u-boot/tools/binman/image.py
Simon Glass dbf6be9f7f binman: Add a new 'image-pos' property
At present each entry has an offset within its parent section. This is
useful for figuring out how entries relate to one another. However it
is sometimes necessary to locate an entry within an image, regardless
of which sections it is nested inside.

Add a new 'image-pos' property to provide this information. Also add
some documentation for the -u option binman provides, which updates the
device tree with final entry information.

Since the image position is a better symbol to use for the position of
U-Boot as obtained by SPL, update the SPL symbols to use this instead of
offset, which might be incorrect if hierarchical sections are used.

Signed-off-by: Simon Glass <sjg@chromium.org>
2018-08-01 16:30:45 -06:00

129 lines
4.2 KiB
Python

# SPDX-License-Identifier: GPL-2.0+
# Copyright (c) 2016 Google, Inc
# Written by Simon Glass <sjg@chromium.org>
#
# Class for an image, the output of binman
#
from __future__ import print_function
from collections import OrderedDict
from operator import attrgetter
import re
import sys
import fdt_util
import bsection
import tools
class Image:
"""A Image, representing an output from binman
An image is comprised of a collection of entries each containing binary
data. The image size must be large enough to hold all of this data.
This class implements the various operations needed for images.
Atrtributes:
_node: Node object that contains the image definition in device tree
_name: Image name
_size: Image size in bytes, or None if not known yet
_filename: Output filename for image
_sections: Sections present in this image (may be one or more)
Args:
test: True if this is being called from a test of Images. This this case
there is no device tree defining the structure of the section, so
we create a section manually.
"""
def __init__(self, name, node, test=False):
self._node = node
self._name = name
self._size = None
self._filename = '%s.bin' % self._name
if test:
self._section = bsection.Section('main-section', self._node, True)
else:
self._ReadNode()
def _ReadNode(self):
"""Read properties from the image node"""
self._size = fdt_util.GetInt(self._node, 'size')
filename = fdt_util.GetString(self._node, 'filename')
if filename:
self._filename = filename
self._section = bsection.Section('main-section', self._node)
def AddMissingProperties(self):
"""Add properties that are not present in the device tree
When binman has completed packing the entries the offset and size of
each entry are known. But before this the device tree may not specify
these. Add any missing properties, with a dummy value, so that the
size of the entry is correct. That way we can insert the correct values
later.
"""
self._section.AddMissingProperties()
def ProcessFdt(self, fdt):
return self._section.ProcessFdt(fdt)
def GetEntryContents(self):
"""Call ObtainContents() for the section
"""
self._section.GetEntryContents()
def GetEntryOffsets(self):
"""Handle entries that want to set the offset/size of other entries
This calls each entry's GetOffsets() method. If it returns a list
of entries to update, it updates them.
"""
self._section.GetEntryOffsets()
def PackEntries(self):
"""Pack all entries into the image"""
self._section.PackEntries()
def CheckSize(self):
"""Check that the image contents does not exceed its size, etc."""
self._size = self._section.CheckSize()
def CheckEntries(self):
"""Check that entries do not overlap or extend outside the image"""
self._section.CheckEntries()
def SetCalculatedProperties(self):
self._section.SetCalculatedProperties()
def SetImagePos(self):
self._section.SetImagePos(0)
def ProcessEntryContents(self):
"""Call the ProcessContents() method for each entry
This is intended to adjust the contents as needed by the entry type.
"""
self._section.ProcessEntryContents()
def WriteSymbols(self):
"""Write symbol values into binary files for access at run time"""
self._section.WriteSymbols()
def BuildImage(self):
"""Write the image to a file"""
fname = tools.GetOutputFilename(self._filename)
with open(fname, 'wb') as fd:
self._section.BuildSection(fd, 0)
def GetEntries(self):
return self._section.GetEntries()
def WriteMap(self):
"""Write a map of the image to a .map file"""
filename = '%s.map' % self._name
fname = tools.GetOutputFilename(filename)
with open(fname, 'w') as fd:
print('%8s %8s %s' % ('Offset', 'Size', 'Name'), file=fd)
self._section.WriteMap(fd, 0)