u-boot/common/bootm.c
Tom Rini 5db28905c9 cmd: Split 'bootz' and 'booti' out from 'bootm'
The bootz and booti commands rely on common functionality that is found
in common/bootm.c and common/bootm_os.c.  They do not however rely on
the rest of cmd/bootm.c to be implemented so split them into their own
files.  Have various Makefiles include the required infrastructure for
CONFIG_CMD_BOOT[IZ] as well as CONFIG_CMD_BOOTM.  Move the declaration
of 'images' over to common/bootm.c.

Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Tom Rini <trini@konsulko.com>
2016-08-20 11:35:07 -04:00

974 lines
25 KiB
C

/*
* (C) Copyright 2000-2009
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <bootstage.h>
#include <bzlib.h>
#include <errno.h>
#include <fdt_support.h>
#include <lmb.h>
#include <malloc.h>
#include <mapmem.h>
#include <asm/io.h>
#include <linux/lzo.h>
#include <lzma/LzmaTypes.h>
#include <lzma/LzmaDec.h>
#include <lzma/LzmaTools.h>
#if defined(CONFIG_CMD_USB)
#include <usb.h>
#endif
#else
#include "mkimage.h"
#endif
#include <command.h>
#include <bootm.h>
#include <image.h>
#ifndef CONFIG_SYS_BOOTM_LEN
/* use 8MByte as default max gunzip size */
#define CONFIG_SYS_BOOTM_LEN 0x800000
#endif
#define IH_INITRD_ARCH IH_ARCH_DEFAULT
#ifndef USE_HOSTCC
DECLARE_GLOBAL_DATA_PTR;
bootm_headers_t images; /* pointers to os/initrd/fdt images */
static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[], bootm_headers_t *images,
ulong *os_data, ulong *os_len);
#ifdef CONFIG_LMB
static void boot_start_lmb(bootm_headers_t *images)
{
ulong mem_start;
phys_size_t mem_size;
lmb_init(&images->lmb);
mem_start = getenv_bootm_low();
mem_size = getenv_bootm_size();
lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
arch_lmb_reserve(&images->lmb);
board_lmb_reserve(&images->lmb);
}
#else
#define lmb_reserve(lmb, base, size)
static inline void boot_start_lmb(bootm_headers_t *images) { }
#endif
static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
memset((void *)&images, 0, sizeof(images));
images.verify = getenv_yesno("verify");
boot_start_lmb(&images);
bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");
images.state = BOOTM_STATE_START;
return 0;
}
static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
const void *os_hdr;
bool ep_found = false;
int ret;
/* get kernel image header, start address and length */
os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,
&images, &images.os.image_start, &images.os.image_len);
if (images.os.image_len == 0) {
puts("ERROR: can't get kernel image!\n");
return 1;
}
/* get image parameters */
switch (genimg_get_format(os_hdr)) {
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
case IMAGE_FORMAT_LEGACY:
images.os.type = image_get_type(os_hdr);
images.os.comp = image_get_comp(os_hdr);
images.os.os = image_get_os(os_hdr);
images.os.end = image_get_image_end(os_hdr);
images.os.load = image_get_load(os_hdr);
images.os.arch = image_get_arch(os_hdr);
break;
#endif
#if IMAGE_ENABLE_FIT
case IMAGE_FORMAT_FIT:
if (fit_image_get_type(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.type)) {
puts("Can't get image type!\n");
bootstage_error(BOOTSTAGE_ID_FIT_TYPE);
return 1;
}
if (fit_image_get_comp(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.comp)) {
puts("Can't get image compression!\n");
bootstage_error(BOOTSTAGE_ID_FIT_COMPRESSION);
return 1;
}
if (fit_image_get_os(images.fit_hdr_os, images.fit_noffset_os,
&images.os.os)) {
puts("Can't get image OS!\n");
bootstage_error(BOOTSTAGE_ID_FIT_OS);
return 1;
}
if (fit_image_get_arch(images.fit_hdr_os,
images.fit_noffset_os,
&images.os.arch)) {
puts("Can't get image ARCH!\n");
return 1;
}
images.os.end = fit_get_end(images.fit_hdr_os);
if (fit_image_get_load(images.fit_hdr_os, images.fit_noffset_os,
&images.os.load)) {
puts("Can't get image load address!\n");
bootstage_error(BOOTSTAGE_ID_FIT_LOADADDR);
return 1;
}
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID:
images.os.type = IH_TYPE_KERNEL;
images.os.comp = IH_COMP_NONE;
images.os.os = IH_OS_LINUX;
images.os.end = android_image_get_end(os_hdr);
images.os.load = android_image_get_kload(os_hdr);
images.ep = images.os.load;
ep_found = true;
break;
#endif
default:
puts("ERROR: unknown image format type!\n");
return 1;
}
/* If we have a valid setup.bin, we will use that for entry (x86) */
if (images.os.arch == IH_ARCH_I386 ||
images.os.arch == IH_ARCH_X86_64) {
ulong len;
ret = boot_get_setup(&images, IH_ARCH_I386, &images.ep, &len);
if (ret < 0 && ret != -ENOENT) {
puts("Could not find a valid setup.bin for x86\n");
return 1;
}
/* Kernel entry point is the setup.bin */
} else if (images.legacy_hdr_valid) {
images.ep = image_get_ep(&images.legacy_hdr_os_copy);
#if IMAGE_ENABLE_FIT
} else if (images.fit_uname_os) {
int ret;
ret = fit_image_get_entry(images.fit_hdr_os,
images.fit_noffset_os, &images.ep);
if (ret) {
puts("Can't get entry point property!\n");
return 1;
}
#endif
} else if (!ep_found) {
puts("Could not find kernel entry point!\n");
return 1;
}
if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {
images.os.load = images.os.image_start;
images.ep += images.os.load;
}
images.os.start = map_to_sysmem(os_hdr);
return 0;
}
/**
* bootm_find_images - wrapper to find and locate various images
* @flag: Ignored Argument
* @argc: command argument count
* @argv: command argument list
*
* boot_find_images() will attempt to load an available ramdisk,
* flattened device tree, as well as specifically marked
* "loadable" images (loadables are FIT only)
*
* Note: bootm_find_images will skip an image if it is not found
*
* @return:
* 0, if all existing images were loaded correctly
* 1, if an image is found but corrupted, or invalid
*/
int bootm_find_images(int flag, int argc, char * const argv[])
{
int ret;
/* find ramdisk */
ret = boot_get_ramdisk(argc, argv, &images, IH_INITRD_ARCH,
&images.rd_start, &images.rd_end);
if (ret) {
puts("Ramdisk image is corrupt or invalid\n");
return 1;
}
#if IMAGE_ENABLE_OF_LIBFDT
/* find flattened device tree */
ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, &images,
&images.ft_addr, &images.ft_len);
if (ret) {
puts("Could not find a valid device tree\n");
return 1;
}
set_working_fdt_addr((ulong)images.ft_addr);
#endif
#if IMAGE_ENABLE_FIT
#if defined(CONFIG_FPGA) && defined(CONFIG_FPGA_XILINX)
/* find bitstreams */
ret = boot_get_fpga(argc, argv, &images, IH_ARCH_DEFAULT,
NULL, NULL);
if (ret) {
printf("FPGA image is corrupted or invalid\n");
return 1;
}
#endif
/* find all of the loadables */
ret = boot_get_loadable(argc, argv, &images, IH_ARCH_DEFAULT,
NULL, NULL);
if (ret) {
printf("Loadable(s) is corrupt or invalid\n");
return 1;
}
#endif
return 0;
}
static int bootm_find_other(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[])
{
if (((images.os.type == IH_TYPE_KERNEL) ||
(images.os.type == IH_TYPE_KERNEL_NOLOAD) ||
(images.os.type == IH_TYPE_MULTI)) &&
(images.os.os == IH_OS_LINUX ||
images.os.os == IH_OS_VXWORKS))
return bootm_find_images(flag, argc, argv);
return 0;
}
#endif /* USE_HOSTC */
/**
* print_decomp_msg() - Print a suitable decompression/loading message
*
* @type: OS type (IH_OS_...)
* @comp_type: Compression type being used (IH_COMP_...)
* @is_xip: true if the load address matches the image start
*/
static void print_decomp_msg(int comp_type, int type, bool is_xip)
{
const char *name = genimg_get_type_name(type);
if (comp_type == IH_COMP_NONE)
printf(" %s %s ... ", is_xip ? "XIP" : "Loading", name);
else
printf(" Uncompressing %s ... ", name);
}
/**
* handle_decomp_error() - display a decompression error
*
* This function tries to produce a useful message. In the case where the
* uncompressed size is the same as the available space, we can assume that
* the image is too large for the buffer.
*
* @comp_type: Compression type being used (IH_COMP_...)
* @uncomp_size: Number of bytes uncompressed
* @unc_len: Amount of space available for decompression
* @ret: Error code to report
* @return BOOTM_ERR_RESET, indicating that the board must be reset
*/
static int handle_decomp_error(int comp_type, size_t uncomp_size,
size_t unc_len, int ret)
{
const char *name = genimg_get_comp_name(comp_type);
if (uncomp_size >= unc_len)
printf("Image too large: increase CONFIG_SYS_BOOTM_LEN\n");
else
printf("%s: uncompress error %d\n", name, ret);
/*
* The decompression routines are now safe, so will not write beyond
* their bounds. Probably it is not necessary to reset, but maintain
* the current behaviour for now.
*/
printf("Must RESET board to recover\n");
#ifndef USE_HOSTCC
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
#endif
return BOOTM_ERR_RESET;
}
int bootm_decomp_image(int comp, ulong load, ulong image_start, int type,
void *load_buf, void *image_buf, ulong image_len,
uint unc_len, ulong *load_end)
{
int ret = 0;
*load_end = load;
print_decomp_msg(comp, type, load == image_start);
/*
* Load the image to the right place, decompressing if needed. After
* this, image_len will be set to the number of uncompressed bytes
* loaded, ret will be non-zero on error.
*/
switch (comp) {
case IH_COMP_NONE:
if (load == image_start)
break;
if (image_len <= unc_len)
memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);
else
ret = 1;
break;
#ifdef CONFIG_GZIP
case IH_COMP_GZIP: {
ret = gunzip(load_buf, unc_len, image_buf, &image_len);
break;
}
#endif /* CONFIG_GZIP */
#ifdef CONFIG_BZIP2
case IH_COMP_BZIP2: {
uint size = unc_len;
/*
* If we've got less than 4 MB of malloc() space,
* use slower decompression algorithm which requires
* at most 2300 KB of memory.
*/
ret = BZ2_bzBuffToBuffDecompress(load_buf, &size,
image_buf, image_len,
CONFIG_SYS_MALLOC_LEN < (4096 * 1024), 0);
image_len = size;
break;
}
#endif /* CONFIG_BZIP2 */
#ifdef CONFIG_LZMA
case IH_COMP_LZMA: {
SizeT lzma_len = unc_len;
ret = lzmaBuffToBuffDecompress(load_buf, &lzma_len,
image_buf, image_len);
image_len = lzma_len;
break;
}
#endif /* CONFIG_LZMA */
#ifdef CONFIG_LZO
case IH_COMP_LZO: {
size_t size = unc_len;
ret = lzop_decompress(image_buf, image_len, load_buf, &size);
image_len = size;
break;
}
#endif /* CONFIG_LZO */
#ifdef CONFIG_LZ4
case IH_COMP_LZ4: {
size_t size = unc_len;
ret = ulz4fn(image_buf, image_len, load_buf, &size);
image_len = size;
break;
}
#endif /* CONFIG_LZ4 */
default:
printf("Unimplemented compression type %d\n", comp);
return BOOTM_ERR_UNIMPLEMENTED;
}
if (ret)
return handle_decomp_error(comp, image_len, unc_len, ret);
*load_end = load + image_len;
puts("OK\n");
return 0;
}
#ifndef USE_HOSTCC
static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,
int boot_progress)
{
image_info_t os = images->os;
ulong load = os.load;
ulong blob_start = os.start;
ulong blob_end = os.end;
ulong image_start = os.image_start;
ulong image_len = os.image_len;
bool no_overlap;
void *load_buf, *image_buf;
int err;
load_buf = map_sysmem(load, 0);
image_buf = map_sysmem(os.image_start, image_len);
err = bootm_decomp_image(os.comp, load, os.image_start, os.type,
load_buf, image_buf, image_len,
CONFIG_SYS_BOOTM_LEN, load_end);
if (err) {
bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);
return err;
}
flush_cache(load, ALIGN(*load_end - load, ARCH_DMA_MINALIGN));
debug(" kernel loaded at 0x%08lx, end = 0x%08lx\n", load, *load_end);
bootstage_mark(BOOTSTAGE_ID_KERNEL_LOADED);
no_overlap = (os.comp == IH_COMP_NONE && load == image_start);
if (!no_overlap && (load < blob_end) && (*load_end > blob_start)) {
debug("images.os.start = 0x%lX, images.os.end = 0x%lx\n",
blob_start, blob_end);
debug("images.os.load = 0x%lx, load_end = 0x%lx\n", load,
*load_end);
/* Check what type of image this is. */
if (images->legacy_hdr_valid) {
if (image_get_type(&images->legacy_hdr_os_copy)
== IH_TYPE_MULTI)
puts("WARNING: legacy format multi component image overwritten\n");
return BOOTM_ERR_OVERLAP;
} else {
puts("ERROR: new format image overwritten - must RESET the board to recover\n");
bootstage_error(BOOTSTAGE_ID_OVERWRITTEN);
return BOOTM_ERR_RESET;
}
}
return 0;
}
/**
* bootm_disable_interrupts() - Disable interrupts in preparation for load/boot
*
* @return interrupt flag (0 if interrupts were disabled, non-zero if they were
* enabled)
*/
ulong bootm_disable_interrupts(void)
{
ulong iflag;
/*
* We have reached the point of no return: we are going to
* overwrite all exception vector code, so we cannot easily
* recover from any failures any more...
*/
iflag = disable_interrupts();
#ifdef CONFIG_NETCONSOLE
/* Stop the ethernet stack if NetConsole could have left it up */
eth_halt();
# ifndef CONFIG_DM_ETH
eth_unregister(eth_get_dev());
# endif
#endif
#if defined(CONFIG_CMD_USB)
/*
* turn off USB to prevent the host controller from writing to the
* SDRAM while Linux is booting. This could happen (at least for OHCI
* controller), because the HCCA (Host Controller Communication Area)
* lies within the SDRAM and the host controller writes continously to
* this area (as busmaster!). The HccaFrameNumber is for example
* updated every 1 ms within the HCCA structure in SDRAM! For more
* details see the OpenHCI specification.
*/
usb_stop();
#endif
return iflag;
}
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
#define CONSOLE_ARG "console="
#define CONSOLE_ARG_LEN (sizeof(CONSOLE_ARG) - 1)
static void fixup_silent_linux(void)
{
char *buf;
const char *env_val;
char *cmdline = getenv("bootargs");
int want_silent;
/*
* Only fix cmdline when requested. The environment variable can be:
*
* no - we never fixup
* yes - we always fixup
* unset - we rely on the console silent flag
*/
want_silent = getenv_yesno("silent_linux");
if (want_silent == 0)
return;
else if (want_silent == -1 && !(gd->flags & GD_FLG_SILENT))
return;
debug("before silent fix-up: %s\n", cmdline);
if (cmdline && (cmdline[0] != '\0')) {
char *start = strstr(cmdline, CONSOLE_ARG);
/* Allocate space for maximum possible new command line */
buf = malloc(strlen(cmdline) + 1 + CONSOLE_ARG_LEN + 1);
if (!buf) {
debug("%s: out of memory\n", __func__);
return;
}
if (start) {
char *end = strchr(start, ' ');
int num_start_bytes = start - cmdline + CONSOLE_ARG_LEN;
strncpy(buf, cmdline, num_start_bytes);
if (end)
strcpy(buf + num_start_bytes, end);
else
buf[num_start_bytes] = '\0';
} else {
sprintf(buf, "%s %s", cmdline, CONSOLE_ARG);
}
env_val = buf;
} else {
buf = NULL;
env_val = CONSOLE_ARG;
}
setenv("bootargs", env_val);
debug("after silent fix-up: %s\n", env_val);
free(buf);
}
#endif /* CONFIG_SILENT_CONSOLE */
/**
* Execute selected states of the bootm command.
*
* Note the arguments to this state must be the first argument, Any 'bootm'
* or sub-command arguments must have already been taken.
*
* Note that if states contains more than one flag it MUST contain
* BOOTM_STATE_START, since this handles and consumes the command line args.
*
* Also note that aside from boot_os_fn functions and bootm_load_os no other
* functions we store the return value of in 'ret' may use a negative return
* value, without special handling.
*
* @param cmdtp Pointer to bootm command table entry
* @param flag Command flags (CMD_FLAG_...)
* @param argc Number of subcommand arguments (0 = no arguments)
* @param argv Arguments
* @param states Mask containing states to run (BOOTM_STATE_...)
* @param images Image header information
* @param boot_progress 1 to show boot progress, 0 to not do this
* @return 0 if ok, something else on error. Some errors will cause this
* function to perform a reboot! If states contains BOOTM_STATE_OS_GO
* then the intent is to boot an OS, so this function will not return
* unless the image type is standalone.
*/
int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[],
int states, bootm_headers_t *images, int boot_progress)
{
boot_os_fn *boot_fn;
ulong iflag = 0;
int ret = 0, need_boot_fn;
images->state |= states;
/*
* Work through the states and see how far we get. We stop on
* any error.
*/
if (states & BOOTM_STATE_START)
ret = bootm_start(cmdtp, flag, argc, argv);
if (!ret && (states & BOOTM_STATE_FINDOS))
ret = bootm_find_os(cmdtp, flag, argc, argv);
if (!ret && (states & BOOTM_STATE_FINDOTHER)) {
ret = bootm_find_other(cmdtp, flag, argc, argv);
argc = 0; /* consume the args */
}
/* Load the OS */
if (!ret && (states & BOOTM_STATE_LOADOS)) {
ulong load_end;
iflag = bootm_disable_interrupts();
ret = bootm_load_os(images, &load_end, 0);
if (ret == 0)
lmb_reserve(&images->lmb, images->os.load,
(load_end - images->os.load));
else if (ret && ret != BOOTM_ERR_OVERLAP)
goto err;
else if (ret == BOOTM_ERR_OVERLAP)
ret = 0;
}
/* Relocate the ramdisk */
#ifdef CONFIG_SYS_BOOT_RAMDISK_HIGH
if (!ret && (states & BOOTM_STATE_RAMDISK)) {
ulong rd_len = images->rd_end - images->rd_start;
ret = boot_ramdisk_high(&images->lmb, images->rd_start,
rd_len, &images->initrd_start, &images->initrd_end);
if (!ret) {
setenv_hex("initrd_start", images->initrd_start);
setenv_hex("initrd_end", images->initrd_end);
}
}
#endif
#if IMAGE_ENABLE_OF_LIBFDT && defined(CONFIG_LMB)
if (!ret && (states & BOOTM_STATE_FDT)) {
boot_fdt_add_mem_rsv_regions(&images->lmb, images->ft_addr);
ret = boot_relocate_fdt(&images->lmb, &images->ft_addr,
&images->ft_len);
}
#endif
/* From now on, we need the OS boot function */
if (ret)
return ret;
boot_fn = bootm_os_get_boot_func(images->os.os);
need_boot_fn = states & (BOOTM_STATE_OS_CMDLINE |
BOOTM_STATE_OS_BD_T | BOOTM_STATE_OS_PREP |
BOOTM_STATE_OS_FAKE_GO | BOOTM_STATE_OS_GO);
if (boot_fn == NULL && need_boot_fn) {
if (iflag)
enable_interrupts();
printf("ERROR: booting os '%s' (%d) is not supported\n",
genimg_get_os_name(images->os.os), images->os.os);
bootstage_error(BOOTSTAGE_ID_CHECK_BOOT_OS);
return 1;
}
/* Call various other states that are not generally used */
if (!ret && (states & BOOTM_STATE_OS_CMDLINE))
ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_BD_T))
ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);
if (!ret && (states & BOOTM_STATE_OS_PREP)) {
#if defined(CONFIG_SILENT_CONSOLE) && !defined(CONFIG_SILENT_U_BOOT_ONLY)
if (images->os.os == IH_OS_LINUX)
fixup_silent_linux();
#endif
ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);
}
#ifdef CONFIG_TRACE
/* Pretend to run the OS, then run a user command */
if (!ret && (states & BOOTM_STATE_OS_FAKE_GO)) {
char *cmd_list = getenv("fakegocmd");
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_FAKE_GO,
images, boot_fn);
if (!ret && cmd_list)
ret = run_command_list(cmd_list, -1, flag);
}
#endif
/* Check for unsupported subcommand. */
if (ret) {
puts("subcommand not supported\n");
return ret;
}
/* Now run the OS! We hope this doesn't return */
if (!ret && (states & BOOTM_STATE_OS_GO))
ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,
images, boot_fn);
/* Deal with any fallout */
err:
if (iflag)
enable_interrupts();
if (ret == BOOTM_ERR_UNIMPLEMENTED)
bootstage_error(BOOTSTAGE_ID_DECOMP_UNIMPL);
else if (ret == BOOTM_ERR_RESET)
do_reset(cmdtp, flag, argc, argv);
return ret;
}
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
/**
* image_get_kernel - verify legacy format kernel image
* @img_addr: in RAM address of the legacy format image to be verified
* @verify: data CRC verification flag
*
* image_get_kernel() verifies legacy image integrity and returns pointer to
* legacy image header if image verification was completed successfully.
*
* returns:
* pointer to a legacy image header if valid image was found
* otherwise return NULL
*/
static image_header_t *image_get_kernel(ulong img_addr, int verify)
{
image_header_t *hdr = (image_header_t *)img_addr;
if (!image_check_magic(hdr)) {
puts("Bad Magic Number\n");
bootstage_error(BOOTSTAGE_ID_CHECK_MAGIC);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_HEADER);
if (!image_check_hcrc(hdr)) {
puts("Bad Header Checksum\n");
bootstage_error(BOOTSTAGE_ID_CHECK_HEADER);
return NULL;
}
bootstage_mark(BOOTSTAGE_ID_CHECK_CHECKSUM);
image_print_contents(hdr);
if (verify) {
puts(" Verifying Checksum ... ");
if (!image_check_dcrc(hdr)) {
printf("Bad Data CRC\n");
bootstage_error(BOOTSTAGE_ID_CHECK_CHECKSUM);
return NULL;
}
puts("OK\n");
}
bootstage_mark(BOOTSTAGE_ID_CHECK_ARCH);
if (!image_check_target_arch(hdr)) {
printf("Unsupported Architecture 0x%x\n", image_get_arch(hdr));
bootstage_error(BOOTSTAGE_ID_CHECK_ARCH);
return NULL;
}
return hdr;
}
#endif
/**
* boot_get_kernel - find kernel image
* @os_data: pointer to a ulong variable, will hold os data start address
* @os_len: pointer to a ulong variable, will hold os data length
*
* boot_get_kernel() tries to find a kernel image, verifies its integrity
* and locates kernel data.
*
* returns:
* pointer to image header if valid image was found, plus kernel start
* address and length, otherwise NULL
*/
static const void *boot_get_kernel(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[], bootm_headers_t *images,
ulong *os_data, ulong *os_len)
{
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
image_header_t *hdr;
#endif
ulong img_addr;
const void *buf;
const char *fit_uname_config = NULL;
const char *fit_uname_kernel = NULL;
#if IMAGE_ENABLE_FIT
int os_noffset;
#endif
img_addr = genimg_get_kernel_addr_fit(argc < 1 ? NULL : argv[0],
&fit_uname_config,
&fit_uname_kernel);
bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);
/* copy from dataflash if needed */
img_addr = genimg_get_image(img_addr);
/* check image type, for FIT images get FIT kernel node */
*os_data = *os_len = 0;
buf = map_sysmem(img_addr, 0);
switch (genimg_get_format(buf)) {
#if defined(CONFIG_IMAGE_FORMAT_LEGACY)
case IMAGE_FORMAT_LEGACY:
printf("## Booting kernel from Legacy Image at %08lx ...\n",
img_addr);
hdr = image_get_kernel(img_addr, images->verify);
if (!hdr)
return NULL;
bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);
/* get os_data and os_len */
switch (image_get_type(hdr)) {
case IH_TYPE_KERNEL:
case IH_TYPE_KERNEL_NOLOAD:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
case IH_TYPE_MULTI:
image_multi_getimg(hdr, 0, os_data, os_len);
break;
case IH_TYPE_STANDALONE:
*os_data = image_get_data(hdr);
*os_len = image_get_data_size(hdr);
break;
default:
printf("Wrong Image Type for %s command\n",
cmdtp->name);
bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);
return NULL;
}
/*
* copy image header to allow for image overwrites during
* kernel decompression.
*/
memmove(&images->legacy_hdr_os_copy, hdr,
sizeof(image_header_t));
/* save pointer to image header */
images->legacy_hdr_os = hdr;
images->legacy_hdr_valid = 1;
bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);
break;
#endif
#if IMAGE_ENABLE_FIT
case IMAGE_FORMAT_FIT:
os_noffset = fit_image_load(images, img_addr,
&fit_uname_kernel, &fit_uname_config,
IH_ARCH_DEFAULT, IH_TYPE_KERNEL,
BOOTSTAGE_ID_FIT_KERNEL_START,
FIT_LOAD_IGNORED, os_data, os_len);
if (os_noffset < 0)
return NULL;
images->fit_hdr_os = map_sysmem(img_addr, 0);
images->fit_uname_os = fit_uname_kernel;
images->fit_uname_cfg = fit_uname_config;
images->fit_noffset_os = os_noffset;
break;
#endif
#ifdef CONFIG_ANDROID_BOOT_IMAGE
case IMAGE_FORMAT_ANDROID:
printf("## Booting Android Image at 0x%08lx ...\n", img_addr);
if (android_image_get_kernel(buf, images->verify,
os_data, os_len))
return NULL;
break;
#endif
default:
printf("Wrong Image Format for %s command\n", cmdtp->name);
bootstage_error(BOOTSTAGE_ID_FIT_KERNEL_INFO);
return NULL;
}
debug(" kernel data at 0x%08lx, len = 0x%08lx (%ld)\n",
*os_data, *os_len, *os_len);
return buf;
}
#else /* USE_HOSTCC */
void memmove_wd(void *to, void *from, size_t len, ulong chunksz)
{
memmove(to, from, len);
}
static int bootm_host_load_image(const void *fit, int req_image_type)
{
const char *fit_uname_config = NULL;
ulong data, len;
bootm_headers_t images;
int noffset;
ulong load_end;
uint8_t image_type;
uint8_t imape_comp;
void *load_buf;
int ret;
memset(&images, '\0', sizeof(images));
images.verify = 1;
noffset = fit_image_load(&images, (ulong)fit,
NULL, &fit_uname_config,
IH_ARCH_DEFAULT, req_image_type, -1,
FIT_LOAD_IGNORED, &data, &len);
if (noffset < 0)
return noffset;
if (fit_image_get_type(fit, noffset, &image_type)) {
puts("Can't get image type!\n");
return -EINVAL;
}
if (fit_image_get_comp(fit, noffset, &imape_comp)) {
puts("Can't get image compression!\n");
return -EINVAL;
}
/* Allow the image to expand by a factor of 4, should be safe */
load_buf = malloc((1 << 20) + len * 4);
ret = bootm_decomp_image(imape_comp, 0, data, image_type, load_buf,
(void *)data, len, CONFIG_SYS_BOOTM_LEN,
&load_end);
free(load_buf);
if (ret && ret != BOOTM_ERR_UNIMPLEMENTED)
return ret;
return 0;
}
int bootm_host_load_images(const void *fit, int cfg_noffset)
{
static uint8_t image_types[] = {
IH_TYPE_KERNEL,
IH_TYPE_FLATDT,
IH_TYPE_RAMDISK,
};
int err = 0;
int i;
for (i = 0; i < ARRAY_SIZE(image_types); i++) {
int ret;
ret = bootm_host_load_image(fit, image_types[i]);
if (!err && ret && ret != -ENOENT)
err = ret;
}
/* Return the first error we found */
return err;
}
#endif /* ndef USE_HOSTCC */