u-boot/common/cmd_i2c.c
Larry Johnson 0df6b8446c Fix "i2c sdram" command for DDR2 DIMMs
Many of the SPD bytes for DDR2 SDRAM are not interpreted correctly by the
"i2c sdram" command.  This patch provides correct alternative
interpretations when DDR2 memory is detected.

Signed-off-by: Larry Johnson <lrj@acm.org>
2008-01-12 20:58:15 +01:00

1401 lines
34 KiB
C

/*
* (C) Copyright 2001
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
* I2C Functions similar to the standard memory functions.
*
* There are several parameters in many of the commands that bear further
* explanations:
*
* Two of the commands (imm and imw) take a byte/word/long modifier
* (e.g. imm.w specifies the word-length modifier). This was done to
* allow manipulating word-length registers. It was not done on any other
* commands because it was not deemed useful.
*
* {i2c_chip} is the I2C chip address (the first byte sent on the bus).
* Each I2C chip on the bus has a unique address. On the I2C data bus,
* the address is the upper seven bits and the LSB is the "read/write"
* bit. Note that the {i2c_chip} address specified on the command
* line is not shifted up: e.g. a typical EEPROM memory chip may have
* an I2C address of 0x50, but the data put on the bus will be 0xA0
* for write and 0xA1 for read. This "non shifted" address notation
* matches at least half of the data sheets :-/.
*
* {addr} is the address (or offset) within the chip. Small memory
* chips have 8 bit addresses. Large memory chips have 16 bit
* addresses. Other memory chips have 9, 10, or 11 bit addresses.
* Many non-memory chips have multiple registers and {addr} is used
* as the register index. Some non-memory chips have only one register
* and therefore don't need any {addr} parameter.
*
* The default {addr} parameter is one byte (.1) which works well for
* memories and registers with 8 bits of address space.
*
* You can specify the length of the {addr} field with the optional .0,
* .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
* manipulating a single register device which doesn't use an address
* field, use "0.0" for the address and the ".0" length field will
* suppress the address in the I2C data stream. This also works for
* successive reads using the I2C auto-incrementing memory pointer.
*
* If you are manipulating a large memory with 2-byte addresses, use
* the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
*
* Then there are the unfortunate memory chips that spill the most
* significant 1, 2, or 3 bits of address into the chip address byte.
* This effectively makes one chip (logically) look like 2, 4, or
* 8 chips. This is handled (awkwardly) by #defining
* CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
* {addr} field (since .1 is the default, it doesn't actually have to
* be specified). Examples: given a memory chip at I2C chip address
* 0x50, the following would happen...
* imd 50 0 10 display 16 bytes starting at 0x000
* On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
* imd 50 100 10 display 16 bytes starting at 0x100
* On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
* imd 50 210 10 display 16 bytes starting at 0x210
* On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
* This is awfully ugly. It would be nice if someone would think up
* a better way of handling this.
*
* Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
*/
#include <common.h>
#include <command.h>
#include <i2c.h>
#include <asm/byteorder.h>
/* Display values from last command.
* Memory modify remembered values are different from display memory.
*/
static uchar i2c_dp_last_chip;
static uint i2c_dp_last_addr;
static uint i2c_dp_last_alen;
static uint i2c_dp_last_length = 0x10;
static uchar i2c_mm_last_chip;
static uint i2c_mm_last_addr;
static uint i2c_mm_last_alen;
/* If only one I2C bus is present, the list of devices to ignore when
* the probe command is issued is represented by a 1D array of addresses.
* When multiple buses are present, the list is an array of bus-address
* pairs. The following macros take care of this */
#if defined(CFG_I2C_NOPROBES)
#if defined(CONFIG_I2C_MULTI_BUS)
static struct
{
uchar bus;
uchar addr;
} i2c_no_probes[] = CFG_I2C_NOPROBES;
#define GET_BUS_NUM i2c_get_bus_num()
#define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
#else /* single bus */
static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
#define GET_BUS_NUM 0
#define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
#endif /* CONFIG_MULTI_BUS */
#define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
#endif
static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
extern int cmd_get_data_size(char* arg, int default_size);
/*
* Syntax:
* imd {i2c_chip} {addr}{.0, .1, .2} {len}
*/
#define DISP_LINE_LEN 16
int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
uint addr, alen, length;
int j, nbytes, linebytes;
/* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_dp_last_chip;
addr = i2c_dp_last_addr;
alen = i2c_dp_last_alen;
length = i2c_dp_last_length;
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified.
*/
alen = 1;
/*
* I2C chip address
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* I2C data address within the chip. This can be 1 or
* 2 bytes long. Some day it might be 3 bytes long :-).
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* If another parameter, it is the length to display.
* Length is the number of objects, not number of bytes.
*/
if (argc > 3)
length = simple_strtoul(argv[3], NULL, 16);
}
/*
* Print the lines.
*
* We buffer all read data, so we can make sure data is read only
* once.
*/
nbytes = length;
do {
unsigned char linebuf[DISP_LINE_LEN];
unsigned char *cp;
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
puts ("Error reading the chip.\n");
else {
printf("%04x:", addr);
cp = linebuf;
for (j=0; j<linebytes; j++) {
printf(" %02x", *cp++);
addr++;
}
puts (" ");
cp = linebuf;
for (j=0; j<linebytes; j++) {
if ((*cp < 0x20) || (*cp > 0x7e))
puts (".");
else
printf("%c", *cp);
cp++;
}
putc ('\n');
}
nbytes -= linebytes;
} while (nbytes > 0);
i2c_dp_last_chip = chip;
i2c_dp_last_addr = addr;
i2c_dp_last_alen = alen;
i2c_dp_last_length = length;
return 0;
}
int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
}
int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
}
/* Write (fill) memory
*
* Syntax:
* imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
*/
int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
uchar byte;
int count;
int j;
if ((argc < 4) || (argc > 5)) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* Value to write is always specified.
*/
byte = simple_strtoul(argv[3], NULL, 16);
/*
* Optional count
*/
if (argc == 5)
count = simple_strtoul(argv[4], NULL, 16);
else
count = 1;
while (count-- > 0) {
if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
puts ("Error writing the chip.\n");
/*
* Wait for the write to complete. The write can take
* up to 10mSec (we allow a little more time).
*
* On some chips, while the write is in progress, the
* chip doesn't respond. This apparently isn't a
* universal feature so we don't take advantage of it.
*/
/*
* No write delay with FRAM devices.
*/
#if !defined(CFG_I2C_FRAM)
udelay(11000);
#endif
#if 0
for (timeout = 0; timeout < 10; timeout++) {
udelay(2000);
if (i2c_probe(chip) == 0)
break;
}
#endif
}
return (0);
}
/* Calculate a CRC on memory
*
* Syntax:
* icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
*/
int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
int count;
uchar byte;
ulong crc;
ulong err;
int j;
if (argc < 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* Count is always specified
*/
count = simple_strtoul(argv[3], NULL, 16);
printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
/*
* CRC a byte at a time. This is going to be slooow, but hey, the
* memories are small and slow too so hopefully nobody notices.
*/
crc = 0;
err = 0;
while (count-- > 0) {
if (i2c_read(chip, addr, alen, &byte, 1) != 0)
err++;
crc = crc32 (crc, &byte, 1);
addr++;
}
if (err > 0)
puts ("Error reading the chip,\n");
else
printf ("%08lx\n", crc);
return 0;
}
/* Modify memory.
*
* Syntax:
* imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
* inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
*/
static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
{
uchar chip;
ulong addr;
uint alen;
ulong data;
int size = 1;
int nbytes;
int j;
extern char console_buffer[];
if (argc != 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* got a good command to get here */
#endif
/*
* We use the last specified parameters, unless new ones are
* entered.
*/
chip = i2c_mm_last_chip;
addr = i2c_mm_last_addr;
alen = i2c_mm_last_alen;
if ((flag & CMD_FLAG_REPEAT) == 0) {
/*
* New command specified. Check for a size specification.
* Defaults to byte if no or incorrect specification.
*/
size = cmd_get_data_size(argv[0], 1);
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
}
/*
* Print the address, followed by value. Then accept input for
* the next value. A non-converted value exits.
*/
do {
printf("%08lx:", addr);
if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
puts ("\nError reading the chip,\n");
else {
data = cpu_to_be32(data);
if (size == 1)
printf(" %02lx", (data >> 24) & 0x000000FF);
else if (size == 2)
printf(" %04lx", (data >> 16) & 0x0000FFFF);
else
printf(" %08lx", data);
}
nbytes = readline (" ? ");
if (nbytes == 0) {
/*
* <CR> pressed as only input, don't modify current
* location and move to next.
*/
if (incrflag)
addr += size;
nbytes = size;
#ifdef CONFIG_BOOT_RETRY_TIME
reset_cmd_timeout(); /* good enough to not time out */
#endif
}
#ifdef CONFIG_BOOT_RETRY_TIME
else if (nbytes == -2)
break; /* timed out, exit the command */
#endif
else {
char *endp;
data = simple_strtoul(console_buffer, &endp, 16);
if (size == 1)
data = data << 24;
else if (size == 2)
data = data << 16;
data = be32_to_cpu(data);
nbytes = endp - console_buffer;
if (nbytes) {
#ifdef CONFIG_BOOT_RETRY_TIME
/*
* good enough to not time out
*/
reset_cmd_timeout();
#endif
if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
puts ("Error writing the chip.\n");
#ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS
udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
#endif
if (incrflag)
addr += size;
}
}
} while (nbytes);
chip = i2c_mm_last_chip;
addr = i2c_mm_last_addr;
alen = i2c_mm_last_alen;
return 0;
}
/*
* Syntax:
* iprobe {addr}{.0, .1, .2}
*/
int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
int j;
#if defined(CFG_I2C_NOPROBES)
int k, skip;
uchar bus = GET_BUS_NUM;
#endif /* NOPROBES */
puts ("Valid chip addresses:");
for (j = 0; j < 128; j++) {
#if defined(CFG_I2C_NOPROBES)
skip = 0;
for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
skip = 1;
break;
}
}
if (skip)
continue;
#endif
if (i2c_probe(j) == 0)
printf(" %02X", j);
}
putc ('\n');
#if defined(CFG_I2C_NOPROBES)
puts ("Excluded chip addresses:");
for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
if (COMPARE_BUS(bus,k))
printf(" %02X", NO_PROBE_ADDR(k));
}
putc ('\n');
#endif
return 0;
}
/*
* Syntax:
* iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
* {length} - Number of bytes to read
* {delay} - A DECIMAL number and defaults to 1000 uSec
*/
int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
u_char chip;
ulong alen;
uint addr;
uint length;
u_char bytes[16];
int delay;
int j;
if (argc < 3) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
/*
* Address is always specified.
*/
addr = simple_strtoul(argv[2], NULL, 16);
alen = 1;
for (j = 0; j < 8; j++) {
if (argv[2][j] == '.') {
alen = argv[2][j+1] - '0';
if (alen > 4) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
break;
} else if (argv[2][j] == '\0')
break;
}
/*
* Length is the number of objects, not number of bytes.
*/
length = 1;
length = simple_strtoul(argv[3], NULL, 16);
if (length > sizeof(bytes))
length = sizeof(bytes);
/*
* The delay time (uSec) is optional.
*/
delay = 1000;
if (argc > 3)
delay = simple_strtoul(argv[4], NULL, 10);
/*
* Run the loop...
*/
while (1) {
if (i2c_read(chip, addr, alen, bytes, length) != 0)
puts ("Error reading the chip.\n");
udelay(delay);
}
/* NOTREACHED */
return 0;
}
/*
* The SDRAM command is separately configured because many
* (most?) embedded boards don't use SDRAM DIMMs.
*/
#if defined(CONFIG_CMD_SDRAM)
/*
* Syntax:
* sdram {i2c_chip}
*/
int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
enum {unknown, EDO, SDRAM, DDR2} type;
u_char chip;
u_char data[128];
u_char cksum;
int j;
if (argc < 2) {
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
/*
* Chip is always specified.
*/
chip = simple_strtoul(argv[1], NULL, 16);
if (i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
puts ("No SDRAM Serial Presence Detect found.\n");
return 1;
}
cksum = 0;
for (j = 0; j < 63; j++) {
cksum += data[j];
}
if (cksum != data[63]) {
printf ("WARNING: Configuration data checksum failure:\n"
" is 0x%02x, calculated 0x%02x\n",
data[63], cksum);
}
printf("SPD data revision %d.%d\n",
(data[62] >> 4) & 0x0F, data[62] & 0x0F);
printf("Bytes used 0x%02X\n", data[0]);
printf("Serial memory size 0x%02X\n", 1 << data[1]);
puts ("Memory type ");
switch(data[2]) {
case 2:
type = EDO;
puts ("EDO\n");
break;
case 4:
type = SDRAM;
puts ("SDRAM\n");
break;
case 8:
type = DDR2;
puts ("DDR2\n");
break;
default:
type = unknown;
puts ("unknown\n");
break;
}
puts ("Row address bits ");
if ((data[3] & 0x00F0) == 0)
printf("%d\n", data[3] & 0x0F);
else
printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
puts ("Column address bits ");
if ((data[4] & 0x00F0) == 0)
printf("%d\n", data[4] & 0x0F);
else
printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
switch (type) {
case DDR2:
printf("Number of ranks %d\n",
(data[5] & 0x07) + 1);
break;
default:
printf("Module rows %d\n", data[5]);
break;
}
switch (type) {
case DDR2:
printf("Module data width %d bits\n", data[6]);
break;
default:
printf("Module data width %d bits\n",
(data[7] << 8) | data[6]);
break;
}
puts ("Interface signal levels ");
switch(data[8]) {
case 0: puts ("TTL 5.0 V\n"); break;
case 1: puts ("LVTTL\n"); break;
case 2: puts ("HSTL 1.5 V\n"); break;
case 3: puts ("SSTL 3.3 V\n"); break;
case 4: puts ("SSTL 2.5 V\n"); break;
case 5: puts ("SSTL 1.8 V\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf("SDRAM cycle time %d.",
(data[9] >> 4) & 0x0F);
switch (data[9] & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf("%d ns\n", data[9] & 0x0F);
break;
case 0xA:
puts("25 ns\n");
break;
case 0xB:
puts("33 ns\n");
break;
case 0xC:
puts("66 ns\n");
break;
case 0xD:
puts("75 ns\n");
break;
default:
puts("?? ns\n");
break;
}
break;
default:
printf("SDRAM cycle time %d.%d nS\n",
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM access time 0.%d%d ns\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
default:
printf("SDRAM access time %d.%d nS\n",
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
break;
}
puts ("EDC configuration ");
switch(data[11]) {
case 0: puts ("None\n"); break;
case 1: puts ("Parity\n"); break;
case 2: puts ("ECC\n"); break;
default: puts ("unknown\n"); break;
}
if ((data[12] & 0x80) == 0)
puts ("No self refresh, rate ");
else
puts ("Self refresh, rate ");
switch(data[12] & 0x7F) {
case 0: puts ("15.625 uS\n"); break;
case 1: puts ("3.9 uS\n"); break;
case 2: puts ("7.8 uS \n"); break;
case 3: puts ("31.3 uS\n"); break;
case 4: puts ("62.5 uS\n"); break;
case 5: puts ("125 uS\n"); break;
default: puts ("unknown\n"); break;
}
switch (type) {
case DDR2:
printf("SDRAM width (primary) %d\n", data[13]);
break;
default:
printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
if ((data[13] & 0x80) != 0) {
printf(" (second bank) %d\n",
2 * (data[13] & 0x7F));
}
break;
}
switch (type) {
case DDR2:
if (data[14] != 0)
printf("EDC width %d\n", data[14]);
break;
default:
if (data[14] != 0) {
printf("EDC width %d\n",
data[14] & 0x7F);
if ((data[14] & 0x80) != 0) {
printf(" (second bank) %d\n",
2 * (data[14] & 0x7F));
}
}
break;
}
if (DDR2 != type ) {
printf("Min clock delay, back-to-back random column addresses "
"%d\n", data[15]);
}
puts ("Burst length(s) ");
if (data[16] & 0x80) puts (" Page");
if (data[16] & 0x08) puts (" 8");
if (data[16] & 0x04) puts (" 4");
if (data[16] & 0x02) puts (" 2");
if (data[16] & 0x01) puts (" 1");
putc ('\n');
printf("Number of banks %d\n", data[17]);
switch (type) {
case DDR2:
puts ("CAS latency(s) ");
if (data[18] & 0x83) puts (" TBD");
if (data[18] & 0x40) puts (" 6");
if (data[18] & 0x20) puts (" 5");
if (data[18] & 0x10) puts (" 4");
if (data[18] & 0x08) puts (" 3");
if (data[18] & 0x04) puts (" 2");
putc ('\n');
break;
default:
puts ("CAS latency(s) ");
if (data[18] & 0x80) puts (" TBD");
if (data[18] & 0x40) puts (" 7");
if (data[18] & 0x20) puts (" 6");
if (data[18] & 0x10) puts (" 5");
if (data[18] & 0x08) puts (" 4");
if (data[18] & 0x04) puts (" 3");
if (data[18] & 0x02) puts (" 2");
if (data[18] & 0x01) puts (" 1");
putc ('\n');
break;
}
if (DDR2 != type) {
puts ("CS latency(s) ");
if (data[19] & 0x80) puts (" TBD");
if (data[19] & 0x40) puts (" 6");
if (data[19] & 0x20) puts (" 5");
if (data[19] & 0x10) puts (" 4");
if (data[19] & 0x08) puts (" 3");
if (data[19] & 0x04) puts (" 2");
if (data[19] & 0x02) puts (" 1");
if (data[19] & 0x01) puts (" 0");
putc ('\n');
}
if (DDR2 != type) {
puts ("WE latency(s) ");
if (data[20] & 0x80) puts (" TBD");
if (data[20] & 0x40) puts (" 6");
if (data[20] & 0x20) puts (" 5");
if (data[20] & 0x10) puts (" 4");
if (data[20] & 0x08) puts (" 3");
if (data[20] & 0x04) puts (" 2");
if (data[20] & 0x02) puts (" 1");
if (data[20] & 0x01) puts (" 0");
putc ('\n');
}
switch (type) {
case DDR2:
puts ("Module attributes:\n");
if (data[21] & 0x80)
puts (" TBD (bit 7)\n");
if (data[21] & 0x40)
puts (" Analysis probe installed\n");
if (data[21] & 0x20)
puts (" TBD (bit 5)\n");
if (data[21] & 0x10)
puts (" FET switch external enable\n");
printf(" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
if (data[20] & 0x11) {
printf(" %d active registers on DIMM\n",
(data[21] & 0x03) + 1);
}
break;
default:
puts ("Module attributes:\n");
if (!data[21])
puts (" (none)\n");
if (data[21] & 0x80)
puts (" TBD (bit 7)\n");
if (data[21] & 0x40)
puts (" Redundant row address\n");
if (data[21] & 0x20)
puts (" Differential clock input\n");
if (data[21] & 0x10)
puts (" Registerd DQMB inputs\n");
if (data[21] & 0x08)
puts (" Buffered DQMB inputs\n");
if (data[21] & 0x04)
puts (" On-card PLL\n");
if (data[21] & 0x02)
puts (" Registered address/control lines\n");
if (data[21] & 0x01)
puts (" Buffered address/control lines\n");
break;
}
switch (type) {
case DDR2:
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
if (data[22] & 0x20) puts (" TBD (bit 5)\n");
if (data[22] & 0x10) puts (" TBD (bit 4)\n");
if (data[22] & 0x08) puts (" TBD (bit 3)\n");
if (data[22] & 0x04)
puts (" Supports parital array self refresh\n");
if (data[22] & 0x02)
puts (" Supports 50 ohm ODT\n");
if (data[22] & 0x01)
puts (" Supports weak driver\n");
break;
default:
puts ("Device attributes:\n");
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
else puts (" Upper Vcc tolerance 10%\n");
if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
else puts (" Lower Vcc tolerance 10%\n");
if (data[22] & 0x08) puts (" Supports write1/read burst\n");
if (data[22] & 0x04) puts (" Supports precharge all\n");
if (data[22] & 0x02) puts (" Supports auto precharge\n");
if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
break;
}
switch (type) {
case DDR2:
printf("SDRAM cycle time (2nd highest CAS latency) %d.",
(data[23] >> 4) & 0x0F);
switch (data[23] & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf("%d ns\n", data[23] & 0x0F);
break;
case 0xA:
puts("25 ns\n");
break;
case 0xB:
puts("33 ns\n");
break;
case 0xC:
puts("66 ns\n");
break;
case 0xD:
puts("75 ns\n");
break;
default:
puts("?? ns\n");
break;
}
break;
default:
printf("SDRAM cycle time (2nd highest CAS latency) %d."
"%d nS\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM access from clock (2nd highest CAS latency) 0."
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
default:
printf("SDRAM access from clock (2nd highest CAS latency) %d."
"%d nS\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM cycle time (3rd highest CAS latency) %d.",
(data[25] >> 4) & 0x0F);
switch (data[25] & 0x0F) {
case 0x0:
case 0x1:
case 0x2:
case 0x3:
case 0x4:
case 0x5:
case 0x6:
case 0x7:
case 0x8:
case 0x9:
printf("%d ns\n", data[25] & 0x0F);
break;
case 0xA:
puts("25 ns\n");
break;
case 0xB:
puts("33 ns\n");
break;
case 0xC:
puts("66 ns\n");
break;
case 0xD:
puts("75 ns\n");
break;
default:
puts("?? ns\n");
break;
}
break;
default:
printf("SDRAM cycle time (3rd highest CAS latency) %d."
"%d nS\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("SDRAM access from clock (3rd highest CAS latency) 0."
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
default:
printf("SDRAM access from clock (3rd highest CAS latency) %d."
"%d nS\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("Minimum row precharge %d", data[27] >> 2);
switch (data[27] & 0x03) {
case 0x0: puts(".00 ns\n"); break;
case 0x1: puts(".25 ns\n"); break;
case 0x2: puts(".50 ns\n"); break;
case 0x3: puts(".75 ns\n"); break;
}
break;
default:
printf("Minimum row precharge %d nS\n", data[27]);
break;
}
switch (type) {
case DDR2:
printf("Row active to row active min %d", data[28] >> 2);
switch (data[28] & 0x03) {
case 0x0: puts(".00 ns\n"); break;
case 0x1: puts(".25 ns\n"); break;
case 0x2: puts(".50 ns\n"); break;
case 0x3: puts(".75 ns\n"); break;
}
break;
default:
printf("Row active to row active min %d nS\n", data[28]);
break;
}
switch (type) {
case DDR2:
printf("RAS to CAS delay min %d", data[29] >> 2);
switch (data[29] & 0x03) {
case 0x0: puts(".00 ns\n"); break;
case 0x1: puts(".25 ns\n"); break;
case 0x2: puts(".50 ns\n"); break;
case 0x3: puts(".75 ns\n"); break;
}
break;
default:
printf("RAS to CAS delay min %d nS\n", data[29]);
break;
}
printf("Minimum RAS pulse width %d nS\n", data[30]);
switch (type) {
case DDR2:
puts ("Density of each row ");
if (data[31] & 0x80) puts (" 512 MiB\n");
if (data[31] & 0x40) puts (" 256 MiB\n");
if (data[31] & 0x20) puts (" 128 MiB\n");
if (data[31] & 0x10) puts (" 16 GiB\n");
if (data[31] & 0x08) puts (" 8 GiB\n");
if (data[31] & 0x04) puts (" 4 GiB\n");
if (data[31] & 0x02) puts (" 2 GiB\n");
if (data[31] & 0x01) puts (" 1 GiB\n");
break;
default:
puts ("Density of each row ");
if (data[31] & 0x80) puts (" 512 MiB\n");
if (data[31] & 0x40) puts (" 256 MiB\n");
if (data[31] & 0x20) puts (" 128 MiB\n");
if (data[31] & 0x10) puts (" 64 MiB\n");
if (data[31] & 0x08) puts (" 32 MiB\n");
if (data[31] & 0x04) puts (" 16 MiB\n");
if (data[31] & 0x02) puts (" 8 MiB\n");
if (data[31] & 0x01) puts (" 4 MiB\n");
break;
}
switch (type) {
case DDR2:
puts("Command and Address setup ");
if (data[32] >= 0xA0) {
printf("1.%d%d ns\n",
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
} else {
printf("0.%d%d ns\n",
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
}
break;
default:
printf("Command and Address setup %c%d.%d nS\n",
(data[32] & 0x80) ? '-' : '+',
(data[32] >> 4) & 0x07, data[32] & 0x0F);
break;
}
switch (type) {
case DDR2:
puts("Command and Address hold ");
if (data[33] >= 0xA0) {
printf("1.%d%d ns\n",
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
} else {
printf("0.%d%d ns\n",
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
}
break;
default:
printf("Command and Address hold %c%d.%d nS\n",
(data[33] & 0x80) ? '-' : '+',
(data[33] >> 4) & 0x07, data[33] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("Data signal input setup 0.%d%d ns\n",
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
break;
default:
printf("Data signal input setup %c%d.%d nS\n",
(data[34] & 0x80) ? '-' : '+',
(data[34] >> 4) & 0x07, data[34] & 0x0F);
break;
}
switch (type) {
case DDR2:
printf("Data signal input hold 0.%d%d ns\n",
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
break;
default:
printf("Data signal input hold %c%d.%d nS\n",
(data[35] & 0x80) ? '-' : '+',
(data[35] >> 4) & 0x07, data[35] & 0x0F);
break;
}
puts ("Manufacturer's JEDEC ID ");
for (j = 64; j <= 71; j++)
printf("%02X ", data[j]);
putc ('\n');
printf("Manufacturing Location %02X\n", data[72]);
puts ("Manufacturer's Part Number ");
for (j = 73; j <= 90; j++)
printf("%02X ", data[j]);
putc ('\n');
printf("Revision Code %02X %02X\n", data[91], data[92]);
printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
puts ("Assembly Serial Number ");
for (j = 95; j <= 98; j++)
printf("%02X ", data[j]);
putc ('\n');
if (DDR2 != type) {
printf("Speed rating PC%d\n",
data[126] == 0x66 ? 66 : data[126]);
}
return 0;
}
#endif
#if defined(CONFIG_I2C_CMD_TREE)
#if defined(CONFIG_I2C_MULTI_BUS)
int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
int bus_idx, ret=0;
if (argc == 1)
/* querying current setting */
printf("Current bus is %d\n", i2c_get_bus_num());
else {
bus_idx = simple_strtoul(argv[1], NULL, 10);
printf("Setting bus to %d\n", bus_idx);
ret = i2c_set_bus_num(bus_idx);
if (ret)
printf("Failure changing bus number (%d)\n", ret);
}
return ret;
}
#endif /* CONFIG_I2C_MULTI_BUS */
int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
int speed, ret=0;
if (argc == 1)
/* querying current speed */
printf("Current bus speed=%d\n", i2c_get_bus_speed());
else {
speed = simple_strtoul(argv[1], NULL, 10);
printf("Setting bus speed to %d Hz\n", speed);
ret = i2c_set_bus_speed(speed);
if (ret)
printf("Failure changing bus speed (%d)\n", ret);
}
return ret;
}
int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
{
#if defined(CONFIG_I2C_MULTI_BUS)
if (!strncmp(argv[1], "de", 2))
return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
#endif /* CONFIG_I2C_MULTI_BUS */
if (!strncmp(argv[1], "sp", 2))
return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "md", 2))
return do_i2c_md(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "mm", 2))
return do_i2c_mm(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "mw", 2))
return do_i2c_mw(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "nm", 2))
return do_i2c_nm(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "cr", 2))
return do_i2c_crc(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "pr", 2))
return do_i2c_probe(cmdtp, flag, --argc, ++argv);
if (!strncmp(argv[1], "lo", 2))
return do_i2c_loop(cmdtp, flag, --argc, ++argv);
#if defined(CONFIG_CMD_SDRAM)
if (!strncmp(argv[1], "sd", 2))
return do_sdram(cmdtp, flag, --argc, ++argv);
#endif
else
printf ("Usage:\n%s\n", cmdtp->usage);
return 0;
}
#endif /* CONFIG_I2C_CMD_TREE */
/***************************************************/
#if defined(CONFIG_I2C_CMD_TREE)
U_BOOT_CMD(
i2c, 6, 1, do_i2c,
"i2c - I2C sub-system\n",
#if defined(CONFIG_I2C_MULTI_BUS)
"dev [dev] - show or set current I2C bus\n"
#endif /* CONFIG_I2C_MULTI_BUS */
"i2c speed [speed] - show or set I2C bus speed\n"
"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
"i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
"i2c probe - show devices on the I2C bus\n"
"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
#if defined(CONFIG_CMD_SDRAM)
"i2c sdram chip - print SDRAM configuration information\n"
#endif
);
#endif /* CONFIG_I2C_CMD_TREE */
U_BOOT_CMD(
imd, 4, 1, do_i2c_md, \
"imd - i2c memory display\n", \
"chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
);
U_BOOT_CMD(
imm, 3, 1, do_i2c_mm,
"imm - i2c memory modify (auto-incrementing)\n",
"chip address[.0, .1, .2]\n"
" - memory modify, auto increment address\n"
);
U_BOOT_CMD(
inm, 3, 1, do_i2c_nm,
"inm - memory modify (constant address)\n",
"chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
);
U_BOOT_CMD(
imw, 5, 1, do_i2c_mw,
"imw - memory write (fill)\n",
"chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
);
U_BOOT_CMD(
icrc32, 5, 1, do_i2c_crc,
"icrc32 - checksum calculation\n",
"chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
);
U_BOOT_CMD(
iprobe, 1, 1, do_i2c_probe,
"iprobe - probe to discover valid I2C chip addresses\n",
"\n -discover valid I2C chip addresses\n"
);
/*
* Require full name for "iloop" because it is an infinite loop!
*/
U_BOOT_CMD(
iloop, 5, 1, do_i2c_loop,
"iloop - infinite loop on address range\n",
"chip address[.0, .1, .2] [# of objects]\n"
" - loop, reading a set of addresses\n"
);
#if defined(CONFIG_CMD_SDRAM)
U_BOOT_CMD(
isdram, 2, 1, do_sdram,
"isdram - print SDRAM configuration information\n",
"chip\n - print SDRAM configuration information\n"
" (valid chip values 50..57)\n"
);
#endif