u-boot/drivers/spi/tegra20_slink.c
Allen Martin 2a3c5bc29c tegra: spi: remove non fdt support
Remove non fdt support from tegra20 and tegra30 SPI drivers in
preparation of new common fdt based SPI driver front end.

Signed-off-by: Allen Martin <amartin@nvidia.com>
Signed-off-by: Tom Warren <twarren@nvidia.com>
Reviewed-by: Stephen Warren <swarren@nvidia.com>
2013-03-25 09:56:05 -07:00

315 lines
7.8 KiB
C

/*
* NVIDIA Tegra SPI-SLINK controller
*
* Copyright (c) 2010-2013 NVIDIA Corporation
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/gpio.h>
#include <asm/arch/clock.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra20/tegra20_slink.h>
#include <spi.h>
#include <fdtdec.h>
DECLARE_GLOBAL_DATA_PTR;
struct tegra_spi_ctrl {
struct slink_tegra *regs;
unsigned int freq;
unsigned int mode;
int periph_id;
int valid;
};
struct tegra_spi_slave {
struct spi_slave slave;
struct tegra_spi_ctrl *ctrl;
};
static struct tegra_spi_ctrl spi_ctrls[CONFIG_TEGRA_SLINK_CTRLS];
static inline struct tegra_spi_slave *to_tegra_spi(struct spi_slave *slave)
{
return container_of(slave, struct tegra_spi_slave, slave);
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
if (bus >= CONFIG_TEGRA_SLINK_CTRLS || cs > 3 || !spi_ctrls[bus].valid)
return 0;
else
return 1;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct tegra_spi_slave *spi;
debug("%s: bus: %u, cs: %u, max_hz: %u, mode: %u\n", __func__,
bus, cs, max_hz, mode);
if (!spi_cs_is_valid(bus, cs)) {
printf("SPI error: unsupported bus %d / chip select %d\n",
bus, cs);
return NULL;
}
if (max_hz > TEGRA_SPI_MAX_FREQ) {
printf("SPI error: unsupported frequency %d Hz. Max frequency"
" is %d Hz\n", max_hz, TEGRA_SPI_MAX_FREQ);
return NULL;
}
spi = malloc(sizeof(struct tegra_spi_slave));
if (!spi) {
printf("SPI error: malloc of SPI structure failed\n");
return NULL;
}
spi->slave.bus = bus;
spi->slave.cs = cs;
spi->ctrl = &spi_ctrls[bus];
if (!spi->ctrl) {
printf("SPI error: could not find controller for bus %d\n",
bus);
return NULL;
}
if (max_hz < spi->ctrl->freq) {
debug("%s: limiting frequency from %u to %u\n", __func__,
spi->ctrl->freq, max_hz);
spi->ctrl->freq = max_hz;
}
spi->ctrl->mode = mode;
return &spi->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct tegra_spi_slave *spi = to_tegra_spi(slave);
free(spi);
}
void spi_init(void)
{
struct tegra_spi_ctrl *ctrl;
int i;
int node = 0;
int count;
int node_list[CONFIG_TEGRA_SLINK_CTRLS];
count = fdtdec_find_aliases_for_id(gd->fdt_blob, "spi",
COMPAT_NVIDIA_TEGRA20_SLINK,
node_list,
CONFIG_TEGRA_SLINK_CTRLS);
for (i = 0; i < count; i++) {
ctrl = &spi_ctrls[i];
node = node_list[i];
ctrl->regs = (struct slink_tegra *)fdtdec_get_addr(gd->fdt_blob,
node, "reg");
if ((fdt_addr_t)ctrl->regs == FDT_ADDR_T_NONE) {
debug("%s: no slink register found\n", __func__);
continue;
}
ctrl->freq = fdtdec_get_int(gd->fdt_blob, node,
"spi-max-frequency", 0);
if (!ctrl->freq) {
debug("%s: no slink max frequency found\n", __func__);
continue;
}
ctrl->periph_id = clock_decode_periph_id(gd->fdt_blob, node);
if (ctrl->periph_id == PERIPH_ID_NONE) {
debug("%s: could not decode periph id\n", __func__);
continue;
}
ctrl->valid = 1;
debug("%s: found controller at %p, freq = %u, periph_id = %d\n",
__func__, ctrl->regs, ctrl->freq, ctrl->periph_id);
}
}
int spi_claim_bus(struct spi_slave *slave)
{
struct tegra_spi_slave *spi = to_tegra_spi(slave);
struct slink_tegra *regs = spi->ctrl->regs;
u32 reg;
/* Change SPI clock to correct frequency, PLLP_OUT0 source */
clock_start_periph_pll(spi->ctrl->periph_id, CLOCK_ID_PERIPH,
spi->ctrl->freq);
/* Clear stale status here */
reg = SLINK_STAT_RDY | SLINK_STAT_RXF_FLUSH | SLINK_STAT_TXF_FLUSH | \
SLINK_STAT_RXF_UNR | SLINK_STAT_TXF_OVF;
writel(reg, &regs->status);
debug("%s: STATUS = %08x\n", __func__, readl(&regs->status));
/* Set master mode and sw controlled CS */
reg = readl(&regs->command);
reg |= SLINK_CMD_M_S | SLINK_CMD_CS_SOFT;
writel(reg, &regs->command);
debug("%s: COMMAND = %08x\n", __func__, readl(&regs->command));
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
}
void spi_cs_activate(struct spi_slave *slave)
{
struct tegra_spi_slave *spi = to_tegra_spi(slave);
struct slink_tegra *regs = spi->ctrl->regs;
/* CS is negated on Tegra, so drive a 1 to get a 0 */
setbits_le32(&regs->command, SLINK_CMD_CS_VAL);
}
void spi_cs_deactivate(struct spi_slave *slave)
{
struct tegra_spi_slave *spi = to_tegra_spi(slave);
struct slink_tegra *regs = spi->ctrl->regs;
/* CS is negated on Tegra, so drive a 0 to get a 1 */
clrbits_le32(&regs->command, SLINK_CMD_CS_VAL);
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *data_out, void *data_in, unsigned long flags)
{
struct tegra_spi_slave *spi = to_tegra_spi(slave);
struct slink_tegra *regs = spi->ctrl->regs;
u32 reg, tmpdout, tmpdin = 0;
const u8 *dout = data_out;
u8 *din = data_in;
int num_bytes;
int ret;
debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
__func__, slave->bus, slave->cs, dout, din, bitlen);
if (bitlen % 8)
return -1;
num_bytes = bitlen / 8;
ret = 0;
reg = readl(&regs->status);
writel(reg, &regs->status); /* Clear all SPI events via R/W */
debug("%s entry: STATUS = %08x\n", __func__, reg);
reg = readl(&regs->status2);
writel(reg, &regs->status2); /* Clear all STATUS2 events via R/W */
debug("%s entry: STATUS2 = %08x\n", __func__, reg);
debug("%s entry: COMMAND = %08x\n", __func__, readl(&regs->command));
clrsetbits_le32(&regs->command2, SLINK_CMD2_SS_EN_MASK,
SLINK_CMD2_TXEN | SLINK_CMD2_RXEN |
(slave->cs << SLINK_CMD2_SS_EN_SHIFT));
debug("%s entry: COMMAND2 = %08x\n", __func__, readl(&regs->command2));
if (flags & SPI_XFER_BEGIN)
spi_cs_activate(slave);
/* handle data in 32-bit chunks */
while (num_bytes > 0) {
int bytes;
int is_read = 0;
int tm, i;
tmpdout = 0;
bytes = (num_bytes > 4) ? 4 : num_bytes;
if (dout != NULL) {
for (i = 0; i < bytes; ++i)
tmpdout = (tmpdout << 8) | dout[i];
dout += bytes;
}
num_bytes -= bytes;
clrsetbits_le32(&regs->command, SLINK_CMD_BIT_LENGTH_MASK,
bytes * 8 - 1);
writel(tmpdout, &regs->tx_fifo);
setbits_le32(&regs->command, SLINK_CMD_GO);
/*
* Wait for SPI transmit FIFO to empty, or to time out.
* The RX FIFO status will be read and cleared last
*/
for (tm = 0, is_read = 0; tm < SPI_TIMEOUT; ++tm) {
u32 status;
status = readl(&regs->status);
/* We can exit when we've had both RX and TX activity */
if (is_read && (status & SLINK_STAT_TXF_EMPTY))
break;
if ((status & (SLINK_STAT_BSY | SLINK_STAT_RDY)) !=
SLINK_STAT_RDY)
tm++;
else if (!(status & SLINK_STAT_RXF_EMPTY)) {
tmpdin = readl(&regs->rx_fifo);
is_read = 1;
/* swap bytes read in */
if (din != NULL) {
for (i = bytes - 1; i >= 0; --i) {
din[i] = tmpdin & 0xff;
tmpdin >>= 8;
}
din += bytes;
}
}
}
if (tm >= SPI_TIMEOUT)
ret = tm;
/* clear ACK RDY, etc. bits */
writel(readl(&regs->status), &regs->status);
}
if (flags & SPI_XFER_END)
spi_cs_deactivate(slave);
debug("%s: transfer ended. Value=%08x, status = %08x\n",
__func__, tmpdin, readl(&regs->status));
if (ret) {
printf("%s: timeout during SPI transfer, tm %d\n",
__func__, ret);
return -1;
}
return 0;
}