u-boot/drivers/mmc/fsl_esdhc.c
Fabio Estevam 1ed60d7ade fsl_esdhc: Initialize mmc->b_max
commit 262951(MMC: make b_max unconditional) missed to update fsl_esdhc.

Signed-off-by: Fabio Estevam <fabio.estevam@freescale.com>
Acked-by: Stefano Babic <sbabic@denx.de>
2011-05-18 14:37:45 -05:00

564 lines
14 KiB
C

/*
* Copyright 2007, 2010-2011 Freescale Semiconductor, Inc
* Andy Fleming
*
* Based vaguely on the pxa mmc code:
* (C) Copyright 2003
* Kyle Harris, Nexus Technologies, Inc. kharris@nexus-tech.net
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <config.h>
#include <common.h>
#include <command.h>
#include <hwconfig.h>
#include <mmc.h>
#include <part.h>
#include <malloc.h>
#include <mmc.h>
#include <fsl_esdhc.h>
#include <fdt_support.h>
#include <asm/io.h>
DECLARE_GLOBAL_DATA_PTR;
struct fsl_esdhc {
uint dsaddr;
uint blkattr;
uint cmdarg;
uint xfertyp;
uint cmdrsp0;
uint cmdrsp1;
uint cmdrsp2;
uint cmdrsp3;
uint datport;
uint prsstat;
uint proctl;
uint sysctl;
uint irqstat;
uint irqstaten;
uint irqsigen;
uint autoc12err;
uint hostcapblt;
uint wml;
char reserved1[8];
uint fevt;
char reserved2[168];
uint hostver;
char reserved3[780];
uint scr;
};
/* Return the XFERTYP flags for a given command and data packet */
uint esdhc_xfertyp(struct mmc_cmd *cmd, struct mmc_data *data)
{
uint xfertyp = 0;
if (data) {
xfertyp |= XFERTYP_DPSEL;
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
xfertyp |= XFERTYP_DMAEN;
#endif
if (data->blocks > 1) {
xfertyp |= XFERTYP_MSBSEL;
xfertyp |= XFERTYP_BCEN;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
xfertyp |= XFERTYP_AC12EN;
#endif
}
if (data->flags & MMC_DATA_READ)
xfertyp |= XFERTYP_DTDSEL;
}
if (cmd->resp_type & MMC_RSP_CRC)
xfertyp |= XFERTYP_CCCEN;
if (cmd->resp_type & MMC_RSP_OPCODE)
xfertyp |= XFERTYP_CICEN;
if (cmd->resp_type & MMC_RSP_136)
xfertyp |= XFERTYP_RSPTYP_136;
else if (cmd->resp_type & MMC_RSP_BUSY)
xfertyp |= XFERTYP_RSPTYP_48_BUSY;
else if (cmd->resp_type & MMC_RSP_PRESENT)
xfertyp |= XFERTYP_RSPTYP_48;
#ifdef CONFIG_MX53
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
xfertyp |= XFERTYP_CMDTYP_ABORT;
#endif
return XFERTYP_CMD(cmd->cmdidx) | xfertyp;
}
#ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
/*
* PIO Read/Write Mode reduce the performace as DMA is not used in this mode.
*/
static void
esdhc_pio_read_write(struct mmc *mmc, struct mmc_data *data)
{
struct fsl_esdhc *regs = mmc->priv;
uint blocks;
char *buffer;
uint databuf;
uint size;
uint irqstat;
uint timeout;
if (data->flags & MMC_DATA_READ) {
blocks = data->blocks;
buffer = data->dest;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BREN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Read Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
irqstat = esdhc_read32(&regs->irqstat);
databuf = in_le32(&regs->datport);
*((uint *)buffer) = databuf;
buffer += 4;
size -= 4;
}
blocks--;
}
} else {
blocks = data->blocks;
buffer = (char *)data->src;
while (blocks) {
timeout = PIO_TIMEOUT;
size = data->blocksize;
irqstat = esdhc_read32(&regs->irqstat);
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_BWEN)
&& --timeout);
if (timeout <= 0) {
printf("\nData Write Failed in PIO Mode.");
return;
}
while (size && (!(irqstat & IRQSTAT_TC))) {
udelay(100); /* Wait before last byte transfer complete */
databuf = *((uint *)buffer);
buffer += 4;
size -= 4;
irqstat = esdhc_read32(&regs->irqstat);
out_le32(&regs->datport, databuf);
}
blocks--;
}
}
}
#endif
static int esdhc_setup_data(struct mmc *mmc, struct mmc_data *data)
{
int timeout;
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
#ifndef CONFIG_SYS_FSL_ESDHC_USE_PIO
uint wml_value;
wml_value = data->blocksize/4;
if (data->flags & MMC_DATA_READ) {
if (wml_value > WML_RD_WML_MAX)
wml_value = WML_RD_WML_MAX_VAL;
esdhc_clrsetbits32(&regs->wml, WML_RD_WML_MASK, wml_value);
esdhc_write32(&regs->dsaddr, (u32)data->dest);
} else {
if (wml_value > WML_WR_WML_MAX)
wml_value = WML_WR_WML_MAX_VAL;
if ((esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. Can not write to a locked card.\n\n");
return TIMEOUT;
}
esdhc_clrsetbits32(&regs->wml, WML_WR_WML_MASK,
wml_value << 16);
esdhc_write32(&regs->dsaddr, (u32)data->src);
}
#else /* CONFIG_SYS_FSL_ESDHC_USE_PIO */
if (!(data->flags & MMC_DATA_READ)) {
if ((esdhc_read32(&regs->prsstat) & PRSSTAT_WPSPL) == 0) {
printf("\nThe SD card is locked. "
"Can not write to a locked card.\n\n");
return TIMEOUT;
}
esdhc_write32(&regs->dsaddr, (u32)data->src);
} else
esdhc_write32(&regs->dsaddr, (u32)data->dest);
#endif /* CONFIG_SYS_FSL_ESDHC_USE_PIO */
esdhc_write32(&regs->blkattr, data->blocks << 16 | data->blocksize);
/* Calculate the timeout period for data transactions */
/*
* 1)Timeout period = (2^(timeout+13)) SD Clock cycles
* 2)Timeout period should be minimum 0.250sec as per SD Card spec
* So, Number of SD Clock cycles for 0.25sec should be minimum
* (SD Clock/sec * 0.25 sec) SD Clock cycles
* = (mmc->tran_speed * 1/4) SD Clock cycles
* As 1) >= 2)
* => (2^(timeout+13)) >= mmc->tran_speed * 1/4
* Taking log2 both the sides
* => timeout + 13 >= log2(mmc->tran_speed/4)
* Rounding up to next power of 2
* => timeout + 13 = log2(mmc->tran_speed/4) + 1
* => timeout + 13 = fls(mmc->tran_speed/4)
*/
timeout = fls(mmc->tran_speed/4);
timeout -= 13;
if (timeout > 14)
timeout = 14;
if (timeout < 0)
timeout = 0;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC_A001
if ((timeout == 4) || (timeout == 8) || (timeout == 12))
timeout++;
#endif
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, timeout << 16);
return 0;
}
/*
* Sends a command out on the bus. Takes the mmc pointer,
* a command pointer, and an optional data pointer.
*/
static int
esdhc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, struct mmc_data *data)
{
uint xfertyp;
uint irqstat;
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC111
if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
return 0;
#endif
esdhc_write32(&regs->irqstat, -1);
sync();
/* Wait for the bus to be idle */
while ((esdhc_read32(&regs->prsstat) & PRSSTAT_CICHB) ||
(esdhc_read32(&regs->prsstat) & PRSSTAT_CIDHB))
;
while (esdhc_read32(&regs->prsstat) & PRSSTAT_DLA)
;
/* Wait at least 8 SD clock cycles before the next command */
/*
* Note: This is way more than 8 cycles, but 1ms seems to
* resolve timing issues with some cards
*/
udelay(1000);
/* Set up for a data transfer if we have one */
if (data) {
int err;
err = esdhc_setup_data(mmc, data);
if(err)
return err;
}
/* Figure out the transfer arguments */
xfertyp = esdhc_xfertyp(cmd, data);
/* Send the command */
esdhc_write32(&regs->cmdarg, cmd->cmdarg);
esdhc_write32(&regs->xfertyp, xfertyp);
/* Wait for the command to complete */
while (!(esdhc_read32(&regs->irqstat) & IRQSTAT_CC))
;
irqstat = esdhc_read32(&regs->irqstat);
esdhc_write32(&regs->irqstat, irqstat);
if (irqstat & CMD_ERR)
return COMM_ERR;
if (irqstat & IRQSTAT_CTOE)
return TIMEOUT;
/* Copy the response to the response buffer */
if (cmd->resp_type & MMC_RSP_136) {
u32 cmdrsp3, cmdrsp2, cmdrsp1, cmdrsp0;
cmdrsp3 = esdhc_read32(&regs->cmdrsp3);
cmdrsp2 = esdhc_read32(&regs->cmdrsp2);
cmdrsp1 = esdhc_read32(&regs->cmdrsp1);
cmdrsp0 = esdhc_read32(&regs->cmdrsp0);
cmd->response[0] = (cmdrsp3 << 8) | (cmdrsp2 >> 24);
cmd->response[1] = (cmdrsp2 << 8) | (cmdrsp1 >> 24);
cmd->response[2] = (cmdrsp1 << 8) | (cmdrsp0 >> 24);
cmd->response[3] = (cmdrsp0 << 8);
} else
cmd->response[0] = esdhc_read32(&regs->cmdrsp0);
/* Wait until all of the blocks are transferred */
if (data) {
#ifdef CONFIG_SYS_FSL_ESDHC_USE_PIO
esdhc_pio_read_write(mmc, data);
#else
do {
irqstat = esdhc_read32(&regs->irqstat);
if (irqstat & IRQSTAT_DTOE)
return TIMEOUT;
if (irqstat & DATA_ERR)
return COMM_ERR;
} while (!(irqstat & IRQSTAT_TC) &&
(esdhc_read32(&regs->prsstat) & PRSSTAT_DLA));
#endif
}
esdhc_write32(&regs->irqstat, -1);
return 0;
}
void set_sysctl(struct mmc *mmc, uint clock)
{
int sdhc_clk = gd->sdhc_clk;
int div, pre_div;
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
volatile struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
uint clk;
if (clock < mmc->f_min)
clock = mmc->f_min;
if (sdhc_clk / 16 > clock) {
for (pre_div = 2; pre_div < 256; pre_div *= 2)
if ((sdhc_clk / pre_div) <= (clock * 16))
break;
} else
pre_div = 2;
for (div = 1; div <= 16; div++)
if ((sdhc_clk / (div * pre_div)) <= clock)
break;
pre_div >>= 1;
div -= 1;
clk = (pre_div << 8) | (div << 4);
esdhc_clrbits32(&regs->sysctl, SYSCTL_CKEN);
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_CLOCK_MASK, clk);
udelay(10000);
clk = SYSCTL_PEREN | SYSCTL_CKEN;
esdhc_setbits32(&regs->sysctl, clk);
}
static void esdhc_set_ios(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
/* Set the clock speed */
set_sysctl(mmc, mmc->clock);
/* Set the bus width */
esdhc_clrbits32(&regs->proctl, PROCTL_DTW_4 | PROCTL_DTW_8);
if (mmc->bus_width == 4)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_4);
else if (mmc->bus_width == 8)
esdhc_setbits32(&regs->proctl, PROCTL_DTW_8);
}
static int esdhc_init(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
struct fsl_esdhc *regs = (struct fsl_esdhc *)cfg->esdhc_base;
int timeout = 1000;
int ret = 0;
u8 card_absent;
/* Reset the entire host controller */
esdhc_write32(&regs->sysctl, SYSCTL_RSTA);
/* Wait until the controller is available */
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
udelay(1000);
/* Enable cache snooping */
if (cfg && !cfg->no_snoop)
esdhc_write32(&regs->scr, 0x00000040);
esdhc_write32(&regs->sysctl, SYSCTL_HCKEN | SYSCTL_IPGEN);
/* Set the initial clock speed */
mmc_set_clock(mmc, 400000);
/* Disable the BRR and BWR bits in IRQSTAT */
esdhc_clrbits32(&regs->irqstaten, IRQSTATEN_BRR | IRQSTATEN_BWR);
/* Put the PROCTL reg back to the default */
esdhc_write32(&regs->proctl, PROCTL_INIT);
/* Set timout to the maximum value */
esdhc_clrsetbits32(&regs->sysctl, SYSCTL_TIMEOUT_MASK, 14 << 16);
/* Check if there is a callback for detecting the card */
if (board_mmc_getcd(&card_absent, mmc)) {
timeout = 1000;
while (!(esdhc_read32(&regs->prsstat) & PRSSTAT_CINS) &&
--timeout)
udelay(1000);
if (timeout <= 0)
ret = NO_CARD_ERR;
} else {
if (card_absent)
ret = NO_CARD_ERR;
}
return ret;
}
static void esdhc_reset(struct fsl_esdhc *regs)
{
unsigned long timeout = 100; /* wait max 100 ms */
/* reset the controller */
esdhc_write32(&regs->sysctl, SYSCTL_RSTA);
/* hardware clears the bit when it is done */
while ((esdhc_read32(&regs->sysctl) & SYSCTL_RSTA) && --timeout)
udelay(1000);
if (!timeout)
printf("MMC/SD: Reset never completed.\n");
}
int fsl_esdhc_initialize(bd_t *bis, struct fsl_esdhc_cfg *cfg)
{
struct fsl_esdhc *regs;
struct mmc *mmc;
u32 caps, voltage_caps;
if (!cfg)
return -1;
mmc = malloc(sizeof(struct mmc));
sprintf(mmc->name, "FSL_ESDHC");
regs = (struct fsl_esdhc *)cfg->esdhc_base;
/* First reset the eSDHC controller */
esdhc_reset(regs);
mmc->priv = cfg;
mmc->send_cmd = esdhc_send_cmd;
mmc->set_ios = esdhc_set_ios;
mmc->init = esdhc_init;
voltage_caps = 0;
caps = regs->hostcapblt;
#ifdef CONFIG_SYS_FSL_ERRATUM_ESDHC135
caps = caps & ~(ESDHC_HOSTCAPBLT_SRS |
ESDHC_HOSTCAPBLT_VS18 | ESDHC_HOSTCAPBLT_VS30);
#endif
if (caps & ESDHC_HOSTCAPBLT_VS18)
voltage_caps |= MMC_VDD_165_195;
if (caps & ESDHC_HOSTCAPBLT_VS30)
voltage_caps |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & ESDHC_HOSTCAPBLT_VS33)
voltage_caps |= MMC_VDD_32_33 | MMC_VDD_33_34;
#ifdef CONFIG_SYS_SD_VOLTAGE
mmc->voltages = CONFIG_SYS_SD_VOLTAGE;
#else
mmc->voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
#endif
if ((mmc->voltages & voltage_caps) == 0) {
printf("voltage not supported by controller\n");
return -1;
}
mmc->host_caps = MMC_MODE_4BIT | MMC_MODE_8BIT;
if (caps & ESDHC_HOSTCAPBLT_HSS)
mmc->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
mmc->f_min = 400000;
mmc->f_max = MIN(gd->sdhc_clk, 52000000);
mmc->b_max = 0;
mmc_register(mmc);
return 0;
}
int fsl_esdhc_mmc_init(bd_t *bis)
{
struct fsl_esdhc_cfg *cfg;
cfg = malloc(sizeof(struct fsl_esdhc_cfg));
memset(cfg, 0, sizeof(struct fsl_esdhc_cfg));
cfg->esdhc_base = CONFIG_SYS_FSL_ESDHC_ADDR;
return fsl_esdhc_initialize(bis, cfg);
}
#ifdef CONFIG_OF_LIBFDT
void fdt_fixup_esdhc(void *blob, bd_t *bd)
{
const char *compat = "fsl,esdhc";
#ifdef CONFIG_FSL_ESDHC_PIN_MUX
if (!hwconfig("esdhc")) {
do_fixup_by_compat(blob, compat, "status", "disabled",
8 + 1, 1);
return;
}
#endif
do_fixup_by_compat_u32(blob, compat, "clock-frequency",
gd->sdhc_clk, 1);
do_fixup_by_compat(blob, compat, "status", "okay",
4 + 1, 1);
}
#endif