u-boot/drivers/misc/cros_ec.c
Simon Glass 1c266b9214 cros_ec: Move #ifdef to permit flash region access
Flash region access is not tied to having commands, so adjust the #ifdef
to reflect this.

Signed-off-by: Simon Glass <sjg@chromium.org>
2014-03-17 20:05:46 -06:00

1332 lines
33 KiB
C

/*
* Chromium OS cros_ec driver
*
* Copyright (c) 2012 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*
* The Matrix Keyboard Protocol driver handles talking to the keyboard
* controller chip. Mostly this is for keyboard functions, but some other
* things have slipped in, so we provide generic services to talk to the
* KBC.
*/
#include <common.h>
#include <command.h>
#include <i2c.h>
#include <cros_ec.h>
#include <fdtdec.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <asm-generic/gpio.h>
#ifdef DEBUG_TRACE
#define debug_trace(fmt, b...) debug(fmt, #b)
#else
#define debug_trace(fmt, b...)
#endif
enum {
/* Timeout waiting for a flash erase command to complete */
CROS_EC_CMD_TIMEOUT_MS = 5000,
/* Timeout waiting for a synchronous hash to be recomputed */
CROS_EC_CMD_HASH_TIMEOUT_MS = 2000,
};
static struct cros_ec_dev static_dev, *last_dev;
DECLARE_GLOBAL_DATA_PTR;
/* Note: depends on enum ec_current_image */
static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"};
void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len)
{
#ifdef DEBUG
int i;
printf("%s: ", name);
if (cmd != -1)
printf("cmd=%#x: ", cmd);
for (i = 0; i < len; i++)
printf("%02x ", data[i]);
printf("\n");
#endif
}
/*
* Calculate a simple 8-bit checksum of a data block
*
* @param data Data block to checksum
* @param size Size of data block in bytes
* @return checksum value (0 to 255)
*/
int cros_ec_calc_checksum(const uint8_t *data, int size)
{
int csum, i;
for (i = csum = 0; i < size; i++)
csum += data[i];
return csum & 0xff;
}
static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const void *dout, int dout_len,
uint8_t **dinp, int din_len)
{
int ret;
switch (dev->interface) {
#ifdef CONFIG_CROS_EC_SPI
case CROS_EC_IF_SPI:
ret = cros_ec_spi_command(dev, cmd, cmd_version,
(const uint8_t *)dout, dout_len,
dinp, din_len);
break;
#endif
#ifdef CONFIG_CROS_EC_I2C
case CROS_EC_IF_I2C:
ret = cros_ec_i2c_command(dev, cmd, cmd_version,
(const uint8_t *)dout, dout_len,
dinp, din_len);
break;
#endif
#ifdef CONFIG_CROS_EC_LPC
case CROS_EC_IF_LPC:
ret = cros_ec_lpc_command(dev, cmd, cmd_version,
(const uint8_t *)dout, dout_len,
dinp, din_len);
break;
#endif
case CROS_EC_IF_NONE:
default:
ret = -1;
}
return ret;
}
/**
* Send a command to the CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param dinp Response data (may be NULL If din_len=0).
* If not NULL, it will be updated to point to the data
* and will always be double word aligned (64-bits)
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -1 on error
*/
static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd,
int cmd_version, const void *dout, int dout_len, uint8_t **dinp,
int din_len)
{
uint8_t *din;
int len;
len = send_command(dev, cmd, cmd_version, dout, dout_len,
&din, din_len);
/* If the command doesn't complete, wait a while */
if (len == -EC_RES_IN_PROGRESS) {
struct ec_response_get_comms_status *resp;
ulong start;
/* Wait for command to complete */
start = get_timer(0);
do {
int ret;
mdelay(50); /* Insert some reasonable delay */
ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0,
NULL, 0,
(uint8_t **)&resp, sizeof(*resp));
if (ret < 0)
return ret;
if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) {
debug("%s: Command %#02x timeout\n",
__func__, cmd);
return -EC_RES_TIMEOUT;
}
} while (resp->flags & EC_COMMS_STATUS_PROCESSING);
/* OK it completed, so read the status response */
/* not sure why it was 0 for the last argument */
len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0,
NULL, 0, &din, din_len);
}
debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp);
if (dinp) {
/* If we have any data to return, it must be 64bit-aligned */
assert(len <= 0 || !((uintptr_t)din & 7));
*dinp = din;
}
return len;
}
/**
* Send a command to the CROS-EC device and return the reply.
*
* The device's internal input/output buffers are used.
*
* @param dev CROS-EC device
* @param cmd Command to send (EC_CMD_...)
* @param cmd_version Version of command to send (EC_VER_...)
* @param dout Output data (may be NULL If dout_len=0)
* @param dout_len Size of output data in bytes
* @param din Response data (may be NULL If din_len=0).
* It not NULL, it is a place for ec_command() to copy the
* data to.
* @param din_len Maximum size of response in bytes
* @return number of bytes in response, or -1 on error
*/
static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version,
const void *dout, int dout_len,
void *din, int din_len)
{
uint8_t *in_buffer;
int len;
assert((din_len == 0) || din);
len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len,
&in_buffer, din_len);
if (len > 0) {
/*
* If we were asked to put it somewhere, do so, otherwise just
* disregard the result.
*/
if (din && in_buffer) {
assert(len <= din_len);
memmove(din, in_buffer, len);
}
}
return len;
}
int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan)
{
if (ec_command(dev, EC_CMD_CROS_EC_STATE, 0, NULL, 0, scan,
sizeof(scan->data)) < sizeof(scan->data))
return -1;
return 0;
}
int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen)
{
struct ec_response_get_version *r;
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)&r, sizeof(*r)) < sizeof(*r))
return -1;
if (maxlen > sizeof(r->version_string_ro))
maxlen = sizeof(r->version_string_ro);
switch (r->current_image) {
case EC_IMAGE_RO:
memcpy(id, r->version_string_ro, maxlen);
break;
case EC_IMAGE_RW:
memcpy(id, r->version_string_rw, maxlen);
break;
default:
return -1;
}
id[maxlen - 1] = '\0';
return 0;
}
int cros_ec_read_version(struct cros_ec_dev *dev,
struct ec_response_get_version **versionp)
{
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)versionp, sizeof(**versionp))
< sizeof(**versionp))
return -1;
return 0;
}
int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp)
{
if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0,
(uint8_t **)strp, EC_HOST_PARAM_SIZE) < 0)
return -1;
return 0;
}
int cros_ec_read_current_image(struct cros_ec_dev *dev,
enum ec_current_image *image)
{
struct ec_response_get_version *r;
if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0,
(uint8_t **)&r, sizeof(*r)) < sizeof(*r))
return -1;
*image = r->current_image;
return 0;
}
static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev,
struct ec_response_vboot_hash *hash)
{
struct ec_params_vboot_hash p;
ulong start;
start = get_timer(0);
while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) {
mdelay(50); /* Insert some reasonable delay */
p.cmd = EC_VBOOT_HASH_GET;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) {
debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__);
return -EC_RES_TIMEOUT;
}
}
return 0;
}
int cros_ec_read_hash(struct cros_ec_dev *dev,
struct ec_response_vboot_hash *hash)
{
struct ec_params_vboot_hash p;
int rv;
p.cmd = EC_VBOOT_HASH_GET;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
/* If the EC is busy calculating the hash, fidget until it's done. */
rv = cros_ec_wait_on_hash_done(dev, hash);
if (rv)
return rv;
/* If the hash is valid, we're done. Otherwise, we have to kick it off
* again and wait for it to complete. Note that we explicitly assume
* that hashing zero bytes is always wrong, even though that would
* produce a valid hash value. */
if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size)
return 0;
debug("%s: No valid hash (status=%d size=%d). Compute one...\n",
__func__, hash->status, hash->size);
p.cmd = EC_VBOOT_HASH_RECALC;
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.nonce_size = 0;
p.offset = EC_VBOOT_HASH_OFFSET_RW;
if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
hash, sizeof(*hash)) < 0)
return -1;
rv = cros_ec_wait_on_hash_done(dev, hash);
if (rv)
return rv;
debug("%s: hash done\n", __func__);
return 0;
}
static int cros_ec_invalidate_hash(struct cros_ec_dev *dev)
{
struct ec_params_vboot_hash p;
struct ec_response_vboot_hash *hash;
/* We don't have an explict command for the EC to discard its current
* hash value, so we'll just tell it to calculate one that we know is
* wrong (we claim that hashing zero bytes is always invalid).
*/
p.cmd = EC_VBOOT_HASH_RECALC;
p.hash_type = EC_VBOOT_HASH_TYPE_SHA256;
p.nonce_size = 0;
p.offset = 0;
p.size = 0;
debug("%s:\n", __func__);
if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p),
(uint8_t **)&hash, sizeof(*hash)) < 0)
return -1;
/* No need to wait for it to finish */
return 0;
}
int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd,
uint8_t flags)
{
struct ec_params_reboot_ec p;
p.cmd = cmd;
p.flags = flags;
if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0)
< 0)
return -1;
if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) {
/*
* EC reboot will take place immediately so delay to allow it
* to complete. Note that some reboot types (EC_REBOOT_COLD)
* will reboot the AP as well, in which case we won't actually
* get to this point.
*/
/*
* TODO(rspangler@chromium.org): Would be nice if we had a
* better way to determine when the reboot is complete. Could
* we poll a memory-mapped LPC value?
*/
udelay(50000);
}
return 0;
}
int cros_ec_interrupt_pending(struct cros_ec_dev *dev)
{
/* no interrupt support : always poll */
if (!fdt_gpio_isvalid(&dev->ec_int))
return 1;
return !gpio_get_value(dev->ec_int.gpio);
}
int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_cros_ec_info *info)
{
if (ec_command(dev, EC_CMD_CROS_EC_INFO, 0, NULL, 0, info,
sizeof(*info)) < sizeof(*info))
return -1;
return 0;
}
int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr)
{
struct ec_response_host_event_mask *resp;
/*
* Use the B copy of the event flags, because the main copy is already
* used by ACPI/SMI.
*/
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0,
(uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp))
return -1;
if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID))
return -1;
*events_ptr = resp->mask;
return 0;
}
int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events)
{
struct ec_params_host_event_mask params;
params.mask = events;
/*
* Use the B copy of the event flags, so it affects the data returned
* by cros_ec_get_host_events().
*/
if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0,
&params, sizeof(params), NULL, 0) < 0)
return -1;
return 0;
}
int cros_ec_flash_protect(struct cros_ec_dev *dev,
uint32_t set_mask, uint32_t set_flags,
struct ec_response_flash_protect *resp)
{
struct ec_params_flash_protect params;
params.mask = set_mask;
params.flags = set_flags;
if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT,
&params, sizeof(params),
resp, sizeof(*resp)) < sizeof(*resp))
return -1;
return 0;
}
static int cros_ec_check_version(struct cros_ec_dev *dev)
{
struct ec_params_hello req;
struct ec_response_hello *resp;
#ifdef CONFIG_CROS_EC_LPC
/* LPC has its own way of doing this */
if (dev->interface == CROS_EC_IF_LPC)
return cros_ec_lpc_check_version(dev);
#endif
/*
* TODO(sjg@chromium.org).
* There is a strange oddity here with the EC. We could just ignore
* the response, i.e. pass the last two parameters as NULL and 0.
* In this case we won't read back very many bytes from the EC.
* On the I2C bus the EC gets upset about this and will try to send
* the bytes anyway. This means that we will have to wait for that
* to complete before continuing with a new EC command.
*
* This problem is probably unique to the I2C bus.
*
* So for now, just read all the data anyway.
*/
dev->cmd_version_is_supported = 1;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) > 0) {
/* It appears to understand new version commands */
dev->cmd_version_is_supported = 1;
} else {
printf("%s: ERROR: old EC interface not supported\n",
__func__);
return -1;
}
return 0;
}
int cros_ec_test(struct cros_ec_dev *dev)
{
struct ec_params_hello req;
struct ec_response_hello *resp;
req.in_data = 0x12345678;
if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req),
(uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) {
printf("ec_command_inptr() returned error\n");
return -1;
}
if (resp->out_data != req.in_data + 0x01020304) {
printf("Received invalid handshake %x\n", resp->out_data);
return -1;
}
return 0;
}
int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region,
uint32_t *offset, uint32_t *size)
{
struct ec_params_flash_region_info p;
struct ec_response_flash_region_info *r;
int ret;
p.region = region;
ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO,
EC_VER_FLASH_REGION_INFO,
&p, sizeof(p), (uint8_t **)&r, sizeof(*r));
if (ret != sizeof(*r))
return -1;
if (offset)
*offset = r->offset;
if (size)
*size = r->size;
return 0;
}
int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size)
{
struct ec_params_flash_erase p;
p.offset = offset;
p.size = size;
return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p),
NULL, 0);
}
/**
* Write a single block to the flash
*
* Write a block of data to the EC flash. The size must not exceed the flash
* write block size which you can obtain from cros_ec_flash_write_burst_size().
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to write for a particular region.
*
* Attempting to write to the region where the EC is currently running from
* will result in an error.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to write
* @param offset Offset within flash to write to.
* @param size Number of bytes to write
* @return 0 if ok, -1 on error
*/
static int cros_ec_flash_write_block(struct cros_ec_dev *dev,
const uint8_t *data, uint32_t offset, uint32_t size)
{
struct ec_params_flash_write p;
p.offset = offset;
p.size = size;
assert(data && p.size <= sizeof(p.data));
memcpy(p.data, data, p.size);
return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0,
&p, sizeof(p), NULL, 0) >= 0 ? 0 : -1;
}
/**
* Return optimal flash write burst size
*/
static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev)
{
struct ec_params_flash_write p;
return sizeof(p.data);
}
/**
* Check if a block of data is erased (all 0xff)
*
* This function is useful when dealing with flash, for checking whether a
* data block is erased and thus does not need to be programmed.
*
* @param data Pointer to data to check (must be word-aligned)
* @param size Number of bytes to check (must be word-aligned)
* @return 0 if erased, non-zero if any word is not erased
*/
static int cros_ec_data_is_erased(const uint32_t *data, int size)
{
assert(!(size & 3));
size /= sizeof(uint32_t);
for (; size > 0; size -= 4, data++)
if (*data != -1U)
return 0;
return 1;
}
int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data,
uint32_t offset, uint32_t size)
{
uint32_t burst = cros_ec_flash_write_burst_size(dev);
uint32_t end, off;
int ret;
/*
* TODO: round up to the nearest multiple of write size. Can get away
* without that on link right now because its write size is 4 bytes.
*/
end = offset + size;
for (off = offset; off < end; off += burst, data += burst) {
uint32_t todo;
/* If the data is empty, there is no point in programming it */
todo = min(end - off, burst);
if (dev->optimise_flash_write &&
cros_ec_data_is_erased((uint32_t *)data, todo))
continue;
ret = cros_ec_flash_write_block(dev, data, off, todo);
if (ret)
return ret;
}
return 0;
}
/**
* Read a single block from the flash
*
* Read a block of data from the EC flash. The size must not exceed the flash
* write block size which you can obtain from cros_ec_flash_write_burst_size().
*
* The offset starts at 0. You can obtain the region information from
* cros_ec_flash_offset() to find out where to read for a particular region.
*
* @param dev CROS-EC device
* @param data Pointer to data buffer to read into
* @param offset Offset within flash to read from
* @param size Number of bytes to read
* @return 0 if ok, -1 on error
*/
static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data,
uint32_t offset, uint32_t size)
{
struct ec_params_flash_read p;
p.offset = offset;
p.size = size;
return ec_command(dev, EC_CMD_FLASH_READ, 0,
&p, sizeof(p), data, size) >= 0 ? 0 : -1;
}
int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset,
uint32_t size)
{
uint32_t burst = cros_ec_flash_write_burst_size(dev);
uint32_t end, off;
int ret;
end = offset + size;
for (off = offset; off < end; off += burst, data += burst) {
ret = cros_ec_flash_read_block(dev, data, off,
min(end - off, burst));
if (ret)
return ret;
}
return 0;
}
int cros_ec_flash_update_rw(struct cros_ec_dev *dev,
const uint8_t *image, int image_size)
{
uint32_t rw_offset, rw_size;
int ret;
if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size))
return -1;
if (image_size > rw_size)
return -1;
/* Invalidate the existing hash, just in case the AP reboots
* unexpectedly during the update. If that happened, the EC RW firmware
* would be invalid, but the EC would still have the original hash.
*/
ret = cros_ec_invalidate_hash(dev);
if (ret)
return ret;
/*
* Erase the entire RW section, so that the EC doesn't see any garbage
* past the new image if it's smaller than the current image.
*
* TODO: could optimize this to erase just the current image, since
* presumably everything past that is 0xff's. But would still need to
* round up to the nearest multiple of erase size.
*/
ret = cros_ec_flash_erase(dev, rw_offset, rw_size);
if (ret)
return ret;
/* Write the image */
ret = cros_ec_flash_write(dev, image, rw_offset, image_size);
if (ret)
return ret;
return 0;
}
int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block)
{
struct ec_params_vbnvcontext p;
int len;
p.op = EC_VBNV_CONTEXT_OP_READ;
len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
&p, sizeof(p), block, EC_VBNV_BLOCK_SIZE);
if (len < EC_VBNV_BLOCK_SIZE)
return -1;
return 0;
}
int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block)
{
struct ec_params_vbnvcontext p;
int len;
p.op = EC_VBNV_CONTEXT_OP_WRITE;
memcpy(p.block, block, sizeof(p.block));
len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT,
&p, sizeof(p), NULL, 0);
if (len < 0)
return -1;
return 0;
}
int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state)
{
struct ec_params_ldo_set params;
params.index = index;
params.state = state;
if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0,
&params, sizeof(params),
NULL, 0))
return -1;
return 0;
}
int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state)
{
struct ec_params_ldo_get params;
struct ec_response_ldo_get *resp;
params.index = index;
if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0,
&params, sizeof(params),
(uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp))
return -1;
*state = resp->state;
return 0;
}
/**
* Decode MBKP details from the device tree and allocate a suitable device.
*
* @param blob Device tree blob
* @param node Node to decode from
* @param devp Returns a pointer to the new allocated device
* @return 0 if ok, -1 on error
*/
static int cros_ec_decode_fdt(const void *blob, int node,
struct cros_ec_dev **devp)
{
enum fdt_compat_id compat;
struct cros_ec_dev *dev;
int parent;
/* See what type of parent we are inside (this is expensive) */
parent = fdt_parent_offset(blob, node);
if (parent < 0) {
debug("%s: Cannot find node parent\n", __func__);
return -1;
}
dev = &static_dev;
dev->node = node;
dev->parent_node = parent;
compat = fdtdec_lookup(blob, parent);
switch (compat) {
#ifdef CONFIG_CROS_EC_SPI
case COMPAT_SAMSUNG_EXYNOS_SPI:
dev->interface = CROS_EC_IF_SPI;
if (cros_ec_spi_decode_fdt(dev, blob))
return -1;
break;
#endif
#ifdef CONFIG_CROS_EC_I2C
case COMPAT_SAMSUNG_S3C2440_I2C:
dev->interface = CROS_EC_IF_I2C;
if (cros_ec_i2c_decode_fdt(dev, blob))
return -1;
break;
#endif
#ifdef CONFIG_CROS_EC_LPC
case COMPAT_INTEL_LPC:
dev->interface = CROS_EC_IF_LPC;
break;
#endif
default:
debug("%s: Unknown compat id %d\n", __func__, compat);
return -1;
}
fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int);
dev->optimise_flash_write = fdtdec_get_bool(blob, node,
"optimise-flash-write");
*devp = dev;
return 0;
}
int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp)
{
char id[MSG_BYTES];
struct cros_ec_dev *dev;
int node = 0;
*cros_ecp = NULL;
do {
node = fdtdec_next_compatible(blob, node,
COMPAT_GOOGLE_CROS_EC);
if (node < 0) {
debug("%s: Node not found\n", __func__);
return 0;
}
} while (!fdtdec_get_is_enabled(blob, node));
if (cros_ec_decode_fdt(blob, node, &dev)) {
debug("%s: Failed to decode device.\n", __func__);
return -CROS_EC_ERR_FDT_DECODE;
}
switch (dev->interface) {
#ifdef CONFIG_CROS_EC_SPI
case CROS_EC_IF_SPI:
if (cros_ec_spi_init(dev, blob)) {
debug("%s: Could not setup SPI interface\n", __func__);
return -CROS_EC_ERR_DEV_INIT;
}
break;
#endif
#ifdef CONFIG_CROS_EC_I2C
case CROS_EC_IF_I2C:
if (cros_ec_i2c_init(dev, blob))
return -CROS_EC_ERR_DEV_INIT;
break;
#endif
#ifdef CONFIG_CROS_EC_LPC
case CROS_EC_IF_LPC:
if (cros_ec_lpc_init(dev, blob))
return -CROS_EC_ERR_DEV_INIT;
break;
#endif
case CROS_EC_IF_NONE:
default:
return 0;
}
/* we will poll the EC interrupt line */
fdtdec_setup_gpio(&dev->ec_int);
if (fdt_gpio_isvalid(&dev->ec_int))
gpio_direction_input(dev->ec_int.gpio);
if (cros_ec_check_version(dev)) {
debug("%s: Could not detect CROS-EC version\n", __func__);
return -CROS_EC_ERR_CHECK_VERSION;
}
if (cros_ec_read_id(dev, id, sizeof(id))) {
debug("%s: Could not read KBC ID\n", __func__);
return -CROS_EC_ERR_READ_ID;
}
/* Remember this device for use by the cros_ec command */
last_dev = *cros_ecp = dev;
debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id);
return 0;
}
int cros_ec_decode_region(int argc, char * const argv[])
{
if (argc > 0) {
if (0 == strcmp(*argv, "rw"))
return EC_FLASH_REGION_RW;
else if (0 == strcmp(*argv, "ro"))
return EC_FLASH_REGION_RO;
debug("%s: Invalid region '%s'\n", __func__, *argv);
} else {
debug("%s: Missing region parameter\n", __func__);
}
return -1;
}
int cros_ec_decode_ec_flash(const void *blob, struct fdt_cros_ec *config)
{
int flash_node, node;
node = fdtdec_next_compatible(blob, 0, COMPAT_GOOGLE_CROS_EC);
if (node < 0) {
debug("Failed to find chrome-ec node'\n");
return -1;
}
flash_node = fdt_subnode_offset(blob, node, "flash");
if (flash_node < 0) {
debug("Failed to find flash node\n");
return -1;
}
if (fdtdec_read_fmap_entry(blob, flash_node, "flash",
&config->flash)) {
debug("Failed to decode flash node in chrome-ec'\n");
return -1;
}
config->flash_erase_value = fdtdec_get_int(blob, flash_node,
"erase-value", -1);
for (node = fdt_first_subnode(blob, flash_node); node >= 0;
node = fdt_next_subnode(blob, node)) {
const char *name = fdt_get_name(blob, node, NULL);
enum ec_flash_region region;
if (0 == strcmp(name, "ro")) {
region = EC_FLASH_REGION_RO;
} else if (0 == strcmp(name, "rw")) {
region = EC_FLASH_REGION_RW;
} else if (0 == strcmp(name, "wp-ro")) {
region = EC_FLASH_REGION_WP_RO;
} else {
debug("Unknown EC flash region name '%s'\n", name);
return -1;
}
if (fdtdec_read_fmap_entry(blob, node, "reg",
&config->region[region])) {
debug("Failed to decode flash region in chrome-ec'\n");
return -1;
}
}
return 0;
}
#ifdef CONFIG_CMD_CROS_EC
/**
* Perform a flash read or write command
*
* @param dev CROS-EC device to read/write
* @param is_write 1 do to a write, 0 to do a read
* @param argc Number of arguments
* @param argv Arguments (2 is region, 3 is address)
* @return 0 for ok, 1 for a usage error or -ve for ec command error
* (negative EC_RES_...)
*/
static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc,
char * const argv[])
{
uint32_t offset, size = -1U, region_size;
unsigned long addr;
char *endp;
int region;
int ret;
region = cros_ec_decode_region(argc - 2, argv + 2);
if (region == -1)
return 1;
if (argc < 4)
return 1;
addr = simple_strtoul(argv[3], &endp, 16);
if (*argv[3] == 0 || *endp != 0)
return 1;
if (argc > 4) {
size = simple_strtoul(argv[4], &endp, 16);
if (*argv[4] == 0 || *endp != 0)
return 1;
}
ret = cros_ec_flash_offset(dev, region, &offset, &region_size);
if (ret) {
debug("%s: Could not read region info\n", __func__);
return ret;
}
if (size == -1U)
size = region_size;
ret = is_write ?
cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) :
cros_ec_flash_read(dev, (uint8_t *)addr, offset, size);
if (ret) {
debug("%s: Could not %s region\n", __func__,
is_write ? "write" : "read");
return ret;
}
return 0;
}
static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
struct cros_ec_dev *dev = last_dev;
const char *cmd;
int ret = 0;
if (argc < 2)
return CMD_RET_USAGE;
cmd = argv[1];
if (0 == strcmp("init", cmd)) {
ret = cros_ec_init(gd->fdt_blob, &dev);
if (ret) {
printf("Could not init cros_ec device (err %d)\n", ret);
return 1;
}
return 0;
}
/* Just use the last allocated device; there should be only one */
if (!last_dev) {
printf("No CROS-EC device available\n");
return 1;
}
if (0 == strcmp("id", cmd)) {
char id[MSG_BYTES];
if (cros_ec_read_id(dev, id, sizeof(id))) {
debug("%s: Could not read KBC ID\n", __func__);
return 1;
}
printf("%s\n", id);
} else if (0 == strcmp("info", cmd)) {
struct ec_response_cros_ec_info info;
if (cros_ec_info(dev, &info)) {
debug("%s: Could not read KBC info\n", __func__);
return 1;
}
printf("rows = %u\n", info.rows);
printf("cols = %u\n", info.cols);
printf("switches = %#x\n", info.switches);
} else if (0 == strcmp("curimage", cmd)) {
enum ec_current_image image;
if (cros_ec_read_current_image(dev, &image)) {
debug("%s: Could not read KBC image\n", __func__);
return 1;
}
printf("%d\n", image);
} else if (0 == strcmp("hash", cmd)) {
struct ec_response_vboot_hash hash;
int i;
if (cros_ec_read_hash(dev, &hash)) {
debug("%s: Could not read KBC hash\n", __func__);
return 1;
}
if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256)
printf("type: SHA-256\n");
else
printf("type: %d\n", hash.hash_type);
printf("offset: 0x%08x\n", hash.offset);
printf("size: 0x%08x\n", hash.size);
printf("digest: ");
for (i = 0; i < hash.digest_size; i++)
printf("%02x", hash.hash_digest[i]);
printf("\n");
} else if (0 == strcmp("reboot", cmd)) {
int region;
enum ec_reboot_cmd cmd;
if (argc >= 3 && !strcmp(argv[2], "cold"))
cmd = EC_REBOOT_COLD;
else {
region = cros_ec_decode_region(argc - 2, argv + 2);
if (region == EC_FLASH_REGION_RO)
cmd = EC_REBOOT_JUMP_RO;
else if (region == EC_FLASH_REGION_RW)
cmd = EC_REBOOT_JUMP_RW;
else
return CMD_RET_USAGE;
}
if (cros_ec_reboot(dev, cmd, 0)) {
debug("%s: Could not reboot KBC\n", __func__);
return 1;
}
} else if (0 == strcmp("events", cmd)) {
uint32_t events;
if (cros_ec_get_host_events(dev, &events)) {
debug("%s: Could not read host events\n", __func__);
return 1;
}
printf("0x%08x\n", events);
} else if (0 == strcmp("clrevents", cmd)) {
uint32_t events = 0x7fffffff;
if (argc >= 3)
events = simple_strtol(argv[2], NULL, 0);
if (cros_ec_clear_host_events(dev, events)) {
debug("%s: Could not clear host events\n", __func__);
return 1;
}
} else if (0 == strcmp("read", cmd)) {
ret = do_read_write(dev, 0, argc, argv);
if (ret > 0)
return CMD_RET_USAGE;
} else if (0 == strcmp("write", cmd)) {
ret = do_read_write(dev, 1, argc, argv);
if (ret > 0)
return CMD_RET_USAGE;
} else if (0 == strcmp("erase", cmd)) {
int region = cros_ec_decode_region(argc - 2, argv + 2);
uint32_t offset, size;
if (region == -1)
return CMD_RET_USAGE;
if (cros_ec_flash_offset(dev, region, &offset, &size)) {
debug("%s: Could not read region info\n", __func__);
ret = -1;
} else {
ret = cros_ec_flash_erase(dev, offset, size);
if (ret) {
debug("%s: Could not erase region\n",
__func__);
}
}
} else if (0 == strcmp("regioninfo", cmd)) {
int region = cros_ec_decode_region(argc - 2, argv + 2);
uint32_t offset, size;
if (region == -1)
return CMD_RET_USAGE;
ret = cros_ec_flash_offset(dev, region, &offset, &size);
if (ret) {
debug("%s: Could not read region info\n", __func__);
} else {
printf("Region: %s\n", region == EC_FLASH_REGION_RO ?
"RO" : "RW");
printf("Offset: %x\n", offset);
printf("Size: %x\n", size);
}
} else if (0 == strcmp("vbnvcontext", cmd)) {
uint8_t block[EC_VBNV_BLOCK_SIZE];
char buf[3];
int i, len;
unsigned long result;
if (argc <= 2) {
ret = cros_ec_read_vbnvcontext(dev, block);
if (!ret) {
printf("vbnv_block: ");
for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++)
printf("%02x", block[i]);
putc('\n');
}
} else {
/*
* TODO(clchiou): Move this to a utility function as
* cmd_spi might want to call it.
*/
memset(block, 0, EC_VBNV_BLOCK_SIZE);
len = strlen(argv[2]);
buf[2] = '\0';
for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) {
if (i * 2 >= len)
break;
buf[0] = argv[2][i * 2];
if (i * 2 + 1 >= len)
buf[1] = '0';
else
buf[1] = argv[2][i * 2 + 1];
strict_strtoul(buf, 16, &result);
block[i] = result;
}
ret = cros_ec_write_vbnvcontext(dev, block);
}
if (ret) {
debug("%s: Could not %s VbNvContext\n", __func__,
argc <= 2 ? "read" : "write");
}
} else if (0 == strcmp("test", cmd)) {
int result = cros_ec_test(dev);
if (result)
printf("Test failed with error %d\n", result);
else
puts("Test passed\n");
} else if (0 == strcmp("version", cmd)) {
struct ec_response_get_version *p;
char *build_string;
ret = cros_ec_read_version(dev, &p);
if (!ret) {
/* Print versions */
printf("RO version: %1.*s\n",
sizeof(p->version_string_ro),
p->version_string_ro);
printf("RW version: %1.*s\n",
sizeof(p->version_string_rw),
p->version_string_rw);
printf("Firmware copy: %s\n",
(p->current_image <
ARRAY_SIZE(ec_current_image_name) ?
ec_current_image_name[p->current_image] :
"?"));
ret = cros_ec_read_build_info(dev, &build_string);
if (!ret)
printf("Build info: %s\n", build_string);
}
} else if (0 == strcmp("ldo", cmd)) {
uint8_t index, state;
char *endp;
if (argc < 3)
return CMD_RET_USAGE;
index = simple_strtoul(argv[2], &endp, 10);
if (*argv[2] == 0 || *endp != 0)
return CMD_RET_USAGE;
if (argc > 3) {
state = simple_strtoul(argv[3], &endp, 10);
if (*argv[3] == 0 || *endp != 0)
return CMD_RET_USAGE;
ret = cros_ec_set_ldo(dev, index, state);
} else {
ret = cros_ec_get_ldo(dev, index, &state);
if (!ret) {
printf("LDO%d: %s\n", index,
state == EC_LDO_STATE_ON ?
"on" : "off");
}
}
if (ret) {
debug("%s: Could not access LDO%d\n", __func__, index);
return ret;
}
} else {
return CMD_RET_USAGE;
}
if (ret < 0) {
printf("Error: CROS-EC command failed (error %d)\n", ret);
ret = 1;
}
return ret;
}
U_BOOT_CMD(
crosec, 5, 1, do_cros_ec,
"CROS-EC utility command",
"init Re-init CROS-EC (done on startup automatically)\n"
"crosec id Read CROS-EC ID\n"
"crosec info Read CROS-EC info\n"
"crosec curimage Read CROS-EC current image\n"
"crosec hash Read CROS-EC hash\n"
"crosec reboot [rw | ro | cold] Reboot CROS-EC\n"
"crosec events Read CROS-EC host events\n"
"crosec clrevents [mask] Clear CROS-EC host events\n"
"crosec regioninfo <ro|rw> Read image info\n"
"crosec erase <ro|rw> Erase EC image\n"
"crosec read <ro|rw> <addr> [<size>] Read EC image\n"
"crosec write <ro|rw> <addr> [<size>] Write EC image\n"
"crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n"
"crosec ldo <idx> [<state>] Switch/Read LDO state\n"
"crosec test run tests on cros_ec\n"
"crosec version Read CROS-EC version"
);
#endif