336d4615f8
At present dm/device.h includes the linux-compatible features. This requires including linux/compat.h which in turn includes a lot of headers. One of these is malloc.h which we thus end up including in every file in U-Boot. Apart from the inefficiency of this, it is problematic for sandbox which needs to use the system malloc() in some files. Move the compatibility features into a separate header file. Signed-off-by: Simon Glass <sjg@chromium.org>
5939 lines
170 KiB
C
5939 lines
170 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/**************************************************************************
|
|
Intel Pro 1000 for ppcboot/das-u-boot
|
|
Drivers are port from Intel's Linux driver e1000-4.3.15
|
|
and from Etherboot pro 1000 driver by mrakes at vivato dot net
|
|
tested on both gig copper and gig fiber boards
|
|
***************************************************************************/
|
|
/*******************************************************************************
|
|
|
|
|
|
Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.
|
|
|
|
|
|
Contact Information:
|
|
Linux NICS <linux.nics@intel.com>
|
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
|
|
|
*******************************************************************************/
|
|
/*
|
|
* Copyright (C) Archway Digital Solutions.
|
|
*
|
|
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
|
|
* 2/9/2002
|
|
*
|
|
* Copyright (C) Linux Networx.
|
|
* Massive upgrade to work with the new intel gigabit NICs.
|
|
* <ebiederman at lnxi dot com>
|
|
*
|
|
* Copyright 2011 Freescale Semiconductor, Inc.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <cpu_func.h>
|
|
#include <dm.h>
|
|
#include <errno.h>
|
|
#include <malloc.h>
|
|
#include <memalign.h>
|
|
#include <pci.h>
|
|
#include "e1000.h"
|
|
|
|
#define TOUT_LOOP 100000
|
|
|
|
#ifdef CONFIG_DM_ETH
|
|
#define virt_to_bus(devno, v) dm_pci_virt_to_mem(devno, (void *) (v))
|
|
#define bus_to_phys(devno, a) dm_pci_mem_to_phys(devno, a)
|
|
#else
|
|
#define virt_to_bus(devno, v) pci_virt_to_mem(devno, (void *) (v))
|
|
#define bus_to_phys(devno, a) pci_mem_to_phys(devno, a)
|
|
#endif
|
|
|
|
#define E1000_DEFAULT_PCI_PBA 0x00000030
|
|
#define E1000_DEFAULT_PCIE_PBA 0x000a0026
|
|
|
|
/* NIC specific static variables go here */
|
|
|
|
/* Intel i210 needs the DMA descriptor rings aligned to 128b */
|
|
#define E1000_BUFFER_ALIGN 128
|
|
|
|
/*
|
|
* TODO(sjg@chromium.org): Even with driver model we share these buffers.
|
|
* Concurrent receiving on multiple active Ethernet devices will not work.
|
|
* Normally U-Boot does not support this anyway. To fix it in this driver,
|
|
* move these buffers and the tx/rx pointers to struct e1000_hw.
|
|
*/
|
|
DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
|
|
DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
|
|
DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);
|
|
|
|
static int tx_tail;
|
|
static int rx_tail, rx_last;
|
|
#ifdef CONFIG_DM_ETH
|
|
static int num_cards; /* Number of E1000 devices seen so far */
|
|
#endif
|
|
|
|
static struct pci_device_id e1000_supported[] = {
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
|
|
/* E1000 PCIe card */
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
|
|
{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },
|
|
|
|
{}
|
|
};
|
|
|
|
/* Function forward declarations */
|
|
static int e1000_setup_link(struct e1000_hw *hw);
|
|
static int e1000_setup_fiber_link(struct e1000_hw *hw);
|
|
static int e1000_setup_copper_link(struct e1000_hw *hw);
|
|
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
|
|
static void e1000_config_collision_dist(struct e1000_hw *hw);
|
|
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
|
|
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
|
|
static int e1000_check_for_link(struct e1000_hw *hw);
|
|
static int e1000_wait_autoneg(struct e1000_hw *hw);
|
|
static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
|
|
uint16_t * duplex);
|
|
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
|
|
uint16_t * phy_data);
|
|
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
|
|
uint16_t phy_data);
|
|
static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
|
|
static int e1000_phy_reset(struct e1000_hw *hw);
|
|
static int e1000_detect_gig_phy(struct e1000_hw *hw);
|
|
static void e1000_set_media_type(struct e1000_hw *hw);
|
|
|
|
static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
|
|
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
|
|
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
|
|
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
|
|
static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
|
|
uint16_t words,
|
|
uint16_t *data);
|
|
/******************************************************************************
|
|
* Raises the EEPROM's clock input.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* eecd - EECD's current value
|
|
*****************************************************************************/
|
|
void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
|
|
{
|
|
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
|
|
* wait 50 microseconds.
|
|
*/
|
|
*eecd = *eecd | E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, EECD, *eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(50);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Lowers the EEPROM's clock input.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* eecd - EECD's current value
|
|
*****************************************************************************/
|
|
void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
|
|
{
|
|
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
|
|
* wait 50 microseconds.
|
|
*/
|
|
*eecd = *eecd & ~E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, EECD, *eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(50);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Shift data bits out to the EEPROM.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* data - data to send to the EEPROM
|
|
* count - number of bits to shift out
|
|
*****************************************************************************/
|
|
static void
|
|
e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
|
|
{
|
|
uint32_t eecd;
|
|
uint32_t mask;
|
|
|
|
/* We need to shift "count" bits out to the EEPROM. So, value in the
|
|
* "data" parameter will be shifted out to the EEPROM one bit at a time.
|
|
* In order to do this, "data" must be broken down into bits.
|
|
*/
|
|
mask = 0x01 << (count - 1);
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
do {
|
|
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
|
|
* and then raising and then lowering the clock (the SK bit controls
|
|
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
|
|
* by setting "DI" to "0" and then raising and then lowering the clock.
|
|
*/
|
|
eecd &= ~E1000_EECD_DI;
|
|
|
|
if (data & mask)
|
|
eecd |= E1000_EECD_DI;
|
|
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
udelay(50);
|
|
|
|
e1000_raise_ee_clk(hw, &eecd);
|
|
e1000_lower_ee_clk(hw, &eecd);
|
|
|
|
mask = mask >> 1;
|
|
|
|
} while (mask);
|
|
|
|
/* We leave the "DI" bit set to "0" when we leave this routine. */
|
|
eecd &= ~E1000_EECD_DI;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Shift data bits in from the EEPROM
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
static uint16_t
|
|
e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
|
|
{
|
|
uint32_t eecd;
|
|
uint32_t i;
|
|
uint16_t data;
|
|
|
|
/* In order to read a register from the EEPROM, we need to shift 'count'
|
|
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
|
|
* input to the EEPROM (setting the SK bit), and then reading the
|
|
* value of the "DO" bit. During this "shifting in" process the
|
|
* "DI" bit should always be clear.
|
|
*/
|
|
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
|
data = 0;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
data = data << 1;
|
|
e1000_raise_ee_clk(hw, &eecd);
|
|
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
eecd &= ~(E1000_EECD_DI);
|
|
if (eecd & E1000_EECD_DO)
|
|
data |= 1;
|
|
|
|
e1000_lower_ee_clk(hw, &eecd);
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Returns EEPROM to a "standby" state
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
void e1000_standby_eeprom(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
uint32_t eecd;
|
|
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
if (eeprom->type == e1000_eeprom_microwire) {
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(eeprom->delay_usec);
|
|
|
|
/* Clock high */
|
|
eecd |= E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(eeprom->delay_usec);
|
|
|
|
/* Select EEPROM */
|
|
eecd |= E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(eeprom->delay_usec);
|
|
|
|
/* Clock low */
|
|
eecd &= ~E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(eeprom->delay_usec);
|
|
} else if (eeprom->type == e1000_eeprom_spi) {
|
|
/* Toggle CS to flush commands */
|
|
eecd |= E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(eeprom->delay_usec);
|
|
eecd &= ~E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(eeprom->delay_usec);
|
|
}
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Description: Determines if the onboard NVM is FLASH or EEPROM.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
****************************************************************************/
|
|
static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
|
|
{
|
|
uint32_t eecd = 0;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type == e1000_ich8lan)
|
|
return false;
|
|
|
|
if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
/* Isolate bits 15 & 16 */
|
|
eecd = ((eecd >> 15) & 0x03);
|
|
|
|
/* If both bits are set, device is Flash type */
|
|
if (eecd == 0x03)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Prepares EEPROM for access
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
|
|
* function should be called before issuing a command to the EEPROM.
|
|
*****************************************************************************/
|
|
int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
uint32_t eecd, i = 0;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
|
|
/* Request EEPROM Access */
|
|
if (hw->mac_type > e1000_82544) {
|
|
eecd |= E1000_EECD_REQ;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
while ((!(eecd & E1000_EECD_GNT)) &&
|
|
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
|
|
i++;
|
|
udelay(5);
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
}
|
|
if (!(eecd & E1000_EECD_GNT)) {
|
|
eecd &= ~E1000_EECD_REQ;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
DEBUGOUT("Could not acquire EEPROM grant\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Setup EEPROM for Read/Write */
|
|
|
|
if (eeprom->type == e1000_eeprom_microwire) {
|
|
/* Clear SK and DI */
|
|
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
|
|
/* Set CS */
|
|
eecd |= E1000_EECD_CS;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
} else if (eeprom->type == e1000_eeprom_spi) {
|
|
/* Clear SK and CS */
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
udelay(1);
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Sets up eeprom variables in the hw struct. Must be called after mac_type
|
|
* is configured. Additionally, if this is ICH8, the flash controller GbE
|
|
* registers must be mapped, or this will crash.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
uint32_t eecd;
|
|
int32_t ret_val = E1000_SUCCESS;
|
|
uint16_t eeprom_size;
|
|
|
|
if (hw->mac_type == e1000_igb)
|
|
eecd = E1000_READ_REG(hw, I210_EECD);
|
|
else
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
DEBUGFUNC();
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
case e1000_82543:
|
|
case e1000_82544:
|
|
eeprom->type = e1000_eeprom_microwire;
|
|
eeprom->word_size = 64;
|
|
eeprom->opcode_bits = 3;
|
|
eeprom->address_bits = 6;
|
|
eeprom->delay_usec = 50;
|
|
eeprom->use_eerd = false;
|
|
eeprom->use_eewr = false;
|
|
break;
|
|
case e1000_82540:
|
|
case e1000_82545:
|
|
case e1000_82545_rev_3:
|
|
case e1000_82546:
|
|
case e1000_82546_rev_3:
|
|
eeprom->type = e1000_eeprom_microwire;
|
|
eeprom->opcode_bits = 3;
|
|
eeprom->delay_usec = 50;
|
|
if (eecd & E1000_EECD_SIZE) {
|
|
eeprom->word_size = 256;
|
|
eeprom->address_bits = 8;
|
|
} else {
|
|
eeprom->word_size = 64;
|
|
eeprom->address_bits = 6;
|
|
}
|
|
eeprom->use_eerd = false;
|
|
eeprom->use_eewr = false;
|
|
break;
|
|
case e1000_82541:
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2:
|
|
if (eecd & E1000_EECD_TYPE) {
|
|
eeprom->type = e1000_eeprom_spi;
|
|
eeprom->opcode_bits = 8;
|
|
eeprom->delay_usec = 1;
|
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
|
eeprom->page_size = 32;
|
|
eeprom->address_bits = 16;
|
|
} else {
|
|
eeprom->page_size = 8;
|
|
eeprom->address_bits = 8;
|
|
}
|
|
} else {
|
|
eeprom->type = e1000_eeprom_microwire;
|
|
eeprom->opcode_bits = 3;
|
|
eeprom->delay_usec = 50;
|
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
|
eeprom->word_size = 256;
|
|
eeprom->address_bits = 8;
|
|
} else {
|
|
eeprom->word_size = 64;
|
|
eeprom->address_bits = 6;
|
|
}
|
|
}
|
|
eeprom->use_eerd = false;
|
|
eeprom->use_eewr = false;
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
eeprom->type = e1000_eeprom_spi;
|
|
eeprom->opcode_bits = 8;
|
|
eeprom->delay_usec = 1;
|
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
|
eeprom->page_size = 32;
|
|
eeprom->address_bits = 16;
|
|
} else {
|
|
eeprom->page_size = 8;
|
|
eeprom->address_bits = 8;
|
|
}
|
|
eeprom->use_eerd = false;
|
|
eeprom->use_eewr = false;
|
|
break;
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
eeprom->type = e1000_eeprom_spi;
|
|
eeprom->opcode_bits = 8;
|
|
eeprom->delay_usec = 1;
|
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
|
eeprom->page_size = 32;
|
|
eeprom->address_bits = 16;
|
|
} else {
|
|
eeprom->page_size = 8;
|
|
eeprom->address_bits = 8;
|
|
}
|
|
if (e1000_is_onboard_nvm_eeprom(hw) == false) {
|
|
eeprom->use_eerd = true;
|
|
eeprom->use_eewr = true;
|
|
|
|
eeprom->type = e1000_eeprom_flash;
|
|
eeprom->word_size = 2048;
|
|
|
|
/* Ensure that the Autonomous FLASH update bit is cleared due to
|
|
* Flash update issue on parts which use a FLASH for NVM. */
|
|
eecd &= ~E1000_EECD_AUPDEN;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
}
|
|
break;
|
|
case e1000_80003es2lan:
|
|
eeprom->type = e1000_eeprom_spi;
|
|
eeprom->opcode_bits = 8;
|
|
eeprom->delay_usec = 1;
|
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
|
eeprom->page_size = 32;
|
|
eeprom->address_bits = 16;
|
|
} else {
|
|
eeprom->page_size = 8;
|
|
eeprom->address_bits = 8;
|
|
}
|
|
eeprom->use_eerd = true;
|
|
eeprom->use_eewr = false;
|
|
break;
|
|
case e1000_igb:
|
|
/* i210 has 4k of iNVM mapped as EEPROM */
|
|
eeprom->type = e1000_eeprom_invm;
|
|
eeprom->opcode_bits = 8;
|
|
eeprom->delay_usec = 1;
|
|
eeprom->page_size = 32;
|
|
eeprom->address_bits = 16;
|
|
eeprom->use_eerd = true;
|
|
eeprom->use_eewr = false;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (eeprom->type == e1000_eeprom_spi ||
|
|
eeprom->type == e1000_eeprom_invm) {
|
|
/* eeprom_size will be an enum [0..8] that maps
|
|
* to eeprom sizes 128B to
|
|
* 32KB (incremented by powers of 2).
|
|
*/
|
|
if (hw->mac_type <= e1000_82547_rev_2) {
|
|
/* Set to default value for initial eeprom read. */
|
|
eeprom->word_size = 64;
|
|
ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
|
|
&eeprom_size);
|
|
if (ret_val)
|
|
return ret_val;
|
|
eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
|
|
>> EEPROM_SIZE_SHIFT;
|
|
/* 256B eeprom size was not supported in earlier
|
|
* hardware, so we bump eeprom_size up one to
|
|
* ensure that "1" (which maps to 256B) is never
|
|
* the result used in the shifting logic below. */
|
|
if (eeprom_size)
|
|
eeprom_size++;
|
|
} else {
|
|
eeprom_size = (uint16_t)((eecd &
|
|
E1000_EECD_SIZE_EX_MASK) >>
|
|
E1000_EECD_SIZE_EX_SHIFT);
|
|
}
|
|
|
|
eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
|
|
}
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Polls the status bit (bit 1) of the EERD to determine when the read is done.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
static int32_t
|
|
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
|
|
{
|
|
uint32_t attempts = 100000;
|
|
uint32_t i, reg = 0;
|
|
int32_t done = E1000_ERR_EEPROM;
|
|
|
|
for (i = 0; i < attempts; i++) {
|
|
if (eerd == E1000_EEPROM_POLL_READ) {
|
|
if (hw->mac_type == e1000_igb)
|
|
reg = E1000_READ_REG(hw, I210_EERD);
|
|
else
|
|
reg = E1000_READ_REG(hw, EERD);
|
|
} else {
|
|
if (hw->mac_type == e1000_igb)
|
|
reg = E1000_READ_REG(hw, I210_EEWR);
|
|
else
|
|
reg = E1000_READ_REG(hw, EEWR);
|
|
}
|
|
|
|
if (reg & E1000_EEPROM_RW_REG_DONE) {
|
|
done = E1000_SUCCESS;
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a 16 bit word from the EEPROM using the EERD register.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* offset - offset of word in the EEPROM to read
|
|
* data - word read from the EEPROM
|
|
* words - number of words to read
|
|
*****************************************************************************/
|
|
static int32_t
|
|
e1000_read_eeprom_eerd(struct e1000_hw *hw,
|
|
uint16_t offset,
|
|
uint16_t words,
|
|
uint16_t *data)
|
|
{
|
|
uint32_t i, eerd = 0;
|
|
int32_t error = 0;
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
|
|
E1000_EEPROM_RW_REG_START;
|
|
|
|
if (hw->mac_type == e1000_igb)
|
|
E1000_WRITE_REG(hw, I210_EERD, eerd);
|
|
else
|
|
E1000_WRITE_REG(hw, EERD, eerd);
|
|
|
|
error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
|
|
|
|
if (error)
|
|
break;
|
|
|
|
if (hw->mac_type == e1000_igb) {
|
|
data[i] = (E1000_READ_REG(hw, I210_EERD) >>
|
|
E1000_EEPROM_RW_REG_DATA);
|
|
} else {
|
|
data[i] = (E1000_READ_REG(hw, EERD) >>
|
|
E1000_EEPROM_RW_REG_DATA);
|
|
}
|
|
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
void e1000_release_eeprom(struct e1000_hw *hw)
|
|
{
|
|
uint32_t eecd;
|
|
|
|
DEBUGFUNC();
|
|
|
|
eecd = E1000_READ_REG(hw, EECD);
|
|
|
|
if (hw->eeprom.type == e1000_eeprom_spi) {
|
|
eecd |= E1000_EECD_CS; /* Pull CS high */
|
|
eecd &= ~E1000_EECD_SK; /* Lower SCK */
|
|
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
|
|
udelay(hw->eeprom.delay_usec);
|
|
} else if (hw->eeprom.type == e1000_eeprom_microwire) {
|
|
/* cleanup eeprom */
|
|
|
|
/* CS on Microwire is active-high */
|
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
|
|
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
|
|
/* Rising edge of clock */
|
|
eecd |= E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(hw->eeprom.delay_usec);
|
|
|
|
/* Falling edge of clock */
|
|
eecd &= ~E1000_EECD_SK;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(hw->eeprom.delay_usec);
|
|
}
|
|
|
|
/* Stop requesting EEPROM access */
|
|
if (hw->mac_type > e1000_82544) {
|
|
eecd &= ~E1000_EECD_REQ;
|
|
E1000_WRITE_REG(hw, EECD, eecd);
|
|
}
|
|
|
|
e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a 16 bit word from the EEPROM.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
static int32_t
|
|
e1000_spi_eeprom_ready(struct e1000_hw *hw)
|
|
{
|
|
uint16_t retry_count = 0;
|
|
uint8_t spi_stat_reg;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Read "Status Register" repeatedly until the LSB is cleared. The
|
|
* EEPROM will signal that the command has been completed by clearing
|
|
* bit 0 of the internal status register. If it's not cleared within
|
|
* 5 milliseconds, then error out.
|
|
*/
|
|
retry_count = 0;
|
|
do {
|
|
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
|
|
hw->eeprom.opcode_bits);
|
|
spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
|
|
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
|
|
break;
|
|
|
|
udelay(5);
|
|
retry_count += 5;
|
|
|
|
e1000_standby_eeprom(hw);
|
|
} while (retry_count < EEPROM_MAX_RETRY_SPI);
|
|
|
|
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
|
|
* only 0-5mSec on 5V devices)
|
|
*/
|
|
if (retry_count >= EEPROM_MAX_RETRY_SPI) {
|
|
DEBUGOUT("SPI EEPROM Status error\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads a 16 bit word from the EEPROM.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* offset - offset of word in the EEPROM to read
|
|
* data - word read from the EEPROM
|
|
*****************************************************************************/
|
|
static int32_t
|
|
e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
|
|
uint16_t words, uint16_t *data)
|
|
{
|
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
uint32_t i = 0;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* If eeprom is not yet detected, do so now */
|
|
if (eeprom->word_size == 0)
|
|
e1000_init_eeprom_params(hw);
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* and not enough words.
|
|
*/
|
|
if ((offset >= eeprom->word_size) ||
|
|
(words > eeprom->word_size - offset) ||
|
|
(words == 0)) {
|
|
DEBUGOUT("\"words\" parameter out of bounds."
|
|
"Words = %d, size = %d\n", offset, eeprom->word_size);
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
|
|
* directly. In this case, we need to acquire the EEPROM so that
|
|
* FW or other port software does not interrupt.
|
|
*/
|
|
if (e1000_is_onboard_nvm_eeprom(hw) == true &&
|
|
hw->eeprom.use_eerd == false) {
|
|
|
|
/* Prepare the EEPROM for bit-bang reading */
|
|
if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
/* Eerd register EEPROM access requires no eeprom aquire/release */
|
|
if (eeprom->use_eerd == true)
|
|
return e1000_read_eeprom_eerd(hw, offset, words, data);
|
|
|
|
/* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
|
|
* acquired the EEPROM at this point, so any returns should relase it */
|
|
if (eeprom->type == e1000_eeprom_spi) {
|
|
uint16_t word_in;
|
|
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
|
|
|
|
if (e1000_spi_eeprom_ready(hw)) {
|
|
e1000_release_eeprom(hw);
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
e1000_standby_eeprom(hw);
|
|
|
|
/* Some SPI eeproms use the 8th address bit embedded in
|
|
* the opcode */
|
|
if ((eeprom->address_bits == 8) && (offset >= 128))
|
|
read_opcode |= EEPROM_A8_OPCODE_SPI;
|
|
|
|
/* Send the READ command (opcode + addr) */
|
|
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
|
|
e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
|
|
eeprom->address_bits);
|
|
|
|
/* Read the data. The address of the eeprom internally
|
|
* increments with each byte (spi) being read, saving on the
|
|
* overhead of eeprom setup and tear-down. The address
|
|
* counter will roll over if reading beyond the size of
|
|
* the eeprom, thus allowing the entire memory to be read
|
|
* starting from any offset. */
|
|
for (i = 0; i < words; i++) {
|
|
word_in = e1000_shift_in_ee_bits(hw, 16);
|
|
data[i] = (word_in >> 8) | (word_in << 8);
|
|
}
|
|
} else if (eeprom->type == e1000_eeprom_microwire) {
|
|
for (i = 0; i < words; i++) {
|
|
/* Send the READ command (opcode + addr) */
|
|
e1000_shift_out_ee_bits(hw,
|
|
EEPROM_READ_OPCODE_MICROWIRE,
|
|
eeprom->opcode_bits);
|
|
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
|
|
eeprom->address_bits);
|
|
|
|
/* Read the data. For microwire, each word requires
|
|
* the overhead of eeprom setup and tear-down. */
|
|
data[i] = e1000_shift_in_ee_bits(hw, 16);
|
|
e1000_standby_eeprom(hw);
|
|
}
|
|
}
|
|
|
|
/* End this read operation */
|
|
e1000_release_eeprom(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
#ifndef CONFIG_DM_ETH
|
|
/******************************************************************************
|
|
* e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
|
|
* @hw: pointer to the HW structure
|
|
* @offset: offset within the Shadow Ram to be written to
|
|
* @words: number of words to write
|
|
* @data: 16 bit word(s) to be written to the Shadow Ram
|
|
*
|
|
* Writes data to Shadow Ram at offset using EEWR register.
|
|
*
|
|
* If e1000_update_eeprom_checksum_i210 is not called after this function, the
|
|
* Shadow Ram will most likely contain an invalid checksum.
|
|
*****************************************************************************/
|
|
static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
|
|
uint16_t words, uint16_t *data)
|
|
{
|
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
|
uint32_t i, k, eewr = 0;
|
|
uint32_t attempts = 100000;
|
|
int32_t ret_val = 0;
|
|
|
|
/* A check for invalid values: offset too large, too many words,
|
|
* too many words for the offset, and not enough words.
|
|
*/
|
|
if ((offset >= eeprom->word_size) ||
|
|
(words > (eeprom->word_size - offset)) || (words == 0)) {
|
|
DEBUGOUT("nvm parameter(s) out of bounds\n");
|
|
ret_val = -E1000_ERR_EEPROM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < words; i++) {
|
|
eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
|
|
| (data[i] << E1000_EEPROM_RW_REG_DATA) |
|
|
E1000_EEPROM_RW_REG_START;
|
|
|
|
E1000_WRITE_REG(hw, I210_EEWR, eewr);
|
|
|
|
for (k = 0; k < attempts; k++) {
|
|
if (E1000_EEPROM_RW_REG_DONE &
|
|
E1000_READ_REG(hw, I210_EEWR)) {
|
|
ret_val = 0;
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
|
|
if (ret_val) {
|
|
DEBUGOUT("Shadow RAM write EEWR timed out\n");
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
*****************************************************************************/
|
|
static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val = -E1000_ERR_EEPROM;
|
|
uint32_t i, reg;
|
|
|
|
for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
|
|
reg = E1000_READ_REG(hw, EECD);
|
|
if (reg & E1000_EECD_FLUDONE_I210) {
|
|
ret_val = 0;
|
|
break;
|
|
}
|
|
udelay(5);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* e1000_update_flash_i210 - Commit EEPROM to the flash
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
*****************************************************************************/
|
|
static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val = 0;
|
|
uint32_t flup;
|
|
|
|
ret_val = e1000_pool_flash_update_done_i210(hw);
|
|
if (ret_val == -E1000_ERR_EEPROM) {
|
|
DEBUGOUT("Flash update time out\n");
|
|
goto out;
|
|
}
|
|
|
|
flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
|
|
E1000_WRITE_REG(hw, EECD, flup);
|
|
|
|
ret_val = e1000_pool_flash_update_done_i210(hw);
|
|
if (ret_val)
|
|
DEBUGOUT("Flash update time out\n");
|
|
else
|
|
DEBUGOUT("Flash update complete\n");
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
|
|
* @hw: pointer to the HW structure
|
|
*
|
|
* Updates the EEPROM checksum by reading/adding each word of the EEPROM
|
|
* up to the checksum. Then calculates the EEPROM checksum and writes the
|
|
* value to the EEPROM. Next commit EEPROM data onto the Flash.
|
|
*****************************************************************************/
|
|
static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val = 0;
|
|
uint16_t checksum = 0;
|
|
uint16_t i, nvm_data;
|
|
|
|
/* Read the first word from the EEPROM. If this times out or fails, do
|
|
* not continue or we could be in for a very long wait while every
|
|
* EEPROM read fails
|
|
*/
|
|
ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("EEPROM read failed\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!(e1000_get_hw_eeprom_semaphore(hw))) {
|
|
/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
|
|
* because we do not want to take the synchronization
|
|
* semaphores twice here.
|
|
*/
|
|
|
|
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
|
|
ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
|
|
if (ret_val) {
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
DEBUGOUT("EEPROM Read Error while updating checksum.\n");
|
|
goto out;
|
|
}
|
|
checksum += nvm_data;
|
|
}
|
|
checksum = (uint16_t)EEPROM_SUM - checksum;
|
|
ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
|
|
&checksum);
|
|
if (ret_val) {
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
DEBUGOUT("EEPROM Write Error while updating checksum.\n");
|
|
goto out;
|
|
}
|
|
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
|
|
ret_val = e1000_update_flash_i210(hw);
|
|
} else {
|
|
ret_val = -E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
out:
|
|
return ret_val;
|
|
}
|
|
#endif
|
|
|
|
/******************************************************************************
|
|
* Verifies that the EEPROM has a valid checksum
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
|
|
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
|
|
* valid.
|
|
*****************************************************************************/
|
|
static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
|
|
{
|
|
uint16_t i, checksum, checksum_reg, *buf;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Allocate a temporary buffer */
|
|
buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
|
|
if (!buf) {
|
|
E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
/* Read the EEPROM */
|
|
if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
|
|
E1000_ERR(hw, "Unable to read EEPROM!\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
/* Compute the checksum */
|
|
checksum = 0;
|
|
for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
|
|
checksum += buf[i];
|
|
checksum = ((uint16_t)EEPROM_SUM) - checksum;
|
|
checksum_reg = buf[i];
|
|
|
|
/* Verify it! */
|
|
if (checksum == checksum_reg)
|
|
return 0;
|
|
|
|
/* Hrm, verification failed, print an error */
|
|
E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
|
|
E1000_ERR(hw, " ...register was 0x%04hx, calculated 0x%04hx\n",
|
|
checksum_reg, checksum);
|
|
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
#endif /* CONFIG_E1000_NO_NVM */
|
|
|
|
/*****************************************************************************
|
|
* Set PHY to class A mode
|
|
* Assumes the following operations will follow to enable the new class mode.
|
|
* 1. Do a PHY soft reset
|
|
* 2. Restart auto-negotiation or force link.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
****************************************************************************/
|
|
static int32_t
|
|
e1000_set_phy_mode(struct e1000_hw *hw)
|
|
{
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
int32_t ret_val;
|
|
uint16_t eeprom_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if ((hw->mac_type == e1000_82545_rev_3) &&
|
|
(hw->media_type == e1000_media_type_copper)) {
|
|
ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
|
|
1, &eeprom_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if ((eeprom_data != EEPROM_RESERVED_WORD) &&
|
|
(eeprom_data & EEPROM_PHY_CLASS_A)) {
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
M88E1000_PHY_PAGE_SELECT, 0x000B);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
M88E1000_PHY_GEN_CONTROL, 0x8104);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
hw->phy_reset_disable = false;
|
|
}
|
|
}
|
|
#endif
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
/***************************************************************************
|
|
*
|
|
* Obtaining software semaphore bit (SMBI) before resetting PHY.
|
|
*
|
|
* hw: Struct containing variables accessed by shared code
|
|
*
|
|
* returns: - E1000_ERR_RESET if fail to obtain semaphore.
|
|
* E1000_SUCCESS at any other case.
|
|
*
|
|
***************************************************************************/
|
|
static int32_t
|
|
e1000_get_software_semaphore(struct e1000_hw *hw)
|
|
{
|
|
int32_t timeout = hw->eeprom.word_size + 1;
|
|
uint32_t swsm;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
|
|
return E1000_SUCCESS;
|
|
|
|
while (timeout) {
|
|
swsm = E1000_READ_REG(hw, SWSM);
|
|
/* If SMBI bit cleared, it is now set and we hold
|
|
* the semaphore */
|
|
if (!(swsm & E1000_SWSM_SMBI))
|
|
break;
|
|
mdelay(1);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
|
|
return -E1000_ERR_RESET;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
/***************************************************************************
|
|
* This function clears HW semaphore bits.
|
|
*
|
|
* hw: Struct containing variables accessed by shared code
|
|
*
|
|
* returns: - None.
|
|
*
|
|
***************************************************************************/
|
|
static void
|
|
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
|
|
{
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
uint32_t swsm;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (!hw->eeprom_semaphore_present)
|
|
return;
|
|
|
|
swsm = E1000_READ_REG(hw, SWSM);
|
|
if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
|
|
/* Release both semaphores. */
|
|
swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
|
|
} else
|
|
swsm &= ~(E1000_SWSM_SWESMBI);
|
|
E1000_WRITE_REG(hw, SWSM, swsm);
|
|
#endif
|
|
}
|
|
|
|
/***************************************************************************
|
|
*
|
|
* Using the combination of SMBI and SWESMBI semaphore bits when resetting
|
|
* adapter or Eeprom access.
|
|
*
|
|
* hw: Struct containing variables accessed by shared code
|
|
*
|
|
* returns: - E1000_ERR_EEPROM if fail to access EEPROM.
|
|
* E1000_SUCCESS at any other case.
|
|
*
|
|
***************************************************************************/
|
|
static int32_t
|
|
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
|
|
{
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
int32_t timeout;
|
|
uint32_t swsm;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (!hw->eeprom_semaphore_present)
|
|
return E1000_SUCCESS;
|
|
|
|
if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
|
|
/* Get the SW semaphore. */
|
|
if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
|
|
/* Get the FW semaphore. */
|
|
timeout = hw->eeprom.word_size + 1;
|
|
while (timeout) {
|
|
swsm = E1000_READ_REG(hw, SWSM);
|
|
swsm |= E1000_SWSM_SWESMBI;
|
|
E1000_WRITE_REG(hw, SWSM, swsm);
|
|
/* if we managed to set the bit we got the semaphore. */
|
|
swsm = E1000_READ_REG(hw, SWSM);
|
|
if (swsm & E1000_SWSM_SWESMBI)
|
|
break;
|
|
|
|
udelay(50);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
/* Release semaphores */
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
DEBUGOUT("Driver can't access the Eeprom - "
|
|
"SWESMBI bit is set.\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
#endif
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/* Take ownership of the PHY */
|
|
static int32_t
|
|
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
|
|
{
|
|
uint32_t swfw_sync = 0;
|
|
uint32_t swmask = mask;
|
|
uint32_t fwmask = mask << 16;
|
|
int32_t timeout = 200;
|
|
|
|
DEBUGFUNC();
|
|
while (timeout) {
|
|
if (e1000_get_hw_eeprom_semaphore(hw))
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
|
|
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
|
|
if (!(swfw_sync & (fwmask | swmask)))
|
|
break;
|
|
|
|
/* firmware currently using resource (fwmask) */
|
|
/* or other software thread currently using resource (swmask) */
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
mdelay(5);
|
|
timeout--;
|
|
}
|
|
|
|
if (!timeout) {
|
|
DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
swfw_sync |= swmask;
|
|
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
|
|
{
|
|
uint32_t swfw_sync = 0;
|
|
|
|
DEBUGFUNC();
|
|
while (e1000_get_hw_eeprom_semaphore(hw))
|
|
; /* Empty */
|
|
|
|
swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
|
|
swfw_sync &= ~mask;
|
|
E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
|
|
|
|
e1000_put_hw_eeprom_semaphore(hw);
|
|
}
|
|
|
|
static bool e1000_is_second_port(struct e1000_hw *hw)
|
|
{
|
|
switch (hw->mac_type) {
|
|
case e1000_80003es2lan:
|
|
case e1000_82546:
|
|
case e1000_82571:
|
|
if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
|
|
return true;
|
|
/* Fallthrough */
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
/******************************************************************************
|
|
* Reads the adapter's MAC address from the EEPROM
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* enetaddr - buffering where the MAC address will be stored
|
|
*****************************************************************************/
|
|
static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
|
|
unsigned char enetaddr[6])
|
|
{
|
|
uint16_t offset;
|
|
uint16_t eeprom_data;
|
|
int i;
|
|
|
|
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
|
|
offset = i >> 1;
|
|
if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
|
|
DEBUGOUT("EEPROM Read Error\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
enetaddr[i] = eeprom_data & 0xff;
|
|
enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads the adapter's MAC address from the RAL/RAH registers
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* enetaddr - buffering where the MAC address will be stored
|
|
*****************************************************************************/
|
|
static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
|
|
unsigned char enetaddr[6])
|
|
{
|
|
uint16_t offset, tmp;
|
|
uint32_t reg_data = 0;
|
|
int i;
|
|
|
|
if (hw->mac_type != e1000_igb)
|
|
return -E1000_ERR_MAC_TYPE;
|
|
|
|
for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
|
|
offset = i >> 1;
|
|
|
|
if (offset == 0)
|
|
reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
|
|
else if (offset == 1)
|
|
reg_data >>= 16;
|
|
else if (offset == 2)
|
|
reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
|
|
tmp = reg_data & 0xffff;
|
|
|
|
enetaddr[i] = tmp & 0xff;
|
|
enetaddr[i + 1] = (tmp >> 8) & 0xff;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
|
|
* second function of dual function devices
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* enetaddr - buffering where the MAC address will be stored
|
|
*****************************************************************************/
|
|
static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
|
|
{
|
|
int ret_val;
|
|
|
|
if (hw->mac_type == e1000_igb) {
|
|
/* i210 preloads MAC address into RAL/RAH registers */
|
|
ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
|
|
} else {
|
|
ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
|
|
}
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Invert the last bit if this is the second device */
|
|
if (e1000_is_second_port(hw))
|
|
enetaddr[5] ^= 1;
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/******************************************************************************
|
|
* Initializes receive address filters.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Places the MAC address in receive address register 0 and clears the rest
|
|
* of the receive addresss registers. Clears the multicast table. Assumes
|
|
* the receiver is in reset when the routine is called.
|
|
*****************************************************************************/
|
|
static void
|
|
e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
|
|
{
|
|
uint32_t i;
|
|
uint32_t addr_low;
|
|
uint32_t addr_high;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Setup the receive address. */
|
|
DEBUGOUT("Programming MAC Address into RAR[0]\n");
|
|
addr_low = (enetaddr[0] |
|
|
(enetaddr[1] << 8) |
|
|
(enetaddr[2] << 16) | (enetaddr[3] << 24));
|
|
|
|
addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);
|
|
|
|
E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
|
|
E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
|
|
|
|
/* Zero out the other 15 receive addresses. */
|
|
DEBUGOUT("Clearing RAR[1-15]\n");
|
|
for (i = 1; i < E1000_RAR_ENTRIES; i++) {
|
|
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
|
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Clears the VLAN filer table
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
static void
|
|
e1000_clear_vfta(struct e1000_hw *hw)
|
|
{
|
|
uint32_t offset;
|
|
|
|
for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
|
|
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Set the mac type member in the hw struct.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
int32_t
|
|
e1000_set_mac_type(struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC();
|
|
|
|
switch (hw->device_id) {
|
|
case E1000_DEV_ID_82542:
|
|
switch (hw->revision_id) {
|
|
case E1000_82542_2_0_REV_ID:
|
|
hw->mac_type = e1000_82542_rev2_0;
|
|
break;
|
|
case E1000_82542_2_1_REV_ID:
|
|
hw->mac_type = e1000_82542_rev2_1;
|
|
break;
|
|
default:
|
|
/* Invalid 82542 revision ID */
|
|
return -E1000_ERR_MAC_TYPE;
|
|
}
|
|
break;
|
|
case E1000_DEV_ID_82543GC_FIBER:
|
|
case E1000_DEV_ID_82543GC_COPPER:
|
|
hw->mac_type = e1000_82543;
|
|
break;
|
|
case E1000_DEV_ID_82544EI_COPPER:
|
|
case E1000_DEV_ID_82544EI_FIBER:
|
|
case E1000_DEV_ID_82544GC_COPPER:
|
|
case E1000_DEV_ID_82544GC_LOM:
|
|
hw->mac_type = e1000_82544;
|
|
break;
|
|
case E1000_DEV_ID_82540EM:
|
|
case E1000_DEV_ID_82540EM_LOM:
|
|
case E1000_DEV_ID_82540EP:
|
|
case E1000_DEV_ID_82540EP_LOM:
|
|
case E1000_DEV_ID_82540EP_LP:
|
|
hw->mac_type = e1000_82540;
|
|
break;
|
|
case E1000_DEV_ID_82545EM_COPPER:
|
|
case E1000_DEV_ID_82545EM_FIBER:
|
|
hw->mac_type = e1000_82545;
|
|
break;
|
|
case E1000_DEV_ID_82545GM_COPPER:
|
|
case E1000_DEV_ID_82545GM_FIBER:
|
|
case E1000_DEV_ID_82545GM_SERDES:
|
|
hw->mac_type = e1000_82545_rev_3;
|
|
break;
|
|
case E1000_DEV_ID_82546EB_COPPER:
|
|
case E1000_DEV_ID_82546EB_FIBER:
|
|
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
|
hw->mac_type = e1000_82546;
|
|
break;
|
|
case E1000_DEV_ID_82546GB_COPPER:
|
|
case E1000_DEV_ID_82546GB_FIBER:
|
|
case E1000_DEV_ID_82546GB_SERDES:
|
|
case E1000_DEV_ID_82546GB_PCIE:
|
|
case E1000_DEV_ID_82546GB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
|
|
hw->mac_type = e1000_82546_rev_3;
|
|
break;
|
|
case E1000_DEV_ID_82541EI:
|
|
case E1000_DEV_ID_82541EI_MOBILE:
|
|
case E1000_DEV_ID_82541ER_LOM:
|
|
hw->mac_type = e1000_82541;
|
|
break;
|
|
case E1000_DEV_ID_82541ER:
|
|
case E1000_DEV_ID_82541GI:
|
|
case E1000_DEV_ID_82541GI_LF:
|
|
case E1000_DEV_ID_82541GI_MOBILE:
|
|
hw->mac_type = e1000_82541_rev_2;
|
|
break;
|
|
case E1000_DEV_ID_82547EI:
|
|
case E1000_DEV_ID_82547EI_MOBILE:
|
|
hw->mac_type = e1000_82547;
|
|
break;
|
|
case E1000_DEV_ID_82547GI:
|
|
hw->mac_type = e1000_82547_rev_2;
|
|
break;
|
|
case E1000_DEV_ID_82571EB_COPPER:
|
|
case E1000_DEV_ID_82571EB_FIBER:
|
|
case E1000_DEV_ID_82571EB_SERDES:
|
|
case E1000_DEV_ID_82571EB_SERDES_DUAL:
|
|
case E1000_DEV_ID_82571EB_SERDES_QUAD:
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER:
|
|
case E1000_DEV_ID_82571PT_QUAD_COPPER:
|
|
case E1000_DEV_ID_82571EB_QUAD_FIBER:
|
|
case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
|
|
hw->mac_type = e1000_82571;
|
|
break;
|
|
case E1000_DEV_ID_82572EI_COPPER:
|
|
case E1000_DEV_ID_82572EI_FIBER:
|
|
case E1000_DEV_ID_82572EI_SERDES:
|
|
case E1000_DEV_ID_82572EI:
|
|
hw->mac_type = e1000_82572;
|
|
break;
|
|
case E1000_DEV_ID_82573E:
|
|
case E1000_DEV_ID_82573E_IAMT:
|
|
case E1000_DEV_ID_82573L:
|
|
hw->mac_type = e1000_82573;
|
|
break;
|
|
case E1000_DEV_ID_82574L:
|
|
hw->mac_type = e1000_82574;
|
|
break;
|
|
case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
|
|
case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
|
|
case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
|
|
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
|
|
hw->mac_type = e1000_80003es2lan;
|
|
break;
|
|
case E1000_DEV_ID_ICH8_IGP_M_AMT:
|
|
case E1000_DEV_ID_ICH8_IGP_AMT:
|
|
case E1000_DEV_ID_ICH8_IGP_C:
|
|
case E1000_DEV_ID_ICH8_IFE:
|
|
case E1000_DEV_ID_ICH8_IFE_GT:
|
|
case E1000_DEV_ID_ICH8_IFE_G:
|
|
case E1000_DEV_ID_ICH8_IGP_M:
|
|
hw->mac_type = e1000_ich8lan;
|
|
break;
|
|
case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
|
|
case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
|
|
case PCI_DEVICE_ID_INTEL_I210_COPPER:
|
|
case PCI_DEVICE_ID_INTEL_I211_COPPER:
|
|
case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
|
|
case PCI_DEVICE_ID_INTEL_I210_SERDES:
|
|
case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
|
|
case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
|
|
hw->mac_type = e1000_igb;
|
|
break;
|
|
default:
|
|
/* Should never have loaded on this device */
|
|
return -E1000_ERR_MAC_TYPE;
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Reset the transmit and receive units; mask and clear all interrupts.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
void
|
|
e1000_reset_hw(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl;
|
|
uint32_t ctrl_ext;
|
|
uint32_t manc;
|
|
uint32_t pba = 0;
|
|
uint32_t reg;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* get the correct pba value for both PCI and PCIe*/
|
|
if (hw->mac_type < e1000_82571)
|
|
pba = E1000_DEFAULT_PCI_PBA;
|
|
else
|
|
pba = E1000_DEFAULT_PCIE_PBA;
|
|
|
|
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
|
|
if (hw->mac_type == e1000_82542_rev2_0) {
|
|
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_write_config16(hw->pdev, PCI_COMMAND,
|
|
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
|
|
#else
|
|
pci_write_config_word(hw->pdev, PCI_COMMAND,
|
|
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
|
|
#endif
|
|
}
|
|
|
|
/* Clear interrupt mask to stop board from generating interrupts */
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
if (hw->mac_type == e1000_igb)
|
|
E1000_WRITE_REG(hw, I210_IAM, 0);
|
|
E1000_WRITE_REG(hw, IMC, 0xffffffff);
|
|
|
|
/* Disable the Transmit and Receive units. Then delay to allow
|
|
* any pending transactions to complete before we hit the MAC with
|
|
* the global reset.
|
|
*/
|
|
E1000_WRITE_REG(hw, RCTL, 0);
|
|
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
|
|
hw->tbi_compatibility_on = false;
|
|
|
|
/* Delay to allow any outstanding PCI transactions to complete before
|
|
* resetting the device
|
|
*/
|
|
mdelay(10);
|
|
|
|
/* Issue a global reset to the MAC. This will reset the chip's
|
|
* transmit, receive, DMA, and link units. It will not effect
|
|
* the current PCI configuration. The global reset bit is self-
|
|
* clearing, and should clear within a microsecond.
|
|
*/
|
|
DEBUGOUT("Issuing a global reset to MAC\n");
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
|
|
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
|
|
|
/* Force a reload from the EEPROM if necessary */
|
|
if (hw->mac_type == e1000_igb) {
|
|
mdelay(20);
|
|
reg = E1000_READ_REG(hw, STATUS);
|
|
if (reg & E1000_STATUS_PF_RST_DONE)
|
|
DEBUGOUT("PF OK\n");
|
|
reg = E1000_READ_REG(hw, I210_EECD);
|
|
if (reg & E1000_EECD_AUTO_RD)
|
|
DEBUGOUT("EEC OK\n");
|
|
} else if (hw->mac_type < e1000_82540) {
|
|
/* Wait for reset to complete */
|
|
udelay(10);
|
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
/* Wait for EEPROM reload */
|
|
mdelay(2);
|
|
} else {
|
|
/* Wait for EEPROM reload (it happens automatically) */
|
|
mdelay(4);
|
|
/* Dissable HW ARPs on ASF enabled adapters */
|
|
manc = E1000_READ_REG(hw, MANC);
|
|
manc &= ~(E1000_MANC_ARP_EN);
|
|
E1000_WRITE_REG(hw, MANC, manc);
|
|
}
|
|
|
|
/* Clear interrupt mask to stop board from generating interrupts */
|
|
DEBUGOUT("Masking off all interrupts\n");
|
|
if (hw->mac_type == e1000_igb)
|
|
E1000_WRITE_REG(hw, I210_IAM, 0);
|
|
E1000_WRITE_REG(hw, IMC, 0xffffffff);
|
|
|
|
/* Clear any pending interrupt events. */
|
|
E1000_READ_REG(hw, ICR);
|
|
|
|
/* If MWI was previously enabled, reenable it. */
|
|
if (hw->mac_type == e1000_82542_rev2_0) {
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
|
|
#else
|
|
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
|
|
#endif
|
|
}
|
|
if (hw->mac_type != e1000_igb)
|
|
E1000_WRITE_REG(hw, PBA, pba);
|
|
}
|
|
|
|
/******************************************************************************
|
|
*
|
|
* Initialize a number of hardware-dependent bits
|
|
*
|
|
* hw: Struct containing variables accessed by shared code
|
|
*
|
|
* This function contains hardware limitation workarounds for PCI-E adapters
|
|
*
|
|
*****************************************************************************/
|
|
static void
|
|
e1000_initialize_hardware_bits(struct e1000_hw *hw)
|
|
{
|
|
if ((hw->mac_type >= e1000_82571) &&
|
|
(!hw->initialize_hw_bits_disable)) {
|
|
/* Settings common to all PCI-express silicon */
|
|
uint32_t reg_ctrl, reg_ctrl_ext;
|
|
uint32_t reg_tarc0, reg_tarc1;
|
|
uint32_t reg_tctl;
|
|
uint32_t reg_txdctl, reg_txdctl1;
|
|
|
|
/* link autonegotiation/sync workarounds */
|
|
reg_tarc0 = E1000_READ_REG(hw, TARC0);
|
|
reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
|
|
|
|
/* Enable not-done TX descriptor counting */
|
|
reg_txdctl = E1000_READ_REG(hw, TXDCTL);
|
|
reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
|
|
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
|
|
|
|
reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
|
|
reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
|
|
E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
|
|
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_igb: /* IGB is cool */
|
|
return;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
/* Clear PHY TX compatible mode bits */
|
|
reg_tarc1 = E1000_READ_REG(hw, TARC1);
|
|
reg_tarc1 &= ~((1 << 30)|(1 << 29));
|
|
|
|
/* link autonegotiation/sync workarounds */
|
|
reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
|
|
|
|
/* TX ring control fixes */
|
|
reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
|
|
|
|
/* Multiple read bit is reversed polarity */
|
|
reg_tctl = E1000_READ_REG(hw, TCTL);
|
|
if (reg_tctl & E1000_TCTL_MULR)
|
|
reg_tarc1 &= ~(1 << 28);
|
|
else
|
|
reg_tarc1 |= (1 << 28);
|
|
|
|
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
|
|
break;
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
reg_ctrl_ext &= ~(1 << 23);
|
|
reg_ctrl_ext |= (1 << 22);
|
|
|
|
/* TX byte count fix */
|
|
reg_ctrl = E1000_READ_REG(hw, CTRL);
|
|
reg_ctrl &= ~(1 << 29);
|
|
|
|
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
|
|
E1000_WRITE_REG(hw, CTRL, reg_ctrl);
|
|
break;
|
|
case e1000_80003es2lan:
|
|
/* improve small packet performace for fiber/serdes */
|
|
if ((hw->media_type == e1000_media_type_fiber)
|
|
|| (hw->media_type ==
|
|
e1000_media_type_internal_serdes)) {
|
|
reg_tarc0 &= ~(1 << 20);
|
|
}
|
|
|
|
/* Multiple read bit is reversed polarity */
|
|
reg_tctl = E1000_READ_REG(hw, TCTL);
|
|
reg_tarc1 = E1000_READ_REG(hw, TARC1);
|
|
if (reg_tctl & E1000_TCTL_MULR)
|
|
reg_tarc1 &= ~(1 << 28);
|
|
else
|
|
reg_tarc1 |= (1 << 28);
|
|
|
|
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
|
|
break;
|
|
case e1000_ich8lan:
|
|
/* Reduce concurrent DMA requests to 3 from 4 */
|
|
if ((hw->revision_id < 3) ||
|
|
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
|
|
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
|
|
reg_tarc0 |= ((1 << 29)|(1 << 28));
|
|
|
|
reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
reg_ctrl_ext |= (1 << 22);
|
|
E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
|
|
|
|
/* workaround TX hang with TSO=on */
|
|
reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
|
|
|
|
/* Multiple read bit is reversed polarity */
|
|
reg_tctl = E1000_READ_REG(hw, TCTL);
|
|
reg_tarc1 = E1000_READ_REG(hw, TARC1);
|
|
if (reg_tctl & E1000_TCTL_MULR)
|
|
reg_tarc1 &= ~(1 << 28);
|
|
else
|
|
reg_tarc1 |= (1 << 28);
|
|
|
|
/* workaround TX hang with TSO=on */
|
|
reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
|
|
|
|
E1000_WRITE_REG(hw, TARC1, reg_tarc1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, TARC0, reg_tarc0);
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Performs basic configuration of the adapter.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Assumes that the controller has previously been reset and is in a
|
|
* post-reset uninitialized state. Initializes the receive address registers,
|
|
* multicast table, and VLAN filter table. Calls routines to setup link
|
|
* configuration and flow control settings. Clears all on-chip counters. Leaves
|
|
* the transmit and receive units disabled and uninitialized.
|
|
*****************************************************************************/
|
|
static int
|
|
e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
|
|
{
|
|
uint32_t ctrl;
|
|
uint32_t i;
|
|
int32_t ret_val;
|
|
uint16_t pcix_cmd_word;
|
|
uint16_t pcix_stat_hi_word;
|
|
uint16_t cmd_mmrbc;
|
|
uint16_t stat_mmrbc;
|
|
uint32_t mta_size;
|
|
uint32_t reg_data;
|
|
uint32_t ctrl_ext;
|
|
DEBUGFUNC();
|
|
/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
|
|
if ((hw->mac_type == e1000_ich8lan) &&
|
|
((hw->revision_id < 3) ||
|
|
((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
|
|
(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
|
|
reg_data = E1000_READ_REG(hw, STATUS);
|
|
reg_data &= ~0x80000000;
|
|
E1000_WRITE_REG(hw, STATUS, reg_data);
|
|
}
|
|
/* Do not need initialize Identification LED */
|
|
|
|
/* Set the media type and TBI compatibility */
|
|
e1000_set_media_type(hw);
|
|
|
|
/* Must be called after e1000_set_media_type
|
|
* because media_type is used */
|
|
e1000_initialize_hardware_bits(hw);
|
|
|
|
/* Disabling VLAN filtering. */
|
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
|
/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
|
|
if (hw->mac_type != e1000_ich8lan) {
|
|
if (hw->mac_type < e1000_82545_rev_3)
|
|
E1000_WRITE_REG(hw, VET, 0);
|
|
e1000_clear_vfta(hw);
|
|
}
|
|
|
|
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
|
|
if (hw->mac_type == e1000_82542_rev2_0) {
|
|
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_write_config16(hw->pdev, PCI_COMMAND,
|
|
hw->
|
|
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
|
|
#else
|
|
pci_write_config_word(hw->pdev, PCI_COMMAND,
|
|
hw->
|
|
pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
|
|
#endif
|
|
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
|
|
E1000_WRITE_FLUSH(hw);
|
|
mdelay(5);
|
|
}
|
|
|
|
/* Setup the receive address. This involves initializing all of the Receive
|
|
* Address Registers (RARs 0 - 15).
|
|
*/
|
|
e1000_init_rx_addrs(hw, enetaddr);
|
|
|
|
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
|
|
if (hw->mac_type == e1000_82542_rev2_0) {
|
|
E1000_WRITE_REG(hw, RCTL, 0);
|
|
E1000_WRITE_FLUSH(hw);
|
|
mdelay(1);
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
|
|
#else
|
|
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
|
|
#endif
|
|
}
|
|
|
|
/* Zero out the Multicast HASH table */
|
|
DEBUGOUT("Zeroing the MTA\n");
|
|
mta_size = E1000_MC_TBL_SIZE;
|
|
if (hw->mac_type == e1000_ich8lan)
|
|
mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
|
|
for (i = 0; i < mta_size; i++) {
|
|
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
|
/* use write flush to prevent Memory Write Block (MWB) from
|
|
* occuring when accessing our register space */
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82545_rev_3:
|
|
case e1000_82546_rev_3:
|
|
case e1000_igb:
|
|
break;
|
|
default:
|
|
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
|
|
if (hw->bus_type == e1000_bus_type_pcix) {
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
|
|
&pcix_cmd_word);
|
|
dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
|
|
&pcix_stat_hi_word);
|
|
#else
|
|
pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
|
|
&pcix_cmd_word);
|
|
pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
|
|
&pcix_stat_hi_word);
|
|
#endif
|
|
cmd_mmrbc =
|
|
(pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
|
|
PCIX_COMMAND_MMRBC_SHIFT;
|
|
stat_mmrbc =
|
|
(pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
|
|
PCIX_STATUS_HI_MMRBC_SHIFT;
|
|
if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
|
|
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
|
|
if (cmd_mmrbc > stat_mmrbc) {
|
|
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
|
|
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
|
|
pcix_cmd_word);
|
|
#else
|
|
pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
|
|
pcix_cmd_word);
|
|
#endif
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* More time needed for PHY to initialize */
|
|
if (hw->mac_type == e1000_ich8lan)
|
|
mdelay(15);
|
|
if (hw->mac_type == e1000_igb)
|
|
mdelay(15);
|
|
|
|
/* Call a subroutine to configure the link and setup flow control. */
|
|
ret_val = e1000_setup_link(hw);
|
|
|
|
/* Set the transmit descriptor write-back policy */
|
|
if (hw->mac_type > e1000_82544) {
|
|
ctrl = E1000_READ_REG(hw, TXDCTL);
|
|
ctrl =
|
|
(ctrl & ~E1000_TXDCTL_WTHRESH) |
|
|
E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
E1000_WRITE_REG(hw, TXDCTL, ctrl);
|
|
}
|
|
|
|
/* Set the receive descriptor write back policy */
|
|
if (hw->mac_type >= e1000_82571) {
|
|
ctrl = E1000_READ_REG(hw, RXDCTL);
|
|
ctrl =
|
|
(ctrl & ~E1000_RXDCTL_WTHRESH) |
|
|
E1000_RXDCTL_FULL_RX_DESC_WB;
|
|
E1000_WRITE_REG(hw, RXDCTL, ctrl);
|
|
}
|
|
|
|
switch (hw->mac_type) {
|
|
default:
|
|
break;
|
|
case e1000_80003es2lan:
|
|
/* Enable retransmit on late collisions */
|
|
reg_data = E1000_READ_REG(hw, TCTL);
|
|
reg_data |= E1000_TCTL_RTLC;
|
|
E1000_WRITE_REG(hw, TCTL, reg_data);
|
|
|
|
/* Configure Gigabit Carry Extend Padding */
|
|
reg_data = E1000_READ_REG(hw, TCTL_EXT);
|
|
reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
|
|
reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
|
|
E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
|
|
|
|
/* Configure Transmit Inter-Packet Gap */
|
|
reg_data = E1000_READ_REG(hw, TIPG);
|
|
reg_data &= ~E1000_TIPG_IPGT_MASK;
|
|
reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
|
|
E1000_WRITE_REG(hw, TIPG, reg_data);
|
|
|
|
reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
|
|
reg_data &= ~0x00100000;
|
|
E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
|
|
/* Fall through */
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_ich8lan:
|
|
ctrl = E1000_READ_REG(hw, TXDCTL1);
|
|
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
|
|
| E1000_TXDCTL_FULL_TX_DESC_WB;
|
|
E1000_WRITE_REG(hw, TXDCTL1, ctrl);
|
|
break;
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
reg_data = E1000_READ_REG(hw, GCR);
|
|
reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
|
|
E1000_WRITE_REG(hw, GCR, reg_data);
|
|
case e1000_igb:
|
|
break;
|
|
}
|
|
|
|
if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
|
|
hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
|
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
/* Relaxed ordering must be disabled to avoid a parity
|
|
* error crash in a PCI slot. */
|
|
ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Configures flow control and link settings.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Determines which flow control settings to use. Calls the apropriate media-
|
|
* specific link configuration function. Configures the flow control settings.
|
|
* Assuming the adapter has a valid link partner, a valid link should be
|
|
* established. Assumes the hardware has previously been reset and the
|
|
* transmitter and receiver are not enabled.
|
|
*****************************************************************************/
|
|
static int
|
|
e1000_setup_link(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
uint32_t ctrl_ext;
|
|
uint16_t eeprom_data;
|
|
#endif
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* In the case of the phy reset being blocked, we already have a link.
|
|
* We do not have to set it up again. */
|
|
if (e1000_check_phy_reset_block(hw))
|
|
return E1000_SUCCESS;
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
/* Read and store word 0x0F of the EEPROM. This word contains bits
|
|
* that determine the hardware's default PAUSE (flow control) mode,
|
|
* a bit that determines whether the HW defaults to enabling or
|
|
* disabling auto-negotiation, and the direction of the
|
|
* SW defined pins. If there is no SW over-ride of the flow
|
|
* control setting, then the variable hw->fc will
|
|
* be initialized based on a value in the EEPROM.
|
|
*/
|
|
if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
|
|
&eeprom_data) < 0) {
|
|
DEBUGOUT("EEPROM Read Error\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
#endif
|
|
if (hw->fc == e1000_fc_default) {
|
|
switch (hw->mac_type) {
|
|
case e1000_ich8lan:
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
case e1000_igb:
|
|
hw->fc = e1000_fc_full;
|
|
break;
|
|
default:
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
ret_val = e1000_read_eeprom(hw,
|
|
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
|
|
if (ret_val) {
|
|
DEBUGOUT("EEPROM Read Error\n");
|
|
return -E1000_ERR_EEPROM;
|
|
}
|
|
if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
|
|
hw->fc = e1000_fc_none;
|
|
else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
|
|
EEPROM_WORD0F_ASM_DIR)
|
|
hw->fc = e1000_fc_tx_pause;
|
|
else
|
|
#endif
|
|
hw->fc = e1000_fc_full;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* We want to save off the original Flow Control configuration just
|
|
* in case we get disconnected and then reconnected into a different
|
|
* hub or switch with different Flow Control capabilities.
|
|
*/
|
|
if (hw->mac_type == e1000_82542_rev2_0)
|
|
hw->fc &= (~e1000_fc_tx_pause);
|
|
|
|
if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
|
|
hw->fc &= (~e1000_fc_rx_pause);
|
|
|
|
hw->original_fc = hw->fc;
|
|
|
|
DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
|
|
* polarity value for the SW controlled pins, and setup the
|
|
* Extended Device Control reg with that info.
|
|
* This is needed because one of the SW controlled pins is used for
|
|
* signal detection. So this should be done before e1000_setup_pcs_link()
|
|
* or e1000_phy_setup() is called.
|
|
*/
|
|
if (hw->mac_type == e1000_82543) {
|
|
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
|
|
SWDPIO__EXT_SHIFT);
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
}
|
|
#endif
|
|
|
|
/* Call the necessary subroutine to configure the link. */
|
|
ret_val = (hw->media_type == e1000_media_type_fiber) ?
|
|
e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
|
|
if (ret_val < 0) {
|
|
return ret_val;
|
|
}
|
|
|
|
/* Initialize the flow control address, type, and PAUSE timer
|
|
* registers to their default values. This is done even if flow
|
|
* control is disabled, because it does not hurt anything to
|
|
* initialize these registers.
|
|
*/
|
|
DEBUGOUT("Initializing the Flow Control address, type"
|
|
"and timer regs\n");
|
|
|
|
/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
|
|
if (hw->mac_type != e1000_ich8lan) {
|
|
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
|
|
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
|
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
|
|
|
|
/* Set the flow control receive threshold registers. Normally,
|
|
* these registers will be set to a default threshold that may be
|
|
* adjusted later by the driver's runtime code. However, if the
|
|
* ability to transmit pause frames in not enabled, then these
|
|
* registers will be set to 0.
|
|
*/
|
|
if (!(hw->fc & e1000_fc_tx_pause)) {
|
|
E1000_WRITE_REG(hw, FCRTL, 0);
|
|
E1000_WRITE_REG(hw, FCRTH, 0);
|
|
} else {
|
|
/* We need to set up the Receive Threshold high and low water marks
|
|
* as well as (optionally) enabling the transmission of XON frames.
|
|
*/
|
|
if (hw->fc_send_xon) {
|
|
E1000_WRITE_REG(hw, FCRTL,
|
|
(hw->fc_low_water | E1000_FCRTL_XONE));
|
|
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
|
|
} else {
|
|
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
|
|
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
|
|
}
|
|
}
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Sets up link for a fiber based adapter
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Manipulates Physical Coding Sublayer functions in order to configure
|
|
* link. Assumes the hardware has been previously reset and the transmitter
|
|
* and receiver are not enabled.
|
|
*****************************************************************************/
|
|
static int
|
|
e1000_setup_fiber_link(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl;
|
|
uint32_t status;
|
|
uint32_t txcw = 0;
|
|
uint32_t i;
|
|
uint32_t signal;
|
|
int32_t ret_val;
|
|
|
|
DEBUGFUNC();
|
|
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
|
|
* set when the optics detect a signal. On older adapters, it will be
|
|
* cleared when there is a signal
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
|
|
signal = E1000_CTRL_SWDPIN1;
|
|
else
|
|
signal = 0;
|
|
|
|
printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
|
|
ctrl);
|
|
/* Take the link out of reset */
|
|
ctrl &= ~(E1000_CTRL_LRST);
|
|
|
|
e1000_config_collision_dist(hw);
|
|
|
|
/* Check for a software override of the flow control settings, and setup
|
|
* the device accordingly. If auto-negotiation is enabled, then software
|
|
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
|
|
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
|
|
* auto-negotiation is disabled, then software will have to manually
|
|
* configure the two flow control enable bits in the CTRL register.
|
|
*
|
|
* The possible values of the "fc" parameter are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames, but
|
|
* not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames but we do
|
|
* not support receiving pause frames).
|
|
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
|
*/
|
|
switch (hw->fc) {
|
|
case e1000_fc_none:
|
|
/* Flow control is completely disabled by a software over-ride. */
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
|
break;
|
|
case e1000_fc_rx_pause:
|
|
/* RX Flow control is enabled and TX Flow control is disabled by a
|
|
* software over-ride. Since there really isn't a way to advertise
|
|
* that we are capable of RX Pause ONLY, we will advertise that we
|
|
* support both symmetric and asymmetric RX PAUSE. Later, we will
|
|
* disable the adapter's ability to send PAUSE frames.
|
|
*/
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
break;
|
|
case e1000_fc_tx_pause:
|
|
/* TX Flow control is enabled, and RX Flow control is disabled, by a
|
|
* software over-ride.
|
|
*/
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
|
break;
|
|
case e1000_fc_full:
|
|
/* Flow control (both RX and TX) is enabled by a software over-ride. */
|
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly\n");
|
|
return -E1000_ERR_CONFIG;
|
|
break;
|
|
}
|
|
|
|
/* Since auto-negotiation is enabled, take the link out of reset (the link
|
|
* will be in reset, because we previously reset the chip). This will
|
|
* restart auto-negotiation. If auto-neogtiation is successful then the
|
|
* link-up status bit will be set and the flow control enable bits (RFCE
|
|
* and TFCE) will be set according to their negotiated value.
|
|
*/
|
|
DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);
|
|
|
|
E1000_WRITE_REG(hw, TXCW, txcw);
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
hw->txcw = txcw;
|
|
mdelay(1);
|
|
|
|
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
|
|
* indication in the Device Status Register. Time-out if a link isn't
|
|
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
|
|
* less than 500 milliseconds even if the other end is doing it in SW).
|
|
*/
|
|
if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
|
|
DEBUGOUT("Looking for Link\n");
|
|
for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
|
|
mdelay(10);
|
|
status = E1000_READ_REG(hw, STATUS);
|
|
if (status & E1000_STATUS_LU)
|
|
break;
|
|
}
|
|
if (i == (LINK_UP_TIMEOUT / 10)) {
|
|
/* AutoNeg failed to achieve a link, so we'll call
|
|
* e1000_check_for_link. This routine will force the link up if we
|
|
* detect a signal. This will allow us to communicate with
|
|
* non-autonegotiating link partners.
|
|
*/
|
|
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
|
|
hw->autoneg_failed = 1;
|
|
ret_val = e1000_check_for_link(hw);
|
|
if (ret_val < 0) {
|
|
DEBUGOUT("Error while checking for link\n");
|
|
return ret_val;
|
|
}
|
|
hw->autoneg_failed = 0;
|
|
} else {
|
|
hw->autoneg_failed = 0;
|
|
DEBUGOUT("Valid Link Found\n");
|
|
}
|
|
} else {
|
|
DEBUGOUT("No Signal Detected\n");
|
|
return -E1000_ERR_NOLINK;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Make sure we have a valid PHY and change PHY mode before link setup.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
static int32_t
|
|
e1000_copper_link_preconfig(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl;
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
/* With 82543, we need to force speed and duplex on the MAC equal to what
|
|
* the PHY speed and duplex configuration is. In addition, we need to
|
|
* perform a hardware reset on the PHY to take it out of reset.
|
|
*/
|
|
if (hw->mac_type > e1000_82543) {
|
|
ctrl |= E1000_CTRL_SLU;
|
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
} else {
|
|
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
|
|
| E1000_CTRL_SLU);
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
ret_val = e1000_phy_hw_reset(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Make sure we have a valid PHY */
|
|
ret_val = e1000_detect_gig_phy(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error, did not detect valid phy.\n");
|
|
return ret_val;
|
|
}
|
|
DEBUGOUT("Phy ID = %x\n", hw->phy_id);
|
|
|
|
/* Set PHY to class A mode (if necessary) */
|
|
ret_val = e1000_set_phy_mode(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
if ((hw->mac_type == e1000_82545_rev_3) ||
|
|
(hw->mac_type == e1000_82546_rev_3)) {
|
|
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
|
|
&phy_data);
|
|
phy_data |= 0x00000008;
|
|
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
|
|
phy_data);
|
|
}
|
|
|
|
if (hw->mac_type <= e1000_82543 ||
|
|
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
|
|
hw->mac_type == e1000_82541_rev_2
|
|
|| hw->mac_type == e1000_82547_rev_2)
|
|
hw->phy_reset_disable = false;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* This function sets the lplu state according to the active flag. When
|
|
* activating lplu this function also disables smart speed and vise versa.
|
|
* lplu will not be activated unless the device autonegotiation advertisment
|
|
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* hw: Struct containing variables accessed by shared code
|
|
* active - true to enable lplu false to disable lplu.
|
|
*
|
|
* returns: - E1000_ERR_PHY if fail to read/write the PHY
|
|
* E1000_SUCCESS at any other case.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static int32_t
|
|
e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
|
|
{
|
|
uint32_t phy_ctrl = 0;
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
DEBUGFUNC();
|
|
|
|
if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
|
|
&& hw->phy_type != e1000_phy_igp_3)
|
|
return E1000_SUCCESS;
|
|
|
|
/* During driver activity LPLU should not be used or it will attain link
|
|
* from the lowest speeds starting from 10Mbps. The capability is used
|
|
* for Dx transitions and states */
|
|
if (hw->mac_type == e1000_82541_rev_2
|
|
|| hw->mac_type == e1000_82547_rev_2) {
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
&phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (hw->mac_type == e1000_ich8lan) {
|
|
/* MAC writes into PHY register based on the state transition
|
|
* and start auto-negotiation. SW driver can overwrite the
|
|
* settings in CSR PHY power control E1000_PHY_CTRL register. */
|
|
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
|
|
} else {
|
|
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
&phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
if (!active) {
|
|
if (hw->mac_type == e1000_82541_rev_2 ||
|
|
hw->mac_type == e1000_82547_rev_2) {
|
|
phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
|
|
ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
|
|
phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
|
|
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
} else {
|
|
phy_data &= ~IGP02E1000_PM_D3_LPLU;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
|
|
* Dx states where the power conservation is most important. During
|
|
* driver activity we should enable SmartSpeed, so performance is
|
|
* maintained. */
|
|
if (hw->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (hw->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
|
|
|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
|
|
(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
|
|
|
|
if (hw->mac_type == e1000_82541_rev_2 ||
|
|
hw->mac_type == e1000_82547_rev_2) {
|
|
phy_data |= IGP01E1000_GMII_FLEX_SPD;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_GMII_FIFO, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
|
|
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
} else {
|
|
phy_data |= IGP02E1000_PM_D3_LPLU;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* When LPLU is enabled we should disable SmartSpeed */
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
&phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
|
|
phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* This function sets the lplu d0 state according to the active flag. When
|
|
* activating lplu this function also disables smart speed and vise versa.
|
|
* lplu will not be activated unless the device autonegotiation advertisment
|
|
* meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
|
|
* hw: Struct containing variables accessed by shared code
|
|
* active - true to enable lplu false to disable lplu.
|
|
*
|
|
* returns: - E1000_ERR_PHY if fail to read/write the PHY
|
|
* E1000_SUCCESS at any other case.
|
|
*
|
|
****************************************************************************/
|
|
|
|
static int32_t
|
|
e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
|
|
{
|
|
uint32_t phy_ctrl = 0;
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type <= e1000_82547_rev_2)
|
|
return E1000_SUCCESS;
|
|
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
|
|
} else if (hw->mac_type == e1000_igb) {
|
|
phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
|
|
} else {
|
|
ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
|
|
&phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
if (!active) {
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
|
|
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
} else if (hw->mac_type == e1000_igb) {
|
|
phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
|
|
E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
|
|
} else {
|
|
phy_data &= ~IGP02E1000_PM_D0_LPLU;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
if (hw->mac_type == e1000_igb)
|
|
return E1000_SUCCESS;
|
|
|
|
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
|
|
* Dx states where the power conservation is most important. During
|
|
* driver activity we should enable SmartSpeed, so performance is
|
|
* maintained. */
|
|
if (hw->smart_speed == e1000_smart_speed_on) {
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (hw->smart_speed == e1000_smart_speed_off) {
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
|
|
} else {
|
|
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
|
|
E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
|
|
} else if (hw->mac_type == e1000_igb) {
|
|
phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
|
|
E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
|
|
} else {
|
|
phy_data |= IGP02E1000_PM_D0_LPLU;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP02E1000_PHY_POWER_MGMT, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
if (hw->mac_type == e1000_igb)
|
|
return E1000_SUCCESS;
|
|
|
|
/* When LPLU is enabled we should disable SmartSpeed */
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/********************************************************************
|
|
* Copper link setup for e1000_phy_igp series.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*********************************************************************/
|
|
static int32_t
|
|
e1000_copper_link_igp_setup(struct e1000_hw *hw)
|
|
{
|
|
uint32_t led_ctrl;
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->phy_reset_disable)
|
|
return E1000_SUCCESS;
|
|
|
|
ret_val = e1000_phy_reset(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Resetting the PHY\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* Wait 15ms for MAC to configure PHY from eeprom settings */
|
|
mdelay(15);
|
|
if (hw->mac_type != e1000_ich8lan) {
|
|
/* Configure activity LED after PHY reset */
|
|
led_ctrl = E1000_READ_REG(hw, LEDCTL);
|
|
led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
|
|
}
|
|
|
|
/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
|
|
if (hw->phy_type == e1000_phy_igp) {
|
|
/* disable lplu d3 during driver init */
|
|
ret_val = e1000_set_d3_lplu_state(hw, false);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Disabling LPLU D3\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* disable lplu d0 during driver init */
|
|
ret_val = e1000_set_d0_lplu_state(hw, false);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Disabling LPLU D0\n");
|
|
return ret_val;
|
|
}
|
|
/* Configure mdi-mdix settings */
|
|
ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
hw->dsp_config_state = e1000_dsp_config_disabled;
|
|
/* Force MDI for earlier revs of the IGP PHY */
|
|
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
|
|
| IGP01E1000_PSCR_FORCE_MDI_MDIX);
|
|
hw->mdix = 1;
|
|
|
|
} else {
|
|
hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
|
|
|
switch (hw->mdix) {
|
|
case 1:
|
|
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
break;
|
|
case 2:
|
|
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
|
break;
|
|
case 0:
|
|
default:
|
|
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
|
|
break;
|
|
}
|
|
}
|
|
ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* set auto-master slave resolution settings */
|
|
if (hw->autoneg) {
|
|
e1000_ms_type phy_ms_setting = hw->master_slave;
|
|
|
|
if (hw->ffe_config_state == e1000_ffe_config_active)
|
|
hw->ffe_config_state = e1000_ffe_config_enabled;
|
|
|
|
if (hw->dsp_config_state == e1000_dsp_config_activated)
|
|
hw->dsp_config_state = e1000_dsp_config_enabled;
|
|
|
|
/* when autonegotiation advertisment is only 1000Mbps then we
|
|
* should disable SmartSpeed and enable Auto MasterSlave
|
|
* resolution as hardware default. */
|
|
if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
|
|
/* Disable SmartSpeed */
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
IGP01E1000_PHY_PORT_CONFIG, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
/* Set auto Master/Slave resolution process */
|
|
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
|
&phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
phy_data &= ~CR_1000T_MS_ENABLE;
|
|
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
|
|
phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* load defaults for future use */
|
|
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
|
|
((phy_data & CR_1000T_MS_VALUE) ?
|
|
e1000_ms_force_master :
|
|
e1000_ms_force_slave) :
|
|
e1000_ms_auto;
|
|
|
|
switch (phy_ms_setting) {
|
|
case e1000_ms_force_master:
|
|
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
|
break;
|
|
case e1000_ms_force_slave:
|
|
phy_data |= CR_1000T_MS_ENABLE;
|
|
phy_data &= ~(CR_1000T_MS_VALUE);
|
|
break;
|
|
case e1000_ms_auto:
|
|
phy_data &= ~CR_1000T_MS_ENABLE;
|
|
default:
|
|
break;
|
|
}
|
|
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* This function checks the mode of the firmware.
|
|
*
|
|
* returns - true when the mode is IAMT or false.
|
|
****************************************************************************/
|
|
bool
|
|
e1000_check_mng_mode(struct e1000_hw *hw)
|
|
{
|
|
uint32_t fwsm;
|
|
DEBUGFUNC();
|
|
|
|
fwsm = E1000_READ_REG(hw, FWSM);
|
|
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
if ((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
(E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
|
|
return true;
|
|
} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
|
|
(E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static int32_t
|
|
e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
|
|
{
|
|
uint16_t swfw = E1000_SWFW_PHY0_SM;
|
|
uint32_t reg_val;
|
|
DEBUGFUNC();
|
|
|
|
if (e1000_is_second_port(hw))
|
|
swfw = E1000_SWFW_PHY1_SM;
|
|
|
|
if (e1000_swfw_sync_acquire(hw, swfw))
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
|
|
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
|
|
& E1000_KUMCTRLSTA_OFFSET) | data;
|
|
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
|
|
udelay(2);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
static int32_t
|
|
e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
|
|
{
|
|
uint16_t swfw = E1000_SWFW_PHY0_SM;
|
|
uint32_t reg_val;
|
|
DEBUGFUNC();
|
|
|
|
if (e1000_is_second_port(hw))
|
|
swfw = E1000_SWFW_PHY1_SM;
|
|
|
|
if (e1000_swfw_sync_acquire(hw, swfw)) {
|
|
debug("%s[%i]\n", __func__, __LINE__);
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
/* Write register address */
|
|
reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
|
|
E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
|
|
E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
|
|
udelay(2);
|
|
|
|
/* Read the data returned */
|
|
reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
|
|
*data = (uint16_t)reg_val;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/********************************************************************
|
|
* Copper link setup for e1000_phy_gg82563 series.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*********************************************************************/
|
|
static int32_t
|
|
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
uint32_t reg_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (!hw->phy_reset_disable) {
|
|
/* Enable CRS on TX for half-duplex operation. */
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
|
|
/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
|
|
phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
|
|
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
GG82563_PHY_MAC_SPEC_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Options:
|
|
* MDI/MDI-X = 0 (default)
|
|
* 0 - Auto for all speeds
|
|
* 1 - MDI mode
|
|
* 2 - MDI-X mode
|
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
|
*/
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
GG82563_PHY_SPEC_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
|
|
|
|
switch (hw->mdix) {
|
|
case 1:
|
|
phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
|
|
break;
|
|
case 2:
|
|
phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
|
|
break;
|
|
case 0:
|
|
default:
|
|
phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
|
|
break;
|
|
}
|
|
|
|
/* Options:
|
|
* disable_polarity_correction = 0 (default)
|
|
* Automatic Correction for Reversed Cable Polarity
|
|
* 0 - Disabled
|
|
* 1 - Enabled
|
|
*/
|
|
phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
GG82563_PHY_SPEC_CTRL, phy_data);
|
|
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* SW Reset the PHY so all changes take effect */
|
|
ret_val = e1000_phy_reset(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Resetting the PHY\n");
|
|
return ret_val;
|
|
}
|
|
} /* phy_reset_disable */
|
|
|
|
if (hw->mac_type == e1000_80003es2lan) {
|
|
/* Bypass RX and TX FIFO's */
|
|
ret_val = e1000_write_kmrn_reg(hw,
|
|
E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
|
|
E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
|
|
| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
GG82563_PHY_SPEC_CTRL_2, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
GG82563_PHY_SPEC_CTRL_2, phy_data);
|
|
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
reg_data = E1000_READ_REG(hw, CTRL_EXT);
|
|
reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
|
|
E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
|
|
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Do not init these registers when the HW is in IAMT mode, since the
|
|
* firmware will have already initialized them. We only initialize
|
|
* them if the HW is not in IAMT mode.
|
|
*/
|
|
if (e1000_check_mng_mode(hw) == false) {
|
|
/* Enable Electrical Idle on the PHY */
|
|
phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
GG82563_PHY_PWR_MGMT_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
GG82563_PHY_KMRN_MODE_CTRL, phy_data);
|
|
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* Workaround: Disable padding in Kumeran interface in the MAC
|
|
* and in the PHY to avoid CRC errors.
|
|
*/
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
GG82563_PHY_INBAND_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
phy_data |= GG82563_ICR_DIS_PADDING;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
GG82563_PHY_INBAND_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/********************************************************************
|
|
* Copper link setup for e1000_phy_m88 series.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*********************************************************************/
|
|
static int32_t
|
|
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->phy_reset_disable)
|
|
return E1000_SUCCESS;
|
|
|
|
/* Enable CRS on TX. This must be set for half-duplex operation. */
|
|
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
|
|
|
/* Options:
|
|
* MDI/MDI-X = 0 (default)
|
|
* 0 - Auto for all speeds
|
|
* 1 - MDI mode
|
|
* 2 - MDI-X mode
|
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
|
*/
|
|
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
|
|
|
switch (hw->mdix) {
|
|
case 1:
|
|
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
|
break;
|
|
case 2:
|
|
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
|
break;
|
|
case 3:
|
|
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
|
break;
|
|
case 0:
|
|
default:
|
|
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
|
break;
|
|
}
|
|
|
|
/* Options:
|
|
* disable_polarity_correction = 0 (default)
|
|
* Automatic Correction for Reversed Cable Polarity
|
|
* 0 - Disabled
|
|
* 1 - Enabled
|
|
*/
|
|
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
|
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (hw->phy_revision < M88E1011_I_REV_4) {
|
|
/* Force TX_CLK in the Extended PHY Specific Control Register
|
|
* to 25MHz clock.
|
|
*/
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
|
|
|
if ((hw->phy_revision == E1000_REVISION_2) &&
|
|
(hw->phy_id == M88E1111_I_PHY_ID)) {
|
|
/* Vidalia Phy, set the downshift counter to 5x */
|
|
phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
|
|
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else {
|
|
/* Configure Master and Slave downshift values */
|
|
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
|
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
|
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
|
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
|
ret_val = e1000_write_phy_reg(hw,
|
|
M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* SW Reset the PHY so all changes take effect */
|
|
ret_val = e1000_phy_reset(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Resetting the PHY\n");
|
|
return ret_val;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/********************************************************************
|
|
* Setup auto-negotiation and flow control advertisements,
|
|
* and then perform auto-negotiation.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*********************************************************************/
|
|
static int32_t
|
|
e1000_copper_link_autoneg(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Perform some bounds checking on the hw->autoneg_advertised
|
|
* parameter. If this variable is zero, then set it to the default.
|
|
*/
|
|
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
|
/* If autoneg_advertised is zero, we assume it was not defaulted
|
|
* by the calling code so we set to advertise full capability.
|
|
*/
|
|
if (hw->autoneg_advertised == 0)
|
|
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
|
|
|
/* IFE phy only supports 10/100 */
|
|
if (hw->phy_type == e1000_phy_ife)
|
|
hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
|
|
|
|
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
|
|
ret_val = e1000_phy_setup_autoneg(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Setting up Auto-Negotiation\n");
|
|
return ret_val;
|
|
}
|
|
DEBUGOUT("Restarting Auto-Neg\n");
|
|
|
|
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
|
* the Auto Neg Restart bit in the PHY control register.
|
|
*/
|
|
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
|
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Does the user want to wait for Auto-Neg to complete here, or
|
|
* check at a later time (for example, callback routine).
|
|
*/
|
|
/* If we do not wait for autonegtation to complete I
|
|
* do not see a valid link status.
|
|
* wait_autoneg_complete = 1 .
|
|
*/
|
|
if (hw->wait_autoneg_complete) {
|
|
ret_val = e1000_wait_autoneg(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error while waiting for autoneg"
|
|
"to complete\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
hw->get_link_status = true;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Config the MAC and the PHY after link is up.
|
|
* 1) Set up the MAC to the current PHY speed/duplex
|
|
* if we are on 82543. If we
|
|
* are on newer silicon, we only need to configure
|
|
* collision distance in the Transmit Control Register.
|
|
* 2) Set up flow control on the MAC to that established with
|
|
* the link partner.
|
|
* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
static int32_t
|
|
e1000_copper_link_postconfig(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type >= e1000_82544) {
|
|
e1000_config_collision_dist(hw);
|
|
} else {
|
|
ret_val = e1000_config_mac_to_phy(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error configuring MAC to PHY settings\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
ret_val = e1000_config_fc_after_link_up(hw);
|
|
if (ret_val) {
|
|
DEBUGOUT("Error Configuring Flow Control\n");
|
|
return ret_val;
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Detects which PHY is present and setup the speed and duplex
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
static int
|
|
e1000_setup_copper_link(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t i;
|
|
uint16_t phy_data;
|
|
uint16_t reg_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_80003es2lan:
|
|
case e1000_ich8lan:
|
|
/* Set the mac to wait the maximum time between each
|
|
* iteration and increase the max iterations when
|
|
* polling the phy; this fixes erroneous timeouts at 10Mbps. */
|
|
ret_val = e1000_write_kmrn_reg(hw,
|
|
GG82563_REG(0x34, 4), 0xFFFF);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000_read_kmrn_reg(hw,
|
|
GG82563_REG(0x34, 9), ®_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
reg_data |= 0x3F;
|
|
ret_val = e1000_write_kmrn_reg(hw,
|
|
GG82563_REG(0x34, 9), reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Check if it is a valid PHY and set PHY mode if necessary. */
|
|
ret_val = e1000_copper_link_preconfig(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
switch (hw->mac_type) {
|
|
case e1000_80003es2lan:
|
|
/* Kumeran registers are written-only */
|
|
reg_data =
|
|
E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
|
|
reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
|
|
ret_val = e1000_write_kmrn_reg(hw,
|
|
E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (hw->phy_type == e1000_phy_igp ||
|
|
hw->phy_type == e1000_phy_igp_3 ||
|
|
hw->phy_type == e1000_phy_igp_2) {
|
|
ret_val = e1000_copper_link_igp_setup(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (hw->phy_type == e1000_phy_m88 ||
|
|
hw->phy_type == e1000_phy_igb) {
|
|
ret_val = e1000_copper_link_mgp_setup(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else if (hw->phy_type == e1000_phy_gg82563) {
|
|
ret_val = e1000_copper_link_ggp_setup(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
/* always auto */
|
|
/* Setup autoneg and flow control advertisement
|
|
* and perform autonegotiation */
|
|
ret_val = e1000_copper_link_autoneg(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Check link status. Wait up to 100 microseconds for link to become
|
|
* valid.
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (phy_data & MII_SR_LINK_STATUS) {
|
|
/* Config the MAC and PHY after link is up */
|
|
ret_val = e1000_copper_link_postconfig(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
DEBUGOUT("Valid link established!!!\n");
|
|
return E1000_SUCCESS;
|
|
}
|
|
udelay(10);
|
|
}
|
|
|
|
DEBUGOUT("Unable to establish link!!!\n");
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Configures PHY autoneg and flow control advertisement settings
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
int32_t
|
|
e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t mii_autoneg_adv_reg;
|
|
uint16_t mii_1000t_ctrl_reg;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
|
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (hw->phy_type != e1000_phy_ife) {
|
|
/* Read the MII 1000Base-T Control Register (Address 9). */
|
|
ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
|
&mii_1000t_ctrl_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
} else
|
|
mii_1000t_ctrl_reg = 0;
|
|
|
|
/* Need to parse both autoneg_advertised and fc and set up
|
|
* the appropriate PHY registers. First we will parse for
|
|
* autoneg_advertised software override. Since we can advertise
|
|
* a plethora of combinations, we need to check each bit
|
|
* individually.
|
|
*/
|
|
|
|
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
|
* Advertisement Register (Address 4) and the 1000 mb speed bits in
|
|
* the 1000Base-T Control Register (Address 9).
|
|
*/
|
|
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
|
|
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
|
|
|
|
DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);
|
|
|
|
/* Do we want to advertise 10 Mb Half Duplex? */
|
|
if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
|
|
DEBUGOUT("Advertise 10mb Half duplex\n");
|
|
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
|
}
|
|
|
|
/* Do we want to advertise 10 Mb Full Duplex? */
|
|
if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
|
|
DEBUGOUT("Advertise 10mb Full duplex\n");
|
|
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
|
}
|
|
|
|
/* Do we want to advertise 100 Mb Half Duplex? */
|
|
if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
|
|
DEBUGOUT("Advertise 100mb Half duplex\n");
|
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
|
}
|
|
|
|
/* Do we want to advertise 100 Mb Full Duplex? */
|
|
if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
|
|
DEBUGOUT("Advertise 100mb Full duplex\n");
|
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
|
}
|
|
|
|
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
|
if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
|
|
DEBUGOUT
|
|
("Advertise 1000mb Half duplex requested, request denied!\n");
|
|
}
|
|
|
|
/* Do we want to advertise 1000 Mb Full Duplex? */
|
|
if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
|
|
DEBUGOUT("Advertise 1000mb Full duplex\n");
|
|
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
|
}
|
|
|
|
/* Check for a software override of the flow control settings, and
|
|
* setup the PHY advertisement registers accordingly. If
|
|
* auto-negotiation is enabled, then software will have to set the
|
|
* "PAUSE" bits to the correct value in the Auto-Negotiation
|
|
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
|
|
*
|
|
* The possible values of the "fc" parameter are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause frames
|
|
* but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames
|
|
* but we do not support receiving pause frames).
|
|
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
|
* other: No software override. The flow control configuration
|
|
* in the EEPROM is used.
|
|
*/
|
|
switch (hw->fc) {
|
|
case e1000_fc_none: /* 0 */
|
|
/* Flow control (RX & TX) is completely disabled by a
|
|
* software over-ride.
|
|
*/
|
|
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
break;
|
|
case e1000_fc_rx_pause: /* 1 */
|
|
/* RX Flow control is enabled, and TX Flow control is
|
|
* disabled, by a software over-ride.
|
|
*/
|
|
/* Since there really isn't a way to advertise that we are
|
|
* capable of RX Pause ONLY, we will advertise that we
|
|
* support both symmetric and asymmetric RX PAUSE. Later
|
|
* (in e1000_config_fc_after_link_up) we will disable the
|
|
*hw's ability to send PAUSE frames.
|
|
*/
|
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
break;
|
|
case e1000_fc_tx_pause: /* 2 */
|
|
/* TX Flow control is enabled, and RX Flow control is
|
|
* disabled, by a software over-ride.
|
|
*/
|
|
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
|
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
|
break;
|
|
case e1000_fc_full: /* 3 */
|
|
/* Flow control (both RX and TX) is enabled by a software
|
|
* over-ride.
|
|
*/
|
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly\n");
|
|
return -E1000_ERR_CONFIG;
|
|
}
|
|
|
|
ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
|
|
|
if (hw->phy_type != e1000_phy_ife) {
|
|
ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
|
|
mii_1000t_ctrl_reg);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Sets the collision distance in the Transmit Control register
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Link should have been established previously. Reads the speed and duplex
|
|
* information from the Device Status register.
|
|
******************************************************************************/
|
|
static void
|
|
e1000_config_collision_dist(struct e1000_hw *hw)
|
|
{
|
|
uint32_t tctl, coll_dist;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type < e1000_82543)
|
|
coll_dist = E1000_COLLISION_DISTANCE_82542;
|
|
else
|
|
coll_dist = E1000_COLLISION_DISTANCE;
|
|
|
|
tctl = E1000_READ_REG(hw, TCTL);
|
|
|
|
tctl &= ~E1000_TCTL_COLD;
|
|
tctl |= coll_dist << E1000_COLD_SHIFT;
|
|
|
|
E1000_WRITE_REG(hw, TCTL, tctl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Sets MAC speed and duplex settings to reflect the those in the PHY
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* mii_reg - data to write to the MII control register
|
|
*
|
|
* The contents of the PHY register containing the needed information need to
|
|
* be passed in.
|
|
******************************************************************************/
|
|
static int
|
|
e1000_config_mac_to_phy(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Read the Device Control Register and set the bits to Force Speed
|
|
* and Duplex.
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
|
ctrl &= ~(E1000_CTRL_ILOS);
|
|
ctrl |= (E1000_CTRL_SPD_SEL);
|
|
|
|
/* Set up duplex in the Device Control and Transmit Control
|
|
* registers depending on negotiated values.
|
|
*/
|
|
if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (phy_data & M88E1000_PSSR_DPLX)
|
|
ctrl |= E1000_CTRL_FD;
|
|
else
|
|
ctrl &= ~E1000_CTRL_FD;
|
|
|
|
e1000_config_collision_dist(hw);
|
|
|
|
/* Set up speed in the Device Control register depending on
|
|
* negotiated values.
|
|
*/
|
|
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
|
|
ctrl |= E1000_CTRL_SPD_1000;
|
|
else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
|
|
ctrl |= E1000_CTRL_SPD_100;
|
|
/* Write the configured values back to the Device Control Reg. */
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Forces the MAC's flow control settings.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Sets the TFCE and RFCE bits in the device control register to reflect
|
|
* the adapter settings. TFCE and RFCE need to be explicitly set by
|
|
* software when a Copper PHY is used because autonegotiation is managed
|
|
* by the PHY rather than the MAC. Software must also configure these
|
|
* bits when link is forced on a fiber connection.
|
|
*****************************************************************************/
|
|
static int
|
|
e1000_force_mac_fc(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Get the current configuration of the Device Control Register */
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
|
|
/* Because we didn't get link via the internal auto-negotiation
|
|
* mechanism (we either forced link or we got link via PHY
|
|
* auto-neg), we have to manually enable/disable transmit an
|
|
* receive flow control.
|
|
*
|
|
* The "Case" statement below enables/disable flow control
|
|
* according to the "hw->fc" parameter.
|
|
*
|
|
* The possible values of the "fc" parameter are:
|
|
* 0: Flow control is completely disabled
|
|
* 1: Rx flow control is enabled (we can receive pause
|
|
* frames but not send pause frames).
|
|
* 2: Tx flow control is enabled (we can send pause frames
|
|
* frames but we do not receive pause frames).
|
|
* 3: Both Rx and TX flow control (symmetric) is enabled.
|
|
* other: No other values should be possible at this point.
|
|
*/
|
|
|
|
switch (hw->fc) {
|
|
case e1000_fc_none:
|
|
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
|
break;
|
|
case e1000_fc_rx_pause:
|
|
ctrl &= (~E1000_CTRL_TFCE);
|
|
ctrl |= E1000_CTRL_RFCE;
|
|
break;
|
|
case e1000_fc_tx_pause:
|
|
ctrl &= (~E1000_CTRL_RFCE);
|
|
ctrl |= E1000_CTRL_TFCE;
|
|
break;
|
|
case e1000_fc_full:
|
|
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
|
break;
|
|
default:
|
|
DEBUGOUT("Flow control param set incorrectly\n");
|
|
return -E1000_ERR_CONFIG;
|
|
}
|
|
|
|
/* Disable TX Flow Control for 82542 (rev 2.0) */
|
|
if (hw->mac_type == e1000_82542_rev2_0)
|
|
ctrl &= (~E1000_CTRL_TFCE);
|
|
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Configures flow control settings after link is established
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Should be called immediately after a valid link has been established.
|
|
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
|
|
* and autonegotiation is enabled, the MAC flow control settings will be set
|
|
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
|
|
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
|
|
*****************************************************************************/
|
|
static int32_t
|
|
e1000_config_fc_after_link_up(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t mii_status_reg;
|
|
uint16_t mii_nway_adv_reg;
|
|
uint16_t mii_nway_lp_ability_reg;
|
|
uint16_t speed;
|
|
uint16_t duplex;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Check for the case where we have fiber media and auto-neg failed
|
|
* so we had to force link. In this case, we need to force the
|
|
* configuration of the MAC to match the "fc" parameter.
|
|
*/
|
|
if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
|
|
|| ((hw->media_type == e1000_media_type_internal_serdes)
|
|
&& (hw->autoneg_failed))
|
|
|| ((hw->media_type == e1000_media_type_copper)
|
|
&& (!hw->autoneg))) {
|
|
ret_val = e1000_force_mac_fc(hw);
|
|
if (ret_val < 0) {
|
|
DEBUGOUT("Error forcing flow control settings\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* Check for the case where we have copper media and auto-neg is
|
|
* enabled. In this case, we need to check and see if Auto-Neg
|
|
* has completed, and if so, how the PHY and link partner has
|
|
* flow control configured.
|
|
*/
|
|
if (hw->media_type == e1000_media_type_copper) {
|
|
/* Read the MII Status Register and check to see if AutoNeg
|
|
* has completed. We read this twice because this reg has
|
|
* some "sticky" (latched) bits.
|
|
*/
|
|
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
|
|
/* The AutoNeg process has completed, so we now need to
|
|
* read both the Auto Negotiation Advertisement Register
|
|
* (Address 4) and the Auto_Negotiation Base Page Ability
|
|
* Register (Address 5) to determine how flow control was
|
|
* negotiated.
|
|
*/
|
|
if (e1000_read_phy_reg
|
|
(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (e1000_read_phy_reg
|
|
(hw, PHY_LP_ABILITY,
|
|
&mii_nway_lp_ability_reg) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
/* Two bits in the Auto Negotiation Advertisement Register
|
|
* (Address 4) and two bits in the Auto Negotiation Base
|
|
* Page Ability Register (Address 5) determine flow control
|
|
* for both the PHY and the link partner. The following
|
|
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
|
* 1999, describes these PAUSE resolution bits and how flow
|
|
* control is determined based upon these settings.
|
|
* NOTE: DC = Don't Care
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 0 | DC | DC | e1000_fc_none
|
|
* 0 | 1 | 0 | DC | e1000_fc_none
|
|
* 0 | 1 | 1 | 0 | e1000_fc_none
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
* 1 | 0 | 0 | DC | e1000_fc_none
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
* 1 | 1 | 0 | 0 | e1000_fc_none
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*
|
|
*/
|
|
/* Are both PAUSE bits set to 1? If so, this implies
|
|
* Symmetric Flow Control is enabled at both ends. The
|
|
* ASM_DIR bits are irrelevant per the spec.
|
|
*
|
|
* For Symmetric Flow Control:
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | DC | 1 | DC | e1000_fc_full
|
|
*
|
|
*/
|
|
if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
|
/* Now we need to check if the user selected RX ONLY
|
|
* of pause frames. In this case, we had to advertise
|
|
* FULL flow control because we could not advertise RX
|
|
* ONLY. Hence, we must now check to see if we need to
|
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
|
*/
|
|
if (hw->original_fc == e1000_fc_full) {
|
|
hw->fc = e1000_fc_full;
|
|
DEBUGOUT("Flow Control = FULL.\r\n");
|
|
} else {
|
|
hw->fc = e1000_fc_rx_pause;
|
|
DEBUGOUT
|
|
("Flow Control = RX PAUSE frames only.\r\n");
|
|
}
|
|
}
|
|
/* For receiving PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
|
*
|
|
*/
|
|
else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
|
|
{
|
|
hw->fc = e1000_fc_tx_pause;
|
|
DEBUGOUT
|
|
("Flow Control = TX PAUSE frames only.\r\n");
|
|
}
|
|
/* For transmitting PAUSE frames ONLY.
|
|
*
|
|
* LOCAL DEVICE | LINK PARTNER
|
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
|
*-------|---------|-------|---------|--------------------
|
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
|
*
|
|
*/
|
|
else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
|
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
|
|
{
|
|
hw->fc = e1000_fc_rx_pause;
|
|
DEBUGOUT
|
|
("Flow Control = RX PAUSE frames only.\r\n");
|
|
}
|
|
/* Per the IEEE spec, at this point flow control should be
|
|
* disabled. However, we want to consider that we could
|
|
* be connected to a legacy switch that doesn't advertise
|
|
* desired flow control, but can be forced on the link
|
|
* partner. So if we advertised no flow control, that is
|
|
* what we will resolve to. If we advertised some kind of
|
|
* receive capability (Rx Pause Only or Full Flow Control)
|
|
* and the link partner advertised none, we will configure
|
|
* ourselves to enable Rx Flow Control only. We can do
|
|
* this safely for two reasons: If the link partner really
|
|
* didn't want flow control enabled, and we enable Rx, no
|
|
* harm done since we won't be receiving any PAUSE frames
|
|
* anyway. If the intent on the link partner was to have
|
|
* flow control enabled, then by us enabling RX only, we
|
|
* can at least receive pause frames and process them.
|
|
* This is a good idea because in most cases, since we are
|
|
* predominantly a server NIC, more times than not we will
|
|
* be asked to delay transmission of packets than asking
|
|
* our link partner to pause transmission of frames.
|
|
*/
|
|
else if (hw->original_fc == e1000_fc_none ||
|
|
hw->original_fc == e1000_fc_tx_pause) {
|
|
hw->fc = e1000_fc_none;
|
|
DEBUGOUT("Flow Control = NONE.\r\n");
|
|
} else {
|
|
hw->fc = e1000_fc_rx_pause;
|
|
DEBUGOUT
|
|
("Flow Control = RX PAUSE frames only.\r\n");
|
|
}
|
|
|
|
/* Now we need to do one last check... If we auto-
|
|
* negotiated to HALF DUPLEX, flow control should not be
|
|
* enabled per IEEE 802.3 spec.
|
|
*/
|
|
e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
|
|
|
if (duplex == HALF_DUPLEX)
|
|
hw->fc = e1000_fc_none;
|
|
|
|
/* Now we call a subroutine to actually force the MAC
|
|
* controller to use the correct flow control settings.
|
|
*/
|
|
ret_val = e1000_force_mac_fc(hw);
|
|
if (ret_val < 0) {
|
|
DEBUGOUT
|
|
("Error forcing flow control settings\n");
|
|
return ret_val;
|
|
}
|
|
} else {
|
|
DEBUGOUT
|
|
("Copper PHY and Auto Neg has not completed.\r\n");
|
|
}
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Checks to see if the link status of the hardware has changed.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Called by any function that needs to check the link status of the adapter.
|
|
*****************************************************************************/
|
|
static int
|
|
e1000_check_for_link(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rxcw;
|
|
uint32_t ctrl;
|
|
uint32_t status;
|
|
uint32_t rctl;
|
|
uint32_t signal;
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
uint16_t lp_capability;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
|
|
* set when the optics detect a signal. On older adapters, it will be
|
|
* cleared when there is a signal
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
|
|
signal = E1000_CTRL_SWDPIN1;
|
|
else
|
|
signal = 0;
|
|
|
|
status = E1000_READ_REG(hw, STATUS);
|
|
rxcw = E1000_READ_REG(hw, RXCW);
|
|
DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);
|
|
|
|
/* If we have a copper PHY then we only want to go out to the PHY
|
|
* registers to see if Auto-Neg has completed and/or if our link
|
|
* status has changed. The get_link_status flag will be set if we
|
|
* receive a Link Status Change interrupt or we have Rx Sequence
|
|
* Errors.
|
|
*/
|
|
if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
|
|
/* First we want to see if the MII Status Register reports
|
|
* link. If so, then we want to get the current speed/duplex
|
|
* of the PHY.
|
|
* Read the register twice since the link bit is sticky.
|
|
*/
|
|
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
if (phy_data & MII_SR_LINK_STATUS) {
|
|
hw->get_link_status = false;
|
|
} else {
|
|
/* No link detected */
|
|
return -E1000_ERR_NOLINK;
|
|
}
|
|
|
|
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
|
|
* have Si on board that is 82544 or newer, Auto
|
|
* Speed Detection takes care of MAC speed/duplex
|
|
* configuration. So we only need to configure Collision
|
|
* Distance in the MAC. Otherwise, we need to force
|
|
* speed/duplex on the MAC to the current PHY speed/duplex
|
|
* settings.
|
|
*/
|
|
if (hw->mac_type >= e1000_82544)
|
|
e1000_config_collision_dist(hw);
|
|
else {
|
|
ret_val = e1000_config_mac_to_phy(hw);
|
|
if (ret_val < 0) {
|
|
DEBUGOUT
|
|
("Error configuring MAC to PHY settings\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
|
|
/* Configure Flow Control now that Auto-Neg has completed. First, we
|
|
* need to restore the desired flow control settings because we may
|
|
* have had to re-autoneg with a different link partner.
|
|
*/
|
|
ret_val = e1000_config_fc_after_link_up(hw);
|
|
if (ret_val < 0) {
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
return ret_val;
|
|
}
|
|
|
|
/* At this point we know that we are on copper and we have
|
|
* auto-negotiated link. These are conditions for checking the link
|
|
* parter capability register. We use the link partner capability to
|
|
* determine if TBI Compatibility needs to be turned on or off. If
|
|
* the link partner advertises any speed in addition to Gigabit, then
|
|
* we assume that they are GMII-based, and TBI compatibility is not
|
|
* needed. If no other speeds are advertised, we assume the link
|
|
* partner is TBI-based, and we turn on TBI Compatibility.
|
|
*/
|
|
if (hw->tbi_compatibility_en) {
|
|
if (e1000_read_phy_reg
|
|
(hw, PHY_LP_ABILITY, &lp_capability) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
|
|
NWAY_LPAR_10T_FD_CAPS |
|
|
NWAY_LPAR_100TX_HD_CAPS |
|
|
NWAY_LPAR_100TX_FD_CAPS |
|
|
NWAY_LPAR_100T4_CAPS)) {
|
|
/* If our link partner advertises anything in addition to
|
|
* gigabit, we do not need to enable TBI compatibility.
|
|
*/
|
|
if (hw->tbi_compatibility_on) {
|
|
/* If we previously were in the mode, turn it off. */
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
hw->tbi_compatibility_on = false;
|
|
}
|
|
} else {
|
|
/* If TBI compatibility is was previously off, turn it on. For
|
|
* compatibility with a TBI link partner, we will store bad
|
|
* packets. Some frames have an additional byte on the end and
|
|
* will look like CRC errors to to the hardware.
|
|
*/
|
|
if (!hw->tbi_compatibility_on) {
|
|
hw->tbi_compatibility_on = true;
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
rctl |= E1000_RCTL_SBP;
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* If we don't have link (auto-negotiation failed or link partner cannot
|
|
* auto-negotiate), the cable is plugged in (we have signal), and our
|
|
* link partner is not trying to auto-negotiate with us (we are receiving
|
|
* idles or data), we need to force link up. We also need to give
|
|
* auto-negotiation time to complete, in case the cable was just plugged
|
|
* in. The autoneg_failed flag does this.
|
|
*/
|
|
else if ((hw->media_type == e1000_media_type_fiber) &&
|
|
(!(status & E1000_STATUS_LU)) &&
|
|
((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
|
|
(!(rxcw & E1000_RXCW_C))) {
|
|
if (hw->autoneg_failed == 0) {
|
|
hw->autoneg_failed = 1;
|
|
return 0;
|
|
}
|
|
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
|
|
|
|
/* Disable auto-negotiation in the TXCW register */
|
|
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
|
|
|
|
/* Force link-up and also force full-duplex. */
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
|
|
/* Configure Flow Control after forcing link up. */
|
|
ret_val = e1000_config_fc_after_link_up(hw);
|
|
if (ret_val < 0) {
|
|
DEBUGOUT("Error configuring flow control\n");
|
|
return ret_val;
|
|
}
|
|
}
|
|
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
|
|
* auto-negotiation in the TXCW register and disable forced link in the
|
|
* Device Control register in an attempt to auto-negotiate with our link
|
|
* partner.
|
|
*/
|
|
else if ((hw->media_type == e1000_media_type_fiber) &&
|
|
(ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
|
|
DEBUGOUT
|
|
("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
|
|
E1000_WRITE_REG(hw, TXCW, hw->txcw);
|
|
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Configure the MAC-to-PHY interface for 10/100Mbps
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
static int32_t
|
|
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
|
|
{
|
|
int32_t ret_val = E1000_SUCCESS;
|
|
uint32_t tipg;
|
|
uint16_t reg_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
|
|
ret_val = e1000_write_kmrn_reg(hw,
|
|
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Configure Transmit Inter-Packet Gap */
|
|
tipg = E1000_READ_REG(hw, TIPG);
|
|
tipg &= ~E1000_TIPG_IPGT_MASK;
|
|
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
|
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
|
|
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
|
|
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (duplex == HALF_DUPLEX)
|
|
reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
else
|
|
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
|
|
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
static int32_t
|
|
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val = E1000_SUCCESS;
|
|
uint16_t reg_data;
|
|
uint32_t tipg;
|
|
|
|
DEBUGFUNC();
|
|
|
|
reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
|
|
ret_val = e1000_write_kmrn_reg(hw,
|
|
E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
/* Configure Transmit Inter-Packet Gap */
|
|
tipg = E1000_READ_REG(hw, TIPG);
|
|
tipg &= ~E1000_TIPG_IPGT_MASK;
|
|
tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
|
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
|
|
ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data);
|
|
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
|
|
ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Detects the current speed and duplex settings of the hardware.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* speed - Speed of the connection
|
|
* duplex - Duplex setting of the connection
|
|
*****************************************************************************/
|
|
static int
|
|
e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
|
|
uint16_t *duplex)
|
|
{
|
|
uint32_t status;
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type >= e1000_82543) {
|
|
status = E1000_READ_REG(hw, STATUS);
|
|
if (status & E1000_STATUS_SPEED_1000) {
|
|
*speed = SPEED_1000;
|
|
DEBUGOUT("1000 Mbs, ");
|
|
} else if (status & E1000_STATUS_SPEED_100) {
|
|
*speed = SPEED_100;
|
|
DEBUGOUT("100 Mbs, ");
|
|
} else {
|
|
*speed = SPEED_10;
|
|
DEBUGOUT("10 Mbs, ");
|
|
}
|
|
|
|
if (status & E1000_STATUS_FD) {
|
|
*duplex = FULL_DUPLEX;
|
|
DEBUGOUT("Full Duplex\r\n");
|
|
} else {
|
|
*duplex = HALF_DUPLEX;
|
|
DEBUGOUT(" Half Duplex\r\n");
|
|
}
|
|
} else {
|
|
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
|
|
*speed = SPEED_1000;
|
|
*duplex = FULL_DUPLEX;
|
|
}
|
|
|
|
/* IGP01 PHY may advertise full duplex operation after speed downgrade
|
|
* even if it is operating at half duplex. Here we set the duplex
|
|
* settings to match the duplex in the link partner's capabilities.
|
|
*/
|
|
if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
|
|
ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
|
|
*duplex = HALF_DUPLEX;
|
|
else {
|
|
ret_val = e1000_read_phy_reg(hw,
|
|
PHY_LP_ABILITY, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
if ((*speed == SPEED_100 &&
|
|
!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
|
|
|| (*speed == SPEED_10
|
|
&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
|
|
*duplex = HALF_DUPLEX;
|
|
}
|
|
}
|
|
|
|
if ((hw->mac_type == e1000_80003es2lan) &&
|
|
(hw->media_type == e1000_media_type_copper)) {
|
|
if (*speed == SPEED_1000)
|
|
ret_val = e1000_configure_kmrn_for_1000(hw);
|
|
else
|
|
ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
|
|
if (ret_val)
|
|
return ret_val;
|
|
}
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Blocks until autoneg completes or times out (~4.5 seconds)
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
static int
|
|
e1000_wait_autoneg(struct e1000_hw *hw)
|
|
{
|
|
uint16_t i;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
|
|
|
|
/* We will wait for autoneg to complete or timeout to expire. */
|
|
for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
|
|
/* Read the MII Status Register and wait for Auto-Neg
|
|
* Complete bit to be set.
|
|
*/
|
|
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
|
|
DEBUGOUT("PHY Read Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (phy_data & MII_SR_AUTONEG_COMPLETE) {
|
|
DEBUGOUT("Auto-Neg complete.\n");
|
|
return 0;
|
|
}
|
|
mdelay(100);
|
|
}
|
|
DEBUGOUT("Auto-Neg timedout.\n");
|
|
return -E1000_ERR_TIMEOUT;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Raises the Management Data Clock
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* ctrl - Device control register's current value
|
|
******************************************************************************/
|
|
static void
|
|
e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
|
|
{
|
|
/* Raise the clock input to the Management Data Clock (by setting the MDC
|
|
* bit), and then delay 2 microseconds.
|
|
*/
|
|
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(2);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Lowers the Management Data Clock
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* ctrl - Device control register's current value
|
|
******************************************************************************/
|
|
static void
|
|
e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
|
|
{
|
|
/* Lower the clock input to the Management Data Clock (by clearing the MDC
|
|
* bit), and then delay 2 microseconds.
|
|
*/
|
|
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
|
|
E1000_WRITE_FLUSH(hw);
|
|
udelay(2);
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Shifts data bits out to the PHY
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* data - Data to send out to the PHY
|
|
* count - Number of bits to shift out
|
|
*
|
|
* Bits are shifted out in MSB to LSB order.
|
|
******************************************************************************/
|
|
static void
|
|
e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
|
|
{
|
|
uint32_t ctrl;
|
|
uint32_t mask;
|
|
|
|
/* We need to shift "count" number of bits out to the PHY. So, the value
|
|
* in the "data" parameter will be shifted out to the PHY one bit at a
|
|
* time. In order to do this, "data" must be broken down into bits.
|
|
*/
|
|
mask = 0x01;
|
|
mask <<= (count - 1);
|
|
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
|
|
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
|
|
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
|
|
|
|
while (mask) {
|
|
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
|
|
* then raising and lowering the Management Data Clock. A "0" is
|
|
* shifted out to the PHY by setting the MDIO bit to "0" and then
|
|
* raising and lowering the clock.
|
|
*/
|
|
if (data & mask)
|
|
ctrl |= E1000_CTRL_MDIO;
|
|
else
|
|
ctrl &= ~E1000_CTRL_MDIO;
|
|
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
udelay(2);
|
|
|
|
e1000_raise_mdi_clk(hw, &ctrl);
|
|
e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
|
mask = mask >> 1;
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Shifts data bits in from the PHY
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Bits are shifted in in MSB to LSB order.
|
|
******************************************************************************/
|
|
static uint16_t
|
|
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ctrl;
|
|
uint16_t data = 0;
|
|
uint8_t i;
|
|
|
|
/* In order to read a register from the PHY, we need to shift in a total
|
|
* of 18 bits from the PHY. The first two bit (turnaround) times are used
|
|
* to avoid contention on the MDIO pin when a read operation is performed.
|
|
* These two bits are ignored by us and thrown away. Bits are "shifted in"
|
|
* by raising the input to the Management Data Clock (setting the MDC bit),
|
|
* and then reading the value of the MDIO bit.
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
|
|
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
|
|
ctrl &= ~E1000_CTRL_MDIO_DIR;
|
|
ctrl &= ~E1000_CTRL_MDIO;
|
|
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
/* Raise and Lower the clock before reading in the data. This accounts for
|
|
* the turnaround bits. The first clock occurred when we clocked out the
|
|
* last bit of the Register Address.
|
|
*/
|
|
e1000_raise_mdi_clk(hw, &ctrl);
|
|
e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
|
for (data = 0, i = 0; i < 16; i++) {
|
|
data = data << 1;
|
|
e1000_raise_mdi_clk(hw, &ctrl);
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
/* Check to see if we shifted in a "1". */
|
|
if (ctrl & E1000_CTRL_MDIO)
|
|
data |= 1;
|
|
e1000_lower_mdi_clk(hw, &ctrl);
|
|
}
|
|
|
|
e1000_raise_mdi_clk(hw, &ctrl);
|
|
e1000_lower_mdi_clk(hw, &ctrl);
|
|
|
|
return data;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Reads the value from a PHY register
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* reg_addr - address of the PHY register to read
|
|
******************************************************************************/
|
|
static int
|
|
e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
|
|
{
|
|
uint32_t i;
|
|
uint32_t mdic = 0;
|
|
const uint32_t phy_addr = 1;
|
|
|
|
if (reg_addr > MAX_PHY_REG_ADDRESS) {
|
|
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
|
|
if (hw->mac_type > e1000_82543) {
|
|
/* Set up Op-code, Phy Address, and register address in the MDI
|
|
* Control register. The MAC will take care of interfacing with the
|
|
* PHY to retrieve the desired data.
|
|
*/
|
|
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
|
|
(phy_addr << E1000_MDIC_PHY_SHIFT) |
|
|
(E1000_MDIC_OP_READ));
|
|
|
|
E1000_WRITE_REG(hw, MDIC, mdic);
|
|
|
|
/* Poll the ready bit to see if the MDI read completed */
|
|
for (i = 0; i < 64; i++) {
|
|
udelay(10);
|
|
mdic = E1000_READ_REG(hw, MDIC);
|
|
if (mdic & E1000_MDIC_READY)
|
|
break;
|
|
}
|
|
if (!(mdic & E1000_MDIC_READY)) {
|
|
DEBUGOUT("MDI Read did not complete\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
if (mdic & E1000_MDIC_ERROR) {
|
|
DEBUGOUT("MDI Error\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
*phy_data = (uint16_t) mdic;
|
|
} else {
|
|
/* We must first send a preamble through the MDIO pin to signal the
|
|
* beginning of an MII instruction. This is done by sending 32
|
|
* consecutive "1" bits.
|
|
*/
|
|
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
|
|
|
/* Now combine the next few fields that are required for a read
|
|
* operation. We use this method instead of calling the
|
|
* e1000_shift_out_mdi_bits routine five different times. The format of
|
|
* a MII read instruction consists of a shift out of 14 bits and is
|
|
* defined as follows:
|
|
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
|
|
* followed by a shift in of 18 bits. This first two bits shifted in
|
|
* are TurnAround bits used to avoid contention on the MDIO pin when a
|
|
* READ operation is performed. These two bits are thrown away
|
|
* followed by a shift in of 16 bits which contains the desired data.
|
|
*/
|
|
mdic = ((reg_addr) | (phy_addr << 5) |
|
|
(PHY_OP_READ << 10) | (PHY_SOF << 12));
|
|
|
|
e1000_shift_out_mdi_bits(hw, mdic, 14);
|
|
|
|
/* Now that we've shifted out the read command to the MII, we need to
|
|
* "shift in" the 16-bit value (18 total bits) of the requested PHY
|
|
* register address.
|
|
*/
|
|
*phy_data = e1000_shift_in_mdi_bits(hw);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Writes a value to a PHY register
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* reg_addr - address of the PHY register to write
|
|
* data - data to write to the PHY
|
|
******************************************************************************/
|
|
static int
|
|
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
|
|
{
|
|
uint32_t i;
|
|
uint32_t mdic = 0;
|
|
const uint32_t phy_addr = 1;
|
|
|
|
if (reg_addr > MAX_PHY_REG_ADDRESS) {
|
|
DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
|
|
return -E1000_ERR_PARAM;
|
|
}
|
|
|
|
if (hw->mac_type > e1000_82543) {
|
|
/* Set up Op-code, Phy Address, register address, and data intended
|
|
* for the PHY register in the MDI Control register. The MAC will take
|
|
* care of interfacing with the PHY to send the desired data.
|
|
*/
|
|
mdic = (((uint32_t) phy_data) |
|
|
(reg_addr << E1000_MDIC_REG_SHIFT) |
|
|
(phy_addr << E1000_MDIC_PHY_SHIFT) |
|
|
(E1000_MDIC_OP_WRITE));
|
|
|
|
E1000_WRITE_REG(hw, MDIC, mdic);
|
|
|
|
/* Poll the ready bit to see if the MDI read completed */
|
|
for (i = 0; i < 64; i++) {
|
|
udelay(10);
|
|
mdic = E1000_READ_REG(hw, MDIC);
|
|
if (mdic & E1000_MDIC_READY)
|
|
break;
|
|
}
|
|
if (!(mdic & E1000_MDIC_READY)) {
|
|
DEBUGOUT("MDI Write did not complete\n");
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
} else {
|
|
/* We'll need to use the SW defined pins to shift the write command
|
|
* out to the PHY. We first send a preamble to the PHY to signal the
|
|
* beginning of the MII instruction. This is done by sending 32
|
|
* consecutive "1" bits.
|
|
*/
|
|
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
|
|
|
/* Now combine the remaining required fields that will indicate a
|
|
* write operation. We use this method instead of calling the
|
|
* e1000_shift_out_mdi_bits routine for each field in the command. The
|
|
* format of a MII write instruction is as follows:
|
|
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
|
|
*/
|
|
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
|
|
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
|
|
mdic <<= 16;
|
|
mdic |= (uint32_t) phy_data;
|
|
|
|
e1000_shift_out_mdi_bits(hw, mdic, 32);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Checks if PHY reset is blocked due to SOL/IDER session, for example.
|
|
* Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
|
|
* the caller to figure out how to deal with it.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* returns: - E1000_BLK_PHY_RESET
|
|
* E1000_SUCCESS
|
|
*
|
|
*****************************************************************************/
|
|
int32_t
|
|
e1000_check_phy_reset_block(struct e1000_hw *hw)
|
|
{
|
|
uint32_t manc = 0;
|
|
uint32_t fwsm = 0;
|
|
|
|
if (hw->mac_type == e1000_ich8lan) {
|
|
fwsm = E1000_READ_REG(hw, FWSM);
|
|
return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
|
|
: E1000_BLK_PHY_RESET;
|
|
}
|
|
|
|
if (hw->mac_type > e1000_82547_rev_2)
|
|
manc = E1000_READ_REG(hw, MANC);
|
|
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
|
|
E1000_BLK_PHY_RESET : E1000_SUCCESS;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Checks if the PHY configuration is done
|
|
*
|
|
* hw: Struct containing variables accessed by shared code
|
|
*
|
|
* returns: - E1000_ERR_RESET if fail to reset MAC
|
|
* E1000_SUCCESS at any other case.
|
|
*
|
|
***************************************************************************/
|
|
static int32_t
|
|
e1000_get_phy_cfg_done(struct e1000_hw *hw)
|
|
{
|
|
int32_t timeout = PHY_CFG_TIMEOUT;
|
|
uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
|
|
|
|
DEBUGFUNC();
|
|
|
|
switch (hw->mac_type) {
|
|
default:
|
|
mdelay(10);
|
|
break;
|
|
|
|
case e1000_80003es2lan:
|
|
/* Separate *_CFG_DONE_* bit for each port */
|
|
if (e1000_is_second_port(hw))
|
|
cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
|
|
/* Fall Through */
|
|
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_igb:
|
|
while (timeout) {
|
|
if (hw->mac_type == e1000_igb) {
|
|
if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
|
|
break;
|
|
} else {
|
|
if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
|
|
break;
|
|
}
|
|
mdelay(1);
|
|
timeout--;
|
|
}
|
|
if (!timeout) {
|
|
DEBUGOUT("MNG configuration cycle has not "
|
|
"completed.\n");
|
|
return -E1000_ERR_RESET;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Returns the PHY to the power-on reset state
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
int32_t
|
|
e1000_phy_hw_reset(struct e1000_hw *hw)
|
|
{
|
|
uint16_t swfw = E1000_SWFW_PHY0_SM;
|
|
uint32_t ctrl, ctrl_ext;
|
|
uint32_t led_ctrl;
|
|
int32_t ret_val;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* In the case of the phy reset being blocked, it's not an error, we
|
|
* simply return success without performing the reset. */
|
|
ret_val = e1000_check_phy_reset_block(hw);
|
|
if (ret_val)
|
|
return E1000_SUCCESS;
|
|
|
|
DEBUGOUT("Resetting Phy...\n");
|
|
|
|
if (hw->mac_type > e1000_82543) {
|
|
if (e1000_is_second_port(hw))
|
|
swfw = E1000_SWFW_PHY1_SM;
|
|
|
|
if (e1000_swfw_sync_acquire(hw, swfw)) {
|
|
DEBUGOUT("Unable to acquire swfw sync\n");
|
|
return -E1000_ERR_SWFW_SYNC;
|
|
}
|
|
|
|
/* Read the device control register and assert the E1000_CTRL_PHY_RST
|
|
* bit. Then, take it out of reset.
|
|
*/
|
|
ctrl = E1000_READ_REG(hw, CTRL);
|
|
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
if (hw->mac_type < e1000_82571)
|
|
udelay(10);
|
|
else
|
|
udelay(100);
|
|
|
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
|
E1000_WRITE_FLUSH(hw);
|
|
|
|
if (hw->mac_type >= e1000_82571)
|
|
mdelay(10);
|
|
|
|
} else {
|
|
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
|
|
* bit to put the PHY into reset. Then, take it out of reset.
|
|
*/
|
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
|
|
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
mdelay(10);
|
|
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
udelay(150);
|
|
|
|
if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
|
/* Configure activity LED after PHY reset */
|
|
led_ctrl = E1000_READ_REG(hw, LEDCTL);
|
|
led_ctrl &= IGP_ACTIVITY_LED_MASK;
|
|
led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
|
|
E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
|
|
}
|
|
|
|
e1000_swfw_sync_release(hw, swfw);
|
|
|
|
/* Wait for FW to finish PHY configuration. */
|
|
ret_val = e1000_get_phy_cfg_done(hw);
|
|
if (ret_val != E1000_SUCCESS)
|
|
return ret_val;
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* IGP phy init script - initializes the GbE PHY
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
static void
|
|
e1000_phy_init_script(struct e1000_hw *hw)
|
|
{
|
|
uint32_t ret_val;
|
|
uint16_t phy_saved_data;
|
|
DEBUGFUNC();
|
|
|
|
if (hw->phy_init_script) {
|
|
mdelay(20);
|
|
|
|
/* Save off the current value of register 0x2F5B to be
|
|
* restored at the end of this routine. */
|
|
ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
|
|
|
|
/* Disabled the PHY transmitter */
|
|
e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
|
|
|
|
mdelay(20);
|
|
|
|
e1000_write_phy_reg(hw, 0x0000, 0x0140);
|
|
|
|
mdelay(5);
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82541:
|
|
case e1000_82547:
|
|
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
|
|
|
|
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
|
|
|
|
e1000_write_phy_reg(hw, 0x2010, 0x0008);
|
|
break;
|
|
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547_rev_2:
|
|
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
e1000_write_phy_reg(hw, 0x0000, 0x3300);
|
|
|
|
mdelay(20);
|
|
|
|
/* Now enable the transmitter */
|
|
if (!ret_val)
|
|
e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
|
|
|
|
if (hw->mac_type == e1000_82547) {
|
|
uint16_t fused, fine, coarse;
|
|
|
|
/* Move to analog registers page */
|
|
e1000_read_phy_reg(hw,
|
|
IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
|
|
|
|
if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
|
|
e1000_read_phy_reg(hw,
|
|
IGP01E1000_ANALOG_FUSE_STATUS, &fused);
|
|
|
|
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
|
|
coarse = fused
|
|
& IGP01E1000_ANALOG_FUSE_COARSE_MASK;
|
|
|
|
if (coarse >
|
|
IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
|
|
coarse -=
|
|
IGP01E1000_ANALOG_FUSE_COARSE_10;
|
|
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
|
|
} else if (coarse
|
|
== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
|
|
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
|
|
|
|
fused = (fused
|
|
& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
|
|
(fine
|
|
& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
|
|
(coarse
|
|
& IGP01E1000_ANALOG_FUSE_COARSE_MASK);
|
|
|
|
e1000_write_phy_reg(hw,
|
|
IGP01E1000_ANALOG_FUSE_CONTROL, fused);
|
|
e1000_write_phy_reg(hw,
|
|
IGP01E1000_ANALOG_FUSE_BYPASS,
|
|
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Resets the PHY
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*
|
|
* Sets bit 15 of the MII Control register
|
|
******************************************************************************/
|
|
int32_t
|
|
e1000_phy_reset(struct e1000_hw *hw)
|
|
{
|
|
int32_t ret_val;
|
|
uint16_t phy_data;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* In the case of the phy reset being blocked, it's not an error, we
|
|
* simply return success without performing the reset. */
|
|
ret_val = e1000_check_phy_reset_block(hw);
|
|
if (ret_val)
|
|
return E1000_SUCCESS;
|
|
|
|
switch (hw->phy_type) {
|
|
case e1000_phy_igp:
|
|
case e1000_phy_igp_2:
|
|
case e1000_phy_igp_3:
|
|
case e1000_phy_ife:
|
|
case e1000_phy_igb:
|
|
ret_val = e1000_phy_hw_reset(hw);
|
|
if (ret_val)
|
|
return ret_val;
|
|
break;
|
|
default:
|
|
ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
phy_data |= MII_CR_RESET;
|
|
ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
udelay(1);
|
|
break;
|
|
}
|
|
|
|
if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
|
|
e1000_phy_init_script(hw);
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
static int e1000_set_phy_type (struct e1000_hw *hw)
|
|
{
|
|
DEBUGFUNC ();
|
|
|
|
if (hw->mac_type == e1000_undefined)
|
|
return -E1000_ERR_PHY_TYPE;
|
|
|
|
switch (hw->phy_id) {
|
|
case M88E1000_E_PHY_ID:
|
|
case M88E1000_I_PHY_ID:
|
|
case M88E1011_I_PHY_ID:
|
|
case M88E1111_I_PHY_ID:
|
|
hw->phy_type = e1000_phy_m88;
|
|
break;
|
|
case IGP01E1000_I_PHY_ID:
|
|
if (hw->mac_type == e1000_82541 ||
|
|
hw->mac_type == e1000_82541_rev_2 ||
|
|
hw->mac_type == e1000_82547 ||
|
|
hw->mac_type == e1000_82547_rev_2) {
|
|
hw->phy_type = e1000_phy_igp;
|
|
break;
|
|
}
|
|
case IGP03E1000_E_PHY_ID:
|
|
hw->phy_type = e1000_phy_igp_3;
|
|
break;
|
|
case IFE_E_PHY_ID:
|
|
case IFE_PLUS_E_PHY_ID:
|
|
case IFE_C_E_PHY_ID:
|
|
hw->phy_type = e1000_phy_ife;
|
|
break;
|
|
case GG82563_E_PHY_ID:
|
|
if (hw->mac_type == e1000_80003es2lan) {
|
|
hw->phy_type = e1000_phy_gg82563;
|
|
break;
|
|
}
|
|
case BME1000_E_PHY_ID:
|
|
hw->phy_type = e1000_phy_bm;
|
|
break;
|
|
case I210_I_PHY_ID:
|
|
hw->phy_type = e1000_phy_igb;
|
|
break;
|
|
/* Fall Through */
|
|
default:
|
|
/* Should never have loaded on this device */
|
|
hw->phy_type = e1000_phy_undefined;
|
|
return -E1000_ERR_PHY_TYPE;
|
|
}
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Probes the expected PHY address for known PHY IDs
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
******************************************************************************/
|
|
static int32_t
|
|
e1000_detect_gig_phy(struct e1000_hw *hw)
|
|
{
|
|
int32_t phy_init_status, ret_val;
|
|
uint16_t phy_id_high, phy_id_low;
|
|
bool match = false;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* The 82571 firmware may still be configuring the PHY. In this
|
|
* case, we cannot access the PHY until the configuration is done. So
|
|
* we explicitly set the PHY values. */
|
|
if (hw->mac_type == e1000_82571 ||
|
|
hw->mac_type == e1000_82572) {
|
|
hw->phy_id = IGP01E1000_I_PHY_ID;
|
|
hw->phy_type = e1000_phy_igp_2;
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
|
|
* work- around that forces PHY page 0 to be set or the reads fail.
|
|
* The rest of the code in this routine uses e1000_read_phy_reg to
|
|
* read the PHY ID. So for ESB-2 we need to have this set so our
|
|
* reads won't fail. If the attached PHY is not a e1000_phy_gg82563,
|
|
* the routines below will figure this out as well. */
|
|
if (hw->mac_type == e1000_80003es2lan)
|
|
hw->phy_type = e1000_phy_gg82563;
|
|
|
|
/* Read the PHY ID Registers to identify which PHY is onboard. */
|
|
ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
hw->phy_id = (uint32_t) (phy_id_high << 16);
|
|
udelay(20);
|
|
ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
|
|
if (ret_val)
|
|
return ret_val;
|
|
|
|
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
|
|
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82543:
|
|
if (hw->phy_id == M88E1000_E_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_82544:
|
|
if (hw->phy_id == M88E1000_I_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_82540:
|
|
case e1000_82545:
|
|
case e1000_82545_rev_3:
|
|
case e1000_82546:
|
|
case e1000_82546_rev_3:
|
|
if (hw->phy_id == M88E1011_I_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_82541:
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547:
|
|
case e1000_82547_rev_2:
|
|
if(hw->phy_id == IGP01E1000_I_PHY_ID)
|
|
match = true;
|
|
|
|
break;
|
|
case e1000_82573:
|
|
if (hw->phy_id == M88E1111_I_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_82574:
|
|
if (hw->phy_id == BME1000_E_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_80003es2lan:
|
|
if (hw->phy_id == GG82563_E_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_ich8lan:
|
|
if (hw->phy_id == IGP03E1000_E_PHY_ID)
|
|
match = true;
|
|
if (hw->phy_id == IFE_E_PHY_ID)
|
|
match = true;
|
|
if (hw->phy_id == IFE_PLUS_E_PHY_ID)
|
|
match = true;
|
|
if (hw->phy_id == IFE_C_E_PHY_ID)
|
|
match = true;
|
|
break;
|
|
case e1000_igb:
|
|
if (hw->phy_id == I210_I_PHY_ID)
|
|
match = true;
|
|
break;
|
|
default:
|
|
DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
|
|
return -E1000_ERR_CONFIG;
|
|
}
|
|
|
|
phy_init_status = e1000_set_phy_type(hw);
|
|
|
|
if ((match) && (phy_init_status == E1000_SUCCESS)) {
|
|
DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
|
|
return 0;
|
|
}
|
|
DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
|
|
return -E1000_ERR_PHY;
|
|
}
|
|
|
|
/*****************************************************************************
|
|
* Set media type and TBI compatibility.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* **************************************************************************/
|
|
void
|
|
e1000_set_media_type(struct e1000_hw *hw)
|
|
{
|
|
uint32_t status;
|
|
|
|
DEBUGFUNC();
|
|
|
|
if (hw->mac_type != e1000_82543) {
|
|
/* tbi_compatibility is only valid on 82543 */
|
|
hw->tbi_compatibility_en = false;
|
|
}
|
|
|
|
switch (hw->device_id) {
|
|
case E1000_DEV_ID_82545GM_SERDES:
|
|
case E1000_DEV_ID_82546GB_SERDES:
|
|
case E1000_DEV_ID_82571EB_SERDES:
|
|
case E1000_DEV_ID_82571EB_SERDES_DUAL:
|
|
case E1000_DEV_ID_82571EB_SERDES_QUAD:
|
|
case E1000_DEV_ID_82572EI_SERDES:
|
|
case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
|
|
hw->media_type = e1000_media_type_internal_serdes;
|
|
break;
|
|
default:
|
|
switch (hw->mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
hw->media_type = e1000_media_type_fiber;
|
|
break;
|
|
case e1000_ich8lan:
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
case e1000_igb:
|
|
/* The STATUS_TBIMODE bit is reserved or reused
|
|
* for the this device.
|
|
*/
|
|
hw->media_type = e1000_media_type_copper;
|
|
break;
|
|
default:
|
|
status = E1000_READ_REG(hw, STATUS);
|
|
if (status & E1000_STATUS_TBIMODE) {
|
|
hw->media_type = e1000_media_type_fiber;
|
|
/* tbi_compatibility not valid on fiber */
|
|
hw->tbi_compatibility_en = false;
|
|
} else {
|
|
hw->media_type = e1000_media_type_copper;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
|
*
|
|
* e1000_sw_init initializes the Adapter private data structure.
|
|
* Fields are initialized based on PCI device information and
|
|
* OS network device settings (MTU size).
|
|
**/
|
|
|
|
static int
|
|
e1000_sw_init(struct e1000_hw *hw)
|
|
{
|
|
int result;
|
|
|
|
/* PCI config space info */
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
|
|
dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
|
|
dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
|
|
&hw->subsystem_vendor_id);
|
|
dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
|
|
|
|
dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
|
|
dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
|
|
#else
|
|
pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
|
|
pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
|
|
pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
|
|
&hw->subsystem_vendor_id);
|
|
pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
|
|
|
|
pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
|
|
pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
|
|
#endif
|
|
|
|
/* identify the MAC */
|
|
result = e1000_set_mac_type(hw);
|
|
if (result) {
|
|
E1000_ERR(hw, "Unknown MAC Type\n");
|
|
return result;
|
|
}
|
|
|
|
switch (hw->mac_type) {
|
|
default:
|
|
break;
|
|
case e1000_82541:
|
|
case e1000_82547:
|
|
case e1000_82541_rev_2:
|
|
case e1000_82547_rev_2:
|
|
hw->phy_init_script = 1;
|
|
break;
|
|
}
|
|
|
|
/* flow control settings */
|
|
hw->fc_high_water = E1000_FC_HIGH_THRESH;
|
|
hw->fc_low_water = E1000_FC_LOW_THRESH;
|
|
hw->fc_pause_time = E1000_FC_PAUSE_TIME;
|
|
hw->fc_send_xon = 1;
|
|
|
|
/* Media type - copper or fiber */
|
|
hw->tbi_compatibility_en = true;
|
|
e1000_set_media_type(hw);
|
|
|
|
if (hw->mac_type >= e1000_82543) {
|
|
uint32_t status = E1000_READ_REG(hw, STATUS);
|
|
|
|
if (status & E1000_STATUS_TBIMODE) {
|
|
DEBUGOUT("fiber interface\n");
|
|
hw->media_type = e1000_media_type_fiber;
|
|
} else {
|
|
DEBUGOUT("copper interface\n");
|
|
hw->media_type = e1000_media_type_copper;
|
|
}
|
|
} else {
|
|
hw->media_type = e1000_media_type_fiber;
|
|
}
|
|
|
|
hw->wait_autoneg_complete = true;
|
|
if (hw->mac_type < e1000_82543)
|
|
hw->report_tx_early = 0;
|
|
else
|
|
hw->report_tx_early = 1;
|
|
|
|
return E1000_SUCCESS;
|
|
}
|
|
|
|
void
|
|
fill_rx(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_rx_desc *rd;
|
|
unsigned long flush_start, flush_end;
|
|
|
|
rx_last = rx_tail;
|
|
rd = rx_base + rx_tail;
|
|
rx_tail = (rx_tail + 1) % 8;
|
|
memset(rd, 0, 16);
|
|
rd->buffer_addr = cpu_to_le64((unsigned long)packet);
|
|
|
|
/*
|
|
* Make sure there are no stale data in WB over this area, which
|
|
* might get written into the memory while the e1000 also writes
|
|
* into the same memory area.
|
|
*/
|
|
invalidate_dcache_range((unsigned long)packet,
|
|
(unsigned long)packet + 4096);
|
|
/* Dump the DMA descriptor into RAM. */
|
|
flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
|
|
flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
|
|
flush_dcache_range(flush_start, flush_end);
|
|
|
|
E1000_WRITE_REG(hw, RDT, rx_tail);
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Tx unit of the MAC after a reset.
|
|
**/
|
|
|
|
static void
|
|
e1000_configure_tx(struct e1000_hw *hw)
|
|
{
|
|
unsigned long tctl;
|
|
unsigned long tipg, tarc;
|
|
uint32_t ipgr1, ipgr2;
|
|
|
|
E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
|
|
E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));
|
|
|
|
E1000_WRITE_REG(hw, TDLEN, 128);
|
|
|
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
|
E1000_WRITE_REG(hw, TDH, 0);
|
|
E1000_WRITE_REG(hw, TDT, 0);
|
|
tx_tail = 0;
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
if (hw->mac_type <= e1000_82547_rev_2 &&
|
|
(hw->media_type == e1000_media_type_fiber ||
|
|
hw->media_type == e1000_media_type_internal_serdes))
|
|
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
|
|
else
|
|
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
|
|
|
|
/* Set the default values for the Tx Inter Packet Gap timer */
|
|
switch (hw->mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
tipg = DEFAULT_82542_TIPG_IPGT;
|
|
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
|
|
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
|
|
break;
|
|
case e1000_80003es2lan:
|
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
|
ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
|
|
break;
|
|
default:
|
|
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
|
|
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
|
|
break;
|
|
}
|
|
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
|
|
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
|
|
E1000_WRITE_REG(hw, TIPG, tipg);
|
|
/* Program the Transmit Control Register */
|
|
tctl = E1000_READ_REG(hw, TCTL);
|
|
tctl &= ~E1000_TCTL_CT;
|
|
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
|
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
|
|
|
if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
|
|
tarc = E1000_READ_REG(hw, TARC0);
|
|
/* set the speed mode bit, we'll clear it if we're not at
|
|
* gigabit link later */
|
|
/* git bit can be set to 1*/
|
|
} else if (hw->mac_type == e1000_80003es2lan) {
|
|
tarc = E1000_READ_REG(hw, TARC0);
|
|
tarc |= 1;
|
|
E1000_WRITE_REG(hw, TARC0, tarc);
|
|
tarc = E1000_READ_REG(hw, TARC1);
|
|
tarc |= 1;
|
|
E1000_WRITE_REG(hw, TARC1, tarc);
|
|
}
|
|
|
|
|
|
e1000_config_collision_dist(hw);
|
|
/* Setup Transmit Descriptor Settings for eop descriptor */
|
|
hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
|
|
|
|
/* Need to set up RS bit */
|
|
if (hw->mac_type < e1000_82543)
|
|
hw->txd_cmd |= E1000_TXD_CMD_RPS;
|
|
else
|
|
hw->txd_cmd |= E1000_TXD_CMD_RS;
|
|
|
|
|
|
if (hw->mac_type == e1000_igb) {
|
|
E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);
|
|
|
|
uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
|
|
reg_txdctl |= 1 << 25;
|
|
E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
|
|
mdelay(20);
|
|
}
|
|
|
|
|
|
|
|
E1000_WRITE_REG(hw, TCTL, tctl);
|
|
|
|
|
|
}
|
|
|
|
/**
|
|
* e1000_setup_rctl - configure the receive control register
|
|
* @adapter: Board private structure
|
|
**/
|
|
static void
|
|
e1000_setup_rctl(struct e1000_hw *hw)
|
|
{
|
|
uint32_t rctl;
|
|
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
|
|
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
|
|
|
|
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
|
|
| E1000_RCTL_RDMTS_HALF; /* |
|
|
(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */
|
|
|
|
if (hw->tbi_compatibility_on == 1)
|
|
rctl |= E1000_RCTL_SBP;
|
|
else
|
|
rctl &= ~E1000_RCTL_SBP;
|
|
|
|
rctl &= ~(E1000_RCTL_SZ_4096);
|
|
rctl |= E1000_RCTL_SZ_2048;
|
|
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
}
|
|
|
|
/**
|
|
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
|
|
* @adapter: board private structure
|
|
*
|
|
* Configure the Rx unit of the MAC after a reset.
|
|
**/
|
|
static void
|
|
e1000_configure_rx(struct e1000_hw *hw)
|
|
{
|
|
unsigned long rctl, ctrl_ext;
|
|
rx_tail = 0;
|
|
|
|
/* make sure receives are disabled while setting up the descriptors */
|
|
rctl = E1000_READ_REG(hw, RCTL);
|
|
E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
|
|
if (hw->mac_type >= e1000_82540) {
|
|
/* Set the interrupt throttling rate. Value is calculated
|
|
* as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
|
|
#define MAX_INTS_PER_SEC 8000
|
|
#define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256)
|
|
E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
|
|
}
|
|
|
|
if (hw->mac_type >= e1000_82571) {
|
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
|
/* Reset delay timers after every interrupt */
|
|
ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
|
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
|
E1000_WRITE_FLUSH(hw);
|
|
}
|
|
/* Setup the Base and Length of the Rx Descriptor Ring */
|
|
E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
|
|
E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));
|
|
|
|
E1000_WRITE_REG(hw, RDLEN, 128);
|
|
|
|
/* Setup the HW Rx Head and Tail Descriptor Pointers */
|
|
E1000_WRITE_REG(hw, RDH, 0);
|
|
E1000_WRITE_REG(hw, RDT, 0);
|
|
/* Enable Receives */
|
|
|
|
if (hw->mac_type == e1000_igb) {
|
|
|
|
uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
|
|
reg_rxdctl |= 1 << 25;
|
|
E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
|
|
mdelay(20);
|
|
}
|
|
|
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
|
|
|
fill_rx(hw);
|
|
}
|
|
|
|
/**************************************************************************
|
|
POLL - Wait for a frame
|
|
***************************************************************************/
|
|
static int
|
|
_e1000_poll(struct e1000_hw *hw)
|
|
{
|
|
struct e1000_rx_desc *rd;
|
|
unsigned long inval_start, inval_end;
|
|
uint32_t len;
|
|
|
|
/* return true if there's an ethernet packet ready to read */
|
|
rd = rx_base + rx_last;
|
|
|
|
/* Re-load the descriptor from RAM. */
|
|
inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
|
|
inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
|
|
invalidate_dcache_range(inval_start, inval_end);
|
|
|
|
if (!(rd->status & E1000_RXD_STAT_DD))
|
|
return 0;
|
|
/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
|
|
/* Packet received, make sure the data are re-loaded from RAM. */
|
|
len = le16_to_cpu(rd->length);
|
|
invalidate_dcache_range((unsigned long)packet,
|
|
(unsigned long)packet +
|
|
roundup(len, ARCH_DMA_MINALIGN));
|
|
return len;
|
|
}
|
|
|
|
static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
|
|
{
|
|
void *nv_packet = (void *)txpacket;
|
|
struct e1000_tx_desc *txp;
|
|
int i = 0;
|
|
unsigned long flush_start, flush_end;
|
|
|
|
txp = tx_base + tx_tail;
|
|
tx_tail = (tx_tail + 1) % 8;
|
|
|
|
txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
|
|
txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
|
|
txp->upper.data = 0;
|
|
|
|
/* Dump the packet into RAM so e1000 can pick them. */
|
|
flush_dcache_range((unsigned long)nv_packet,
|
|
(unsigned long)nv_packet +
|
|
roundup(length, ARCH_DMA_MINALIGN));
|
|
/* Dump the descriptor into RAM as well. */
|
|
flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
|
|
flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
|
|
flush_dcache_range(flush_start, flush_end);
|
|
|
|
E1000_WRITE_REG(hw, TDT, tx_tail);
|
|
|
|
E1000_WRITE_FLUSH(hw);
|
|
while (1) {
|
|
invalidate_dcache_range(flush_start, flush_end);
|
|
if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
|
|
break;
|
|
if (i++ > TOUT_LOOP) {
|
|
DEBUGOUT("e1000: tx timeout\n");
|
|
return 0;
|
|
}
|
|
udelay(10); /* give the nic a chance to write to the register */
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
_e1000_disable(struct e1000_hw *hw)
|
|
{
|
|
/* Turn off the ethernet interface */
|
|
E1000_WRITE_REG(hw, RCTL, 0);
|
|
E1000_WRITE_REG(hw, TCTL, 0);
|
|
|
|
/* Clear the transmit ring */
|
|
E1000_WRITE_REG(hw, TDH, 0);
|
|
E1000_WRITE_REG(hw, TDT, 0);
|
|
|
|
/* Clear the receive ring */
|
|
E1000_WRITE_REG(hw, RDH, 0);
|
|
E1000_WRITE_REG(hw, RDT, 0);
|
|
|
|
mdelay(10);
|
|
}
|
|
|
|
/*reset function*/
|
|
static inline int
|
|
e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
|
|
{
|
|
e1000_reset_hw(hw);
|
|
if (hw->mac_type >= e1000_82544)
|
|
E1000_WRITE_REG(hw, WUC, 0);
|
|
|
|
return e1000_init_hw(hw, enetaddr);
|
|
}
|
|
|
|
static int
|
|
_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
|
|
{
|
|
int ret_val = 0;
|
|
|
|
ret_val = e1000_reset(hw, enetaddr);
|
|
if (ret_val < 0) {
|
|
if ((ret_val == -E1000_ERR_NOLINK) ||
|
|
(ret_val == -E1000_ERR_TIMEOUT)) {
|
|
E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
|
|
} else {
|
|
E1000_ERR(hw, "Hardware Initialization Failed\n");
|
|
}
|
|
return ret_val;
|
|
}
|
|
e1000_configure_tx(hw);
|
|
e1000_setup_rctl(hw);
|
|
e1000_configure_rx(hw);
|
|
return 0;
|
|
}
|
|
|
|
/******************************************************************************
|
|
* Gets the current PCI bus type of hardware
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*****************************************************************************/
|
|
void e1000_get_bus_type(struct e1000_hw *hw)
|
|
{
|
|
uint32_t status;
|
|
|
|
switch (hw->mac_type) {
|
|
case e1000_82542_rev2_0:
|
|
case e1000_82542_rev2_1:
|
|
hw->bus_type = e1000_bus_type_pci;
|
|
break;
|
|
case e1000_82571:
|
|
case e1000_82572:
|
|
case e1000_82573:
|
|
case e1000_82574:
|
|
case e1000_80003es2lan:
|
|
case e1000_ich8lan:
|
|
case e1000_igb:
|
|
hw->bus_type = e1000_bus_type_pci_express;
|
|
break;
|
|
default:
|
|
status = E1000_READ_REG(hw, STATUS);
|
|
hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
|
|
e1000_bus_type_pcix : e1000_bus_type_pci;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_DM_ETH
|
|
/* A list of all registered e1000 devices */
|
|
static LIST_HEAD(e1000_hw_list);
|
|
#endif
|
|
|
|
#ifdef CONFIG_DM_ETH
|
|
static int e1000_init_one(struct e1000_hw *hw, int cardnum,
|
|
struct udevice *devno, unsigned char enetaddr[6])
|
|
#else
|
|
static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
|
|
unsigned char enetaddr[6])
|
|
#endif
|
|
{
|
|
u32 val;
|
|
|
|
/* Assign the passed-in values */
|
|
#ifdef CONFIG_DM_ETH
|
|
hw->pdev = devno;
|
|
#else
|
|
hw->pdev = devno;
|
|
#endif
|
|
hw->cardnum = cardnum;
|
|
|
|
/* Print a debug message with the IO base address */
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
|
|
#else
|
|
pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
|
|
#endif
|
|
E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);
|
|
|
|
/* Try to enable I/O accesses and bus-mastering */
|
|
val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_write_config32(devno, PCI_COMMAND, val);
|
|
#else
|
|
pci_write_config_dword(devno, PCI_COMMAND, val);
|
|
#endif
|
|
|
|
/* Make sure it worked */
|
|
#ifdef CONFIG_DM_ETH
|
|
dm_pci_read_config32(devno, PCI_COMMAND, &val);
|
|
#else
|
|
pci_read_config_dword(devno, PCI_COMMAND, &val);
|
|
#endif
|
|
if (!(val & PCI_COMMAND_MEMORY)) {
|
|
E1000_ERR(hw, "Can't enable I/O memory\n");
|
|
return -ENOSPC;
|
|
}
|
|
if (!(val & PCI_COMMAND_MASTER)) {
|
|
E1000_ERR(hw, "Can't enable bus-mastering\n");
|
|
return -EPERM;
|
|
}
|
|
|
|
/* Are these variables needed? */
|
|
hw->fc = e1000_fc_default;
|
|
hw->original_fc = e1000_fc_default;
|
|
hw->autoneg_failed = 0;
|
|
hw->autoneg = 1;
|
|
hw->get_link_status = true;
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
hw->eeprom_semaphore_present = true;
|
|
#endif
|
|
#ifdef CONFIG_DM_ETH
|
|
hw->hw_addr = dm_pci_map_bar(devno, PCI_BASE_ADDRESS_0,
|
|
PCI_REGION_MEM);
|
|
#else
|
|
hw->hw_addr = pci_map_bar(devno, PCI_BASE_ADDRESS_0,
|
|
PCI_REGION_MEM);
|
|
#endif
|
|
hw->mac_type = e1000_undefined;
|
|
|
|
/* MAC and Phy settings */
|
|
if (e1000_sw_init(hw) < 0) {
|
|
E1000_ERR(hw, "Software init failed\n");
|
|
return -EIO;
|
|
}
|
|
if (e1000_check_phy_reset_block(hw))
|
|
E1000_ERR(hw, "PHY Reset is blocked!\n");
|
|
|
|
/* Basic init was OK, reset the hardware and allow SPI access */
|
|
e1000_reset_hw(hw);
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
/* Validate the EEPROM and get chipset information */
|
|
if (e1000_init_eeprom_params(hw)) {
|
|
E1000_ERR(hw, "EEPROM is invalid!\n");
|
|
return -EINVAL;
|
|
}
|
|
if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
|
|
e1000_validate_eeprom_checksum(hw))
|
|
return -ENXIO;
|
|
e1000_read_mac_addr(hw, enetaddr);
|
|
#endif
|
|
e1000_get_bus_type(hw);
|
|
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n ",
|
|
enetaddr[0], enetaddr[1], enetaddr[2],
|
|
enetaddr[3], enetaddr[4], enetaddr[5]);
|
|
#else
|
|
memset(enetaddr, 0, 6);
|
|
printf("e1000: no NVM\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Put the name of a device in a string */
|
|
static void e1000_name(char *str, int cardnum)
|
|
{
|
|
sprintf(str, "e1000#%u", cardnum);
|
|
}
|
|
|
|
#ifndef CONFIG_DM_ETH
|
|
/**************************************************************************
|
|
TRANSMIT - Transmit a frame
|
|
***************************************************************************/
|
|
static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
|
|
{
|
|
struct e1000_hw *hw = nic->priv;
|
|
|
|
return _e1000_transmit(hw, txpacket, length);
|
|
}
|
|
|
|
/**************************************************************************
|
|
DISABLE - Turn off ethernet interface
|
|
***************************************************************************/
|
|
static void
|
|
e1000_disable(struct eth_device *nic)
|
|
{
|
|
struct e1000_hw *hw = nic->priv;
|
|
|
|
_e1000_disable(hw);
|
|
}
|
|
|
|
/**************************************************************************
|
|
INIT - set up ethernet interface(s)
|
|
***************************************************************************/
|
|
static int
|
|
e1000_init(struct eth_device *nic, bd_t *bis)
|
|
{
|
|
struct e1000_hw *hw = nic->priv;
|
|
|
|
return _e1000_init(hw, nic->enetaddr);
|
|
}
|
|
|
|
static int
|
|
e1000_poll(struct eth_device *nic)
|
|
{
|
|
struct e1000_hw *hw = nic->priv;
|
|
int len;
|
|
|
|
len = _e1000_poll(hw);
|
|
if (len) {
|
|
net_process_received_packet((uchar *)packet, len);
|
|
fill_rx(hw);
|
|
}
|
|
|
|
return len ? 1 : 0;
|
|
}
|
|
|
|
static int e1000_write_hwaddr(struct eth_device *dev)
|
|
{
|
|
#ifndef CONFIG_E1000_NO_NVM
|
|
unsigned char *mac = dev->enetaddr;
|
|
unsigned char current_mac[6];
|
|
struct e1000_hw *hw = dev->priv;
|
|
uint16_t data[3];
|
|
int ret_val, i;
|
|
|
|
DEBUGOUT("%s: mac=%pM\n", __func__, mac);
|
|
|
|
memset(current_mac, 0, 6);
|
|
|
|
/* Read from EEPROM, not from registers, to make sure
|
|
* the address is persistently configured
|
|
*/
|
|
ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
|
|
DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);
|
|
|
|
/* Only write to EEPROM if the given address is different or
|
|
* reading the current address failed
|
|
*/
|
|
if (!ret_val && memcmp(current_mac, mac, 6) == 0)
|
|
return 0;
|
|
|
|
for (i = 0; i < 3; ++i)
|
|
data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];
|
|
|
|
ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);
|
|
|
|
if (!ret_val)
|
|
ret_val = e1000_update_eeprom_checksum_i210(hw);
|
|
|
|
return ret_val;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
/**************************************************************************
|
|
PROBE - Look for an adapter, this routine's visible to the outside
|
|
You should omit the last argument struct pci_device * for a non-PCI NIC
|
|
***************************************************************************/
|
|
int
|
|
e1000_initialize(bd_t * bis)
|
|
{
|
|
unsigned int i;
|
|
pci_dev_t devno;
|
|
int ret;
|
|
|
|
DEBUGFUNC();
|
|
|
|
/* Find and probe all the matching PCI devices */
|
|
for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
|
|
/*
|
|
* These will never get freed due to errors, this allows us to
|
|
* perform SPI EEPROM programming from U-Boot, for example.
|
|
*/
|
|
struct eth_device *nic = malloc(sizeof(*nic));
|
|
struct e1000_hw *hw = malloc(sizeof(*hw));
|
|
if (!nic || !hw) {
|
|
printf("e1000#%u: Out of Memory!\n", i);
|
|
free(nic);
|
|
free(hw);
|
|
continue;
|
|
}
|
|
|
|
/* Make sure all of the fields are initially zeroed */
|
|
memset(nic, 0, sizeof(*nic));
|
|
memset(hw, 0, sizeof(*hw));
|
|
nic->priv = hw;
|
|
|
|
/* Generate a card name */
|
|
e1000_name(nic->name, i);
|
|
hw->name = nic->name;
|
|
|
|
ret = e1000_init_one(hw, i, devno, nic->enetaddr);
|
|
if (ret)
|
|
continue;
|
|
list_add_tail(&hw->list_node, &e1000_hw_list);
|
|
|
|
hw->nic = nic;
|
|
|
|
/* Set up the function pointers and register the device */
|
|
nic->init = e1000_init;
|
|
nic->recv = e1000_poll;
|
|
nic->send = e1000_transmit;
|
|
nic->halt = e1000_disable;
|
|
nic->write_hwaddr = e1000_write_hwaddr;
|
|
eth_register(nic);
|
|
}
|
|
|
|
return i;
|
|
}
|
|
|
|
struct e1000_hw *e1000_find_card(unsigned int cardnum)
|
|
{
|
|
struct e1000_hw *hw;
|
|
|
|
list_for_each_entry(hw, &e1000_hw_list, list_node)
|
|
if (hw->cardnum == cardnum)
|
|
return hw;
|
|
|
|
return NULL;
|
|
}
|
|
#endif /* !CONFIG_DM_ETH */
|
|
|
|
#ifdef CONFIG_CMD_E1000
|
|
static int do_e1000(cmd_tbl_t *cmdtp, int flag,
|
|
int argc, char * const argv[])
|
|
{
|
|
unsigned char *mac = NULL;
|
|
#ifdef CONFIG_DM_ETH
|
|
struct eth_pdata *plat;
|
|
struct udevice *dev;
|
|
char name[30];
|
|
int ret;
|
|
#endif
|
|
#if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
|
|
struct e1000_hw *hw;
|
|
#endif
|
|
int cardnum;
|
|
|
|
if (argc < 3) {
|
|
cmd_usage(cmdtp);
|
|
return 1;
|
|
}
|
|
|
|
/* Make sure we can find the requested e1000 card */
|
|
cardnum = simple_strtoul(argv[1], NULL, 10);
|
|
#ifdef CONFIG_DM_ETH
|
|
e1000_name(name, cardnum);
|
|
ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
|
|
if (!ret) {
|
|
plat = dev_get_platdata(dev);
|
|
mac = plat->enetaddr;
|
|
}
|
|
#else
|
|
hw = e1000_find_card(cardnum);
|
|
if (hw)
|
|
mac = hw->nic->enetaddr;
|
|
#endif
|
|
if (!mac) {
|
|
printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
|
|
return 1;
|
|
}
|
|
|
|
if (!strcmp(argv[2], "print-mac-address")) {
|
|
printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_E1000_SPI
|
|
#ifdef CONFIG_DM_ETH
|
|
hw = dev_get_priv(dev);
|
|
#endif
|
|
/* Handle the "SPI" subcommand */
|
|
if (!strcmp(argv[2], "spi"))
|
|
return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
|
|
#endif
|
|
|
|
cmd_usage(cmdtp);
|
|
return 1;
|
|
}
|
|
|
|
U_BOOT_CMD(
|
|
e1000, 7, 0, do_e1000,
|
|
"Intel e1000 controller management",
|
|
/* */"<card#> print-mac-address\n"
|
|
#ifdef CONFIG_E1000_SPI
|
|
"e1000 <card#> spi show [<offset> [<length>]]\n"
|
|
"e1000 <card#> spi dump <addr> <offset> <length>\n"
|
|
"e1000 <card#> spi program <addr> <offset> <length>\n"
|
|
"e1000 <card#> spi checksum [update]\n"
|
|
#endif
|
|
" - Manage the Intel E1000 PCI device"
|
|
);
|
|
#endif /* not CONFIG_CMD_E1000 */
|
|
|
|
#ifdef CONFIG_DM_ETH
|
|
static int e1000_eth_start(struct udevice *dev)
|
|
{
|
|
struct eth_pdata *plat = dev_get_platdata(dev);
|
|
struct e1000_hw *hw = dev_get_priv(dev);
|
|
|
|
return _e1000_init(hw, plat->enetaddr);
|
|
}
|
|
|
|
static void e1000_eth_stop(struct udevice *dev)
|
|
{
|
|
struct e1000_hw *hw = dev_get_priv(dev);
|
|
|
|
_e1000_disable(hw);
|
|
}
|
|
|
|
static int e1000_eth_send(struct udevice *dev, void *packet, int length)
|
|
{
|
|
struct e1000_hw *hw = dev_get_priv(dev);
|
|
int ret;
|
|
|
|
ret = _e1000_transmit(hw, packet, length);
|
|
|
|
return ret ? 0 : -ETIMEDOUT;
|
|
}
|
|
|
|
static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
|
|
{
|
|
struct e1000_hw *hw = dev_get_priv(dev);
|
|
int len;
|
|
|
|
len = _e1000_poll(hw);
|
|
if (len)
|
|
*packetp = packet;
|
|
|
|
return len ? len : -EAGAIN;
|
|
}
|
|
|
|
static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
|
|
{
|
|
struct e1000_hw *hw = dev_get_priv(dev);
|
|
|
|
fill_rx(hw);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_eth_probe(struct udevice *dev)
|
|
{
|
|
struct eth_pdata *plat = dev_get_platdata(dev);
|
|
struct e1000_hw *hw = dev_get_priv(dev);
|
|
int ret;
|
|
|
|
hw->name = dev->name;
|
|
ret = e1000_init_one(hw, trailing_strtol(dev->name),
|
|
dev, plat->enetaddr);
|
|
if (ret < 0) {
|
|
printf(pr_fmt("failed to initialize card: %d\n"), ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int e1000_eth_bind(struct udevice *dev)
|
|
{
|
|
char name[20];
|
|
|
|
/*
|
|
* A simple way to number the devices. When device tree is used this
|
|
* is unnecessary, but when the device is just discovered on the PCI
|
|
* bus we need a name. We could instead have the uclass figure out
|
|
* which devices are different and number them.
|
|
*/
|
|
e1000_name(name, num_cards++);
|
|
|
|
return device_set_name(dev, name);
|
|
}
|
|
|
|
static const struct eth_ops e1000_eth_ops = {
|
|
.start = e1000_eth_start,
|
|
.send = e1000_eth_send,
|
|
.recv = e1000_eth_recv,
|
|
.stop = e1000_eth_stop,
|
|
.free_pkt = e1000_free_pkt,
|
|
};
|
|
|
|
static const struct udevice_id e1000_eth_ids[] = {
|
|
{ .compatible = "intel,e1000" },
|
|
{ }
|
|
};
|
|
|
|
U_BOOT_DRIVER(eth_e1000) = {
|
|
.name = "eth_e1000",
|
|
.id = UCLASS_ETH,
|
|
.of_match = e1000_eth_ids,
|
|
.bind = e1000_eth_bind,
|
|
.probe = e1000_eth_probe,
|
|
.ops = &e1000_eth_ops,
|
|
.priv_auto_alloc_size = sizeof(struct e1000_hw),
|
|
.platdata_auto_alloc_size = sizeof(struct eth_pdata),
|
|
};
|
|
|
|
U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
|
|
#endif
|