u-boot/cmd/elf.c
Christian Gmeiner 476c2fcd28 bootvx: use program header for loading
The section header address is a VMA whereas the address found in
the program header is a physical one. With this change it is
possible to load and start a vx7 intel generic based image.

$ readelf -l /tmp/vx7

Elf file type is EXEC (Executable file)
Entry point 0x408000
There are 2 program headers, starting at offset 52

Program Headers:
  Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
  LOAD           0x001000 0x00408000 0x00408000 0x04000 0x04000 RWE 0x1000
  LOAD           0x005000 0xe040c000 0x0040c000 0x583a84 0x5ccc70 RWE 0x1000

 Section to Segment mapping:
  Segment Sections...
   00     .text.locore .data.locore
   01     .text .eh_frame .wrs_build_vars .data .tls_data .tls_vars .bss

$ readelf -S /tmp/vx7
There are 13 section headers, starting at offset 0x588af8:

Section Headers:
  [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
  [ 0]                   NULL            00000000 000000 000000 00      0   0  0
  [ 1] .text.locore      PROGBITS        00408000 001000 00011e 00  AX  0   0 16
  [ 2] .data.locore      PROGBITS        00409000 002000 003000 00  WA  0   0 4096
  [ 3] .text             PROGBITS        e040c000 005000 4802a0 00 WAX  0   0 32
  [ 4] .eh_frame         PROGBITS        e088c2a0 4852a0 0a1ed0 00   A  0   0  4
  [ 5] .wrs_build_vars   PROGBITS        e092e170 527170 000190 00  Ax  0   0  1
  [ 6] .data             PROGBITS        e092f000 528000 060a70 00  WA  0   0 4096
  [ 7] .tls_data         PROGBITS        e098fa70 588a70 000004 00   A  0   0  4
  [ 8] .tls_vars         PROGBITS        e098fa78 588a78 00000c 00  WA  0   0  4
  [ 9] .bss              NOBITS          e098faa0 588a84 0491d0 00  WA  0   0 32
  [10] .shstrtab         STRTAB          00000000 588a84 000074 00      0   0  1
  [11] .symtab           SYMTAB          00000000 588d00 056ee0 10     12 9758  4
  [12] .strtab           STRTAB          00000000 5dfbe0 05f48a 00      0   0  1
Key to Flags:
  W (write), A (alloc), X (execute), M (merge), S (strings)
  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
  O (extra OS processing required) o (OS specific), p (processor specific)

For completeness here are the same information for an old vx5 based image. After
this change it is possible to boot vx5 and vx7 (intel generic) images.

$ readelf -l /tmp/vx5

Elf file type is EXEC (Executable file)
Entry point 0x308000
There are 1 program headers, starting at offset 52

Program Headers:
 Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align
 LOAD           0x000060 0x00308000 0x00308000 0x3513a0 0x757860 RWE 0x20

Section to Segment mapping:
 Segment Sections...
  00     .text .data .bss
[christian@chgm-pc ~]$ readelf -S /tmp/vx5
There are 12 section headers, starting at offset 0x356580:

Section Headers:
 [Nr] Name              Type            Addr     Off    Size   ES Flg Lk Inf Al
 [ 0]                   NULL            00000000 000000 000000 00      0   0  0
 [ 1] .text             PROGBITS        00308000 000060 319b10 00 WAX  0   0 32
 [ 2] .data             PROGBITS        00621b20 319b80 037880 00  WA  0   0 32
 [ 3] .bss              NOBITS          006593a0 351400 4064c0 00  WA  0   0 16
 [ 4] .debug_aranges    PROGBITS        00000000 351400 000060 00      0   0  1
 [ 5] .debug_pubnames   PROGBITS        00000000 351460 00018b 00      0   0  1
 [ 6] .debug_info       PROGBITS        00000000 3515eb 003429 00      0   0  1
 [ 7] .debug_abbrev     PROGBITS        00000000 354a14 000454 00      0   0  1
 [ 8] .debug_line       PROGBITS        00000000 354e68 0016a4 00      0   0  1
 [ 9] .shstrtab         STRTAB          00000000 35650c 000071 00      0   0  1
 [10] .symtab           SYMTAB          00000000 356760 0440e0 10     11 8574  4
 [11] .strtab           STRTAB          00000000 39a840 03e66c 00      0   0  1
Key to Flags:
 W (write), A (alloc), X (execute), M (merge), S (strings)
 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
 O (extra OS processing required) o (OS specific), p (processor specific)

Signed-off-by: Christian Gmeiner <christian.gmeiner@gmail.com>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
2018-04-06 20:45:44 -04:00

396 lines
10 KiB
C

/*
* Copyright (c) 2001 William L. Pitts
* All rights reserved.
*
* Redistribution and use in source and binary forms are freely
* permitted provided that the above copyright notice and this
* paragraph and the following disclaimer are duplicated in all
* such forms.
*
* This software is provided "AS IS" and without any express or
* implied warranties, including, without limitation, the implied
* warranties of merchantability and fitness for a particular
* purpose.
*/
#include <common.h>
#include <command.h>
#include <elf.h>
#include <net.h>
#include <vxworks.h>
#ifdef CONFIG_X86
#include <asm/e820.h>
#include <linux/linkage.h>
#endif
/*
* A very simple elf loader, assumes the image is valid, returns the
* entry point address.
*/
static unsigned long load_elf_image_phdr(unsigned long addr)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
Elf32_Phdr *phdr; /* Program header structure pointer */
int i;
ehdr = (Elf32_Ehdr *)addr;
phdr = (Elf32_Phdr *)(addr + ehdr->e_phoff);
/* Load each program header */
for (i = 0; i < ehdr->e_phnum; ++i) {
void *dst = (void *)(uintptr_t)phdr->p_paddr;
void *src = (void *)addr + phdr->p_offset;
debug("Loading phdr %i to 0x%p (%i bytes)\n",
i, dst, phdr->p_filesz);
if (phdr->p_filesz)
memcpy(dst, src, phdr->p_filesz);
if (phdr->p_filesz != phdr->p_memsz)
memset(dst + phdr->p_filesz, 0x00,
phdr->p_memsz - phdr->p_filesz);
flush_cache((unsigned long)dst, phdr->p_filesz);
++phdr;
}
return ehdr->e_entry;
}
static unsigned long load_elf_image_shdr(unsigned long addr)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
Elf32_Shdr *shdr; /* Section header structure pointer */
unsigned char *strtab = 0; /* String table pointer */
unsigned char *image; /* Binary image pointer */
int i; /* Loop counter */
ehdr = (Elf32_Ehdr *)addr;
/* Find the section header string table for output info */
shdr = (Elf32_Shdr *)(addr + ehdr->e_shoff +
(ehdr->e_shstrndx * sizeof(Elf32_Shdr)));
if (shdr->sh_type == SHT_STRTAB)
strtab = (unsigned char *)(addr + shdr->sh_offset);
/* Load each appropriate section */
for (i = 0; i < ehdr->e_shnum; ++i) {
shdr = (Elf32_Shdr *)(addr + ehdr->e_shoff +
(i * sizeof(Elf32_Shdr)));
if (!(shdr->sh_flags & SHF_ALLOC) ||
shdr->sh_addr == 0 || shdr->sh_size == 0) {
continue;
}
if (strtab) {
debug("%sing %s @ 0x%08lx (%ld bytes)\n",
(shdr->sh_type == SHT_NOBITS) ? "Clear" : "Load",
&strtab[shdr->sh_name],
(unsigned long)shdr->sh_addr,
(long)shdr->sh_size);
}
if (shdr->sh_type == SHT_NOBITS) {
memset((void *)(uintptr_t)shdr->sh_addr, 0,
shdr->sh_size);
} else {
image = (unsigned char *)addr + shdr->sh_offset;
memcpy((void *)(uintptr_t)shdr->sh_addr,
(const void *)image, shdr->sh_size);
}
flush_cache(shdr->sh_addr, shdr->sh_size);
}
return ehdr->e_entry;
}
/* Allow ports to override the default behavior */
static unsigned long do_bootelf_exec(ulong (*entry)(int, char * const[]),
int argc, char * const argv[])
{
unsigned long ret;
/*
* pass address parameter as argv[0] (aka command name),
* and all remaining args
*/
ret = entry(argc, argv);
return ret;
}
/*
* Determine if a valid ELF image exists at the given memory location.
* First look at the ELF header magic field, then make sure that it is
* executable.
*/
int valid_elf_image(unsigned long addr)
{
Elf32_Ehdr *ehdr; /* Elf header structure pointer */
ehdr = (Elf32_Ehdr *)addr;
if (!IS_ELF(*ehdr)) {
printf("## No elf image at address 0x%08lx\n", addr);
return 0;
}
if (ehdr->e_type != ET_EXEC) {
printf("## Not a 32-bit elf image at address 0x%08lx\n", addr);
return 0;
}
return 1;
}
/* Interpreter command to boot an arbitrary ELF image from memory */
int do_bootelf(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned long addr; /* Address of the ELF image */
unsigned long rc; /* Return value from user code */
char *sload = NULL;
const char *ep = env_get("autostart");
int rcode = 0;
/* Consume 'bootelf' */
argc--; argv++;
/* Check for flag. */
if (argc >= 1 && (argv[0][0] == '-' && \
(argv[0][1] == 'p' || argv[0][1] == 's'))) {
sload = argv[0];
/* Consume flag. */
argc--; argv++;
}
/* Check for address. */
if (argc >= 1 && strict_strtoul(argv[0], 16, &addr) != -EINVAL) {
/* Consume address */
argc--; argv++;
} else
addr = load_addr;
if (!valid_elf_image(addr))
return 1;
if (sload && sload[1] == 'p')
addr = load_elf_image_phdr(addr);
else
addr = load_elf_image_shdr(addr);
if (ep && !strcmp(ep, "no"))
return rcode;
printf("## Starting application at 0x%08lx ...\n", addr);
/*
* pass address parameter as argv[0] (aka command name),
* and all remaining args
*/
rc = do_bootelf_exec((void *)addr, argc, argv);
if (rc != 0)
rcode = 1;
printf("## Application terminated, rc = 0x%lx\n", rc);
return rcode;
}
/*
* Interpreter command to boot VxWorks from a memory image. The image can
* be either an ELF image or a raw binary. Will attempt to setup the
* bootline and other parameters correctly.
*/
int do_bootvx(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
unsigned long addr; /* Address of image */
unsigned long bootaddr; /* Address to put the bootline */
char *bootline; /* Text of the bootline */
char *tmp; /* Temporary char pointer */
char build_buf[128]; /* Buffer for building the bootline */
int ptr = 0;
#ifdef CONFIG_X86
struct e820info *info;
struct e820entry *data;
#endif
/*
* Check the loadaddr variable.
* If we don't know where the image is then we're done.
*/
if (argc < 2)
addr = load_addr;
else
addr = simple_strtoul(argv[1], NULL, 16);
#if defined(CONFIG_CMD_NET)
/*
* Check to see if we need to tftp the image ourselves
* before starting
*/
if ((argc == 2) && (strcmp(argv[1], "tftp") == 0)) {
if (net_loop(TFTPGET) <= 0)
return 1;
printf("Automatic boot of VxWorks image at address 0x%08lx ...\n",
addr);
}
#endif
/*
* This should equate to
* NV_RAM_ADRS + NV_BOOT_OFFSET + NV_ENET_OFFSET
* from the VxWorks BSP header files.
* This will vary from board to board
*/
#if defined(CONFIG_SYS_VXWORKS_MAC_PTR)
tmp = (char *)CONFIG_SYS_VXWORKS_MAC_PTR;
eth_env_get_enetaddr("ethaddr", (uchar *)build_buf);
memcpy(tmp, build_buf, 6);
#else
puts("## Ethernet MAC address not copied to NV RAM\n");
#endif
/*
* Use bootaddr to find the location in memory that VxWorks
* will look for the bootline string. The default value is
* (LOCAL_MEM_LOCAL_ADRS + BOOT_LINE_OFFSET) as defined by
* VxWorks BSP. For example, on PowerPC it defaults to 0x4200.
*/
tmp = env_get("bootaddr");
if (!tmp) {
printf("## VxWorks bootline address not specified\n");
} else {
bootaddr = simple_strtoul(tmp, NULL, 16);
/*
* Check to see if the bootline is defined in the 'bootargs'
* parameter. If it is not defined, we may be able to
* construct the info.
*/
bootline = env_get("bootargs");
if (bootline) {
memcpy((void *)bootaddr, bootline,
max(strlen(bootline), (size_t)255));
flush_cache(bootaddr, max(strlen(bootline),
(size_t)255));
} else {
tmp = env_get("bootdev");
if (tmp) {
strcpy(build_buf, tmp);
ptr = strlen(tmp);
} else
printf("## VxWorks boot device not specified\n");
tmp = env_get("bootfile");
if (tmp)
ptr += sprintf(build_buf + ptr,
"host:%s ", tmp);
else
ptr += sprintf(build_buf + ptr,
"host:vxWorks ");
/*
* The following parameters are only needed if 'bootdev'
* is an ethernet device, otherwise they are optional.
*/
tmp = env_get("ipaddr");
if (tmp) {
ptr += sprintf(build_buf + ptr, "e=%s", tmp);
tmp = env_get("netmask");
if (tmp) {
u32 mask = env_get_ip("netmask").s_addr;
ptr += sprintf(build_buf + ptr,
":%08x ", ntohl(mask));
} else {
ptr += sprintf(build_buf + ptr, " ");
}
}
tmp = env_get("serverip");
if (tmp)
ptr += sprintf(build_buf + ptr, "h=%s ", tmp);
tmp = env_get("gatewayip");
if (tmp)
ptr += sprintf(build_buf + ptr, "g=%s ", tmp);
tmp = env_get("hostname");
if (tmp)
ptr += sprintf(build_buf + ptr, "tn=%s ", tmp);
tmp = env_get("othbootargs");
if (tmp) {
strcpy(build_buf + ptr, tmp);
ptr += strlen(tmp);
}
memcpy((void *)bootaddr, build_buf,
max(strlen(build_buf), (size_t)255));
flush_cache(bootaddr, max(strlen(build_buf),
(size_t)255));
}
printf("## Using bootline (@ 0x%lx): %s\n", bootaddr,
(char *)bootaddr);
}
#ifdef CONFIG_X86
/*
* Since E820 information is critical to the kernel, if we don't
* specify these in the environments, use a default one.
*/
tmp = env_get("e820data");
if (tmp)
data = (struct e820entry *)simple_strtoul(tmp, NULL, 16);
else
data = (struct e820entry *)VXWORKS_E820_DATA_ADDR;
tmp = env_get("e820info");
if (tmp)
info = (struct e820info *)simple_strtoul(tmp, NULL, 16);
else
info = (struct e820info *)VXWORKS_E820_INFO_ADDR;
memset(info, 0, sizeof(struct e820info));
info->sign = E820_SIGNATURE;
info->entries = install_e820_map(E820MAX, data);
info->addr = (info->entries - 1) * sizeof(struct e820entry) +
VXWORKS_E820_DATA_ADDR;
#endif
/*
* If the data at the load address is an elf image, then
* treat it like an elf image. Otherwise, assume that it is a
* binary image.
*/
if (valid_elf_image(addr))
addr = load_elf_image_phdr(addr);
else
puts("## Not an ELF image, assuming binary\n");
printf("## Starting vxWorks at 0x%08lx ...\n", addr);
dcache_disable();
#ifdef CONFIG_X86
/* VxWorks on x86 uses stack to pass parameters */
((asmlinkage void (*)(int))addr)(0);
#else
((void (*)(int))addr)(0);
#endif
puts("## vxWorks terminated\n");
return 1;
}
U_BOOT_CMD(
bootelf, CONFIG_SYS_MAXARGS, 0, do_bootelf,
"Boot from an ELF image in memory",
"[-p|-s] [address]\n"
"\t- load ELF image at [address] via program headers (-p)\n"
"\t or via section headers (-s)"
);
U_BOOT_CMD(
bootvx, 2, 0, do_bootvx,
"Boot vxWorks from an ELF image",
" [address] - load address of vxWorks ELF image."
);