhci_host *host = mmc->priv;
int value;
/* If nonremovable, assume that the card is always present. */
if (mmc->cfg->host_caps & MMC_CAP_NONREMOVABLE)
return 1;
/* If polling, assume that the card is always present. */
if (mmc->cfg->host_caps & MMC_CAP_NEEDS_POLL)
return 1;
#if CONFIG_IS_ENABLED(DM_GPIO)
value = dm_gpio_get_value(&host->cd_gpio);
if (value >= 0) {
if (mmc->cfg->host_caps & MMC_CAP_CD_ACTIVE_HIGH)
return !value;
else
return value;
}
#endif
value = !!(sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT);
if (mmc->cfg->host_caps & MMC_CAP_CD_ACTIVE_HIGH)
return !value;
else
return value;
}
const struct dm_mmc_ops sdhci_ops = {
.send_cmd = sdhci_send_command,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = sdhci_execute_tuning,
#endif
};
#else
static const struct mmc_ops sdhci_ops = {
.send_cmd = sdhci_send_command,
.set_ios = sdhci_set_ios,
.init = sdhci_init,
};
#endif
int sdhci_setup_cfg(struct mmc_config *cfg, struct sdhci_host *host,
u32 f_max, u32 f_min)
{
u32 caps, caps_1 = 0;
#if CONFIG_IS_ENABLED(DM_MMC)
u32 mask[2] = {0};
int ret;
ret = dev_read_u32_array(host->mmc->dev, "sdhci-caps-mask",
mask, 2);
if (ret && ret != -1)
return ret;
caps = ~mask[1] & sdhci_readl(host, SDHCI_CAPABILITIES);
#else
caps = sdhci_readl(host, SDHCI_CAPABILITIES);
#endif
#ifdef CONFIG_MMC_SDHCI_SDMA
if (!(caps & SDHCI_CAN_DO_SDMA)) {
printf("%s: Your controller doesn't support SDMA!!\n",
__func__);
return -EINVAL;
}
host->flags |= USE_SDMA;
#endif
#if CONFIG_IS_ENABLED(MMC_SDHCI_ADMA)
if (!(caps & SDHCI_CAN_DO_ADMA2)) {
printf("%s: Your controller doesn't support SDMA!!\n",
__func__);
return -EINVAL;
}
host->adma_desc_table = (struct sdhci_adma_desc *)
memalign(ARCH_DMA_MINALIGN, ADMA_TABLE_SZ);
host->adma_addr = (dma_addr_t)host->adma_desc_table;
#ifdef CONFIG_DMA_ADDR_T_64BIT
host->flags |= USE_ADMA64;
#else
host->flags |= USE_ADMA;
#endif
#endif
if (host->quirks & SDHCI_QUIRK_REG32_RW)
host->version =
sdhci_readl(host, SDHCI_HOST_VERSION - 2) >> 16;
else
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
cfg->name = host->name;
#ifndef CONFIG_DM_MMC
cfg->ops = &sdhci_ops;
#endif
/* Check whether the clock multiplier is supported or not */
if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) {
#if CONFIG_IS_ENABLED(DM_MMC)
caps_1 = ~mask[0] & sdhci_readl(host, SDHCI_CAPABILITIES_1);
#else
caps_1 = sdhci_readl(host, SDHCI_CAPABILITIES_1);
#endif
host->clk_mul = (caps_1 & SDHCI_CLOCK_MUL_MASK) >>
SDHCI_CLOCK_MUL_SHIFT;
}
if (host->max_clk == 0) {
if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300)
host->max_clk = (caps & SDHCI_CLOCK_V3_BASE_MASK) >>
SDHCI_CLOCK_BASE_SHIFT;
else
host->max_clk = (caps & SDHCI_CLOCK_BASE_MASK) >>
SDHCI_CLOCK_BASE_SHIFT;
host->max_clk *= 1000000;
if (host->clk_mul)
host->max_clk *= host->clk_mul;
}
if (host->max_clk == 0) {
printf("%s: Hardware doesn't specify base clock frequency\n",
__func__);
return -EINVAL;
}
if (f_max && (f_max < host->max_clk))
cfg->f_max = f_max;
else
cfg->f_max = host->max_clk;
if (f_min)
cfg->f_min = f_min;
else {
if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300)
cfg->f_min = cfg->f_max / SDHCI_MAX_DIV_SPEC_300;
else
cfg->f_min = cfg->f_max / SDHCI_MAX_DIV_SPEC_200;
}
cfg->voltages = 0;
if (caps & SDHCI_CAN_VDD_330)
cfg->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
if (caps & SDHCI_CAN_VDD_300)
cfg->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & SDHCI_CAN_VDD_180)
cfg->voltages |= MMC_VDD_165_195;
if (host->quirks & SDHCI_QUIRK_BROKEN_VOLTAGE)
cfg->voltages |= host->voltages;
cfg->host_caps |= MMC_MODE_HS | MMC_MODE_HS_52MHz | MMC_MODE_4BIT;
/* Since Host Controller Version3.0 */
if (SDHCI_GET_VERSION(host) >= SDHCI_SPEC_300) {
if (!(caps & SDHCI_CAN_DO_8BIT))
cfg->host_caps &= ~MMC_MODE_8BIT;
}
if (host->quirks & SDHCI_QUIRK_BROKEN_HISPD_MODE) {
cfg->host_caps &= ~MMC_MODE_HS;
cfg->host_caps &= ~MMC_MODE_HS_52MHz;
}
if (!(cfg->voltages & MMC_VDD_165_195) ||
(host->quirks & SDHCI_QUIRK_NO_1_8_V))
caps_1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
if (caps_1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
cfg->host_caps |= MMC_CAP(UHS_SDR12) | MMC_CAP(UHS_SDR25);
if (caps_1 & SDHCI_SUPPORT_SDR104) {
cfg->host_caps |= MMC_CAP(UHS_SDR104) | MMC_CAP(UHS_SDR50);
/*
* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
cfg->host_caps |= MMC_CAP(MMC_HS_200);
} else if (caps_1 & SDHCI_SUPPORT_SDR50) {
cfg->host_caps |= MMC_CAP(UHS_SDR50);
}
if (caps_1 & SDHCI_SUPPORT_DDR50)
cfg->host_caps |= MMC_CAP(UHS_DDR50);
if (host->host_caps)
cfg->host_caps |= host->host_caps;
cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
return 0;
}
#ifdef CONFIG_BLK
int sdhci_bind(struct udevice *dev, struct mmc *mmc, struct mmc_config *cfg)
{
return mmc_bind(dev, mmc, cfg);
}
#else
int add_sdhci(struct sdhci_host *host, u32 f_max, u32 f_min)
{
int ret;
ret = sdhci_setup_cfg(&host->cfg, host, f_max, f_min);
if (ret)
return ret;
host->mmc = mmc_create(&host->cfg, host);
if (host->mmc == NULL) {
printf("%s: mmc create fail!\n", __func__);
return -ENOMEM;
}
return 0;
}
#endif