0df6b8446c
Many of the SPD bytes for DDR2 SDRAM are not interpreted correctly by the "i2c sdram" command. This patch provides correct alternative interpretations when DDR2 memory is detected. Signed-off-by: Larry Johnson <lrj@acm.org>
1401 lines
34 KiB
C
1401 lines
34 KiB
C
/*
|
|
* (C) Copyright 2001
|
|
* Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
|
|
*
|
|
* See file CREDITS for list of people who contributed to this
|
|
* project.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
|
* MA 02111-1307 USA
|
|
*/
|
|
|
|
/*
|
|
* I2C Functions similar to the standard memory functions.
|
|
*
|
|
* There are several parameters in many of the commands that bear further
|
|
* explanations:
|
|
*
|
|
* Two of the commands (imm and imw) take a byte/word/long modifier
|
|
* (e.g. imm.w specifies the word-length modifier). This was done to
|
|
* allow manipulating word-length registers. It was not done on any other
|
|
* commands because it was not deemed useful.
|
|
*
|
|
* {i2c_chip} is the I2C chip address (the first byte sent on the bus).
|
|
* Each I2C chip on the bus has a unique address. On the I2C data bus,
|
|
* the address is the upper seven bits and the LSB is the "read/write"
|
|
* bit. Note that the {i2c_chip} address specified on the command
|
|
* line is not shifted up: e.g. a typical EEPROM memory chip may have
|
|
* an I2C address of 0x50, but the data put on the bus will be 0xA0
|
|
* for write and 0xA1 for read. This "non shifted" address notation
|
|
* matches at least half of the data sheets :-/.
|
|
*
|
|
* {addr} is the address (or offset) within the chip. Small memory
|
|
* chips have 8 bit addresses. Large memory chips have 16 bit
|
|
* addresses. Other memory chips have 9, 10, or 11 bit addresses.
|
|
* Many non-memory chips have multiple registers and {addr} is used
|
|
* as the register index. Some non-memory chips have only one register
|
|
* and therefore don't need any {addr} parameter.
|
|
*
|
|
* The default {addr} parameter is one byte (.1) which works well for
|
|
* memories and registers with 8 bits of address space.
|
|
*
|
|
* You can specify the length of the {addr} field with the optional .0,
|
|
* .1, or .2 modifier (similar to the .b, .w, .l modifier). If you are
|
|
* manipulating a single register device which doesn't use an address
|
|
* field, use "0.0" for the address and the ".0" length field will
|
|
* suppress the address in the I2C data stream. This also works for
|
|
* successive reads using the I2C auto-incrementing memory pointer.
|
|
*
|
|
* If you are manipulating a large memory with 2-byte addresses, use
|
|
* the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
|
|
*
|
|
* Then there are the unfortunate memory chips that spill the most
|
|
* significant 1, 2, or 3 bits of address into the chip address byte.
|
|
* This effectively makes one chip (logically) look like 2, 4, or
|
|
* 8 chips. This is handled (awkwardly) by #defining
|
|
* CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
|
|
* {addr} field (since .1 is the default, it doesn't actually have to
|
|
* be specified). Examples: given a memory chip at I2C chip address
|
|
* 0x50, the following would happen...
|
|
* imd 50 0 10 display 16 bytes starting at 0x000
|
|
* On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
|
|
* imd 50 100 10 display 16 bytes starting at 0x100
|
|
* On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
|
|
* imd 50 210 10 display 16 bytes starting at 0x210
|
|
* On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
|
|
* This is awfully ugly. It would be nice if someone would think up
|
|
* a better way of handling this.
|
|
*
|
|
* Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <command.h>
|
|
#include <i2c.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
/* Display values from last command.
|
|
* Memory modify remembered values are different from display memory.
|
|
*/
|
|
static uchar i2c_dp_last_chip;
|
|
static uint i2c_dp_last_addr;
|
|
static uint i2c_dp_last_alen;
|
|
static uint i2c_dp_last_length = 0x10;
|
|
|
|
static uchar i2c_mm_last_chip;
|
|
static uint i2c_mm_last_addr;
|
|
static uint i2c_mm_last_alen;
|
|
|
|
/* If only one I2C bus is present, the list of devices to ignore when
|
|
* the probe command is issued is represented by a 1D array of addresses.
|
|
* When multiple buses are present, the list is an array of bus-address
|
|
* pairs. The following macros take care of this */
|
|
|
|
#if defined(CFG_I2C_NOPROBES)
|
|
#if defined(CONFIG_I2C_MULTI_BUS)
|
|
static struct
|
|
{
|
|
uchar bus;
|
|
uchar addr;
|
|
} i2c_no_probes[] = CFG_I2C_NOPROBES;
|
|
#define GET_BUS_NUM i2c_get_bus_num()
|
|
#define COMPARE_BUS(b,i) (i2c_no_probes[(i)].bus == (b))
|
|
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)].addr == (a))
|
|
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)].addr
|
|
#else /* single bus */
|
|
static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
|
|
#define GET_BUS_NUM 0
|
|
#define COMPARE_BUS(b,i) ((b) == 0) /* Make compiler happy */
|
|
#define COMPARE_ADDR(a,i) (i2c_no_probes[(i)] == (a))
|
|
#define NO_PROBE_ADDR(i) i2c_no_probes[(i)]
|
|
#endif /* CONFIG_MULTI_BUS */
|
|
|
|
#define NUM_ELEMENTS_NOPROBE (sizeof(i2c_no_probes)/sizeof(i2c_no_probes[0]))
|
|
#endif
|
|
|
|
static int
|
|
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
|
|
extern int cmd_get_data_size(char* arg, int default_size);
|
|
|
|
/*
|
|
* Syntax:
|
|
* imd {i2c_chip} {addr}{.0, .1, .2} {len}
|
|
*/
|
|
#define DISP_LINE_LEN 16
|
|
|
|
int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
u_char chip;
|
|
uint addr, alen, length;
|
|
int j, nbytes, linebytes;
|
|
|
|
/* We use the last specified parameters, unless new ones are
|
|
* entered.
|
|
*/
|
|
chip = i2c_dp_last_chip;
|
|
addr = i2c_dp_last_addr;
|
|
alen = i2c_dp_last_alen;
|
|
length = i2c_dp_last_length;
|
|
|
|
if (argc < 3) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
|
|
if ((flag & CMD_FLAG_REPEAT) == 0) {
|
|
/*
|
|
* New command specified.
|
|
*/
|
|
alen = 1;
|
|
|
|
/*
|
|
* I2C chip address
|
|
*/
|
|
chip = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
/*
|
|
* I2C data address within the chip. This can be 1 or
|
|
* 2 bytes long. Some day it might be 3 bytes long :-).
|
|
*/
|
|
addr = simple_strtoul(argv[2], NULL, 16);
|
|
alen = 1;
|
|
for (j = 0; j < 8; j++) {
|
|
if (argv[2][j] == '.') {
|
|
alen = argv[2][j+1] - '0';
|
|
if (alen > 4) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
break;
|
|
} else if (argv[2][j] == '\0')
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If another parameter, it is the length to display.
|
|
* Length is the number of objects, not number of bytes.
|
|
*/
|
|
if (argc > 3)
|
|
length = simple_strtoul(argv[3], NULL, 16);
|
|
}
|
|
|
|
/*
|
|
* Print the lines.
|
|
*
|
|
* We buffer all read data, so we can make sure data is read only
|
|
* once.
|
|
*/
|
|
nbytes = length;
|
|
do {
|
|
unsigned char linebuf[DISP_LINE_LEN];
|
|
unsigned char *cp;
|
|
|
|
linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;
|
|
|
|
if (i2c_read(chip, addr, alen, linebuf, linebytes) != 0)
|
|
puts ("Error reading the chip.\n");
|
|
else {
|
|
printf("%04x:", addr);
|
|
cp = linebuf;
|
|
for (j=0; j<linebytes; j++) {
|
|
printf(" %02x", *cp++);
|
|
addr++;
|
|
}
|
|
puts (" ");
|
|
cp = linebuf;
|
|
for (j=0; j<linebytes; j++) {
|
|
if ((*cp < 0x20) || (*cp > 0x7e))
|
|
puts (".");
|
|
else
|
|
printf("%c", *cp);
|
|
cp++;
|
|
}
|
|
putc ('\n');
|
|
}
|
|
nbytes -= linebytes;
|
|
} while (nbytes > 0);
|
|
|
|
i2c_dp_last_chip = chip;
|
|
i2c_dp_last_addr = addr;
|
|
i2c_dp_last_alen = alen;
|
|
i2c_dp_last_length = length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
|
|
}
|
|
|
|
|
|
int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
|
|
}
|
|
|
|
/* Write (fill) memory
|
|
*
|
|
* Syntax:
|
|
* imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
|
|
*/
|
|
int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
uchar chip;
|
|
ulong addr;
|
|
uint alen;
|
|
uchar byte;
|
|
int count;
|
|
int j;
|
|
|
|
if ((argc < 4) || (argc > 5)) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Chip is always specified.
|
|
*/
|
|
chip = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
/*
|
|
* Address is always specified.
|
|
*/
|
|
addr = simple_strtoul(argv[2], NULL, 16);
|
|
alen = 1;
|
|
for (j = 0; j < 8; j++) {
|
|
if (argv[2][j] == '.') {
|
|
alen = argv[2][j+1] - '0';
|
|
if (alen > 4) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
break;
|
|
} else if (argv[2][j] == '\0')
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Value to write is always specified.
|
|
*/
|
|
byte = simple_strtoul(argv[3], NULL, 16);
|
|
|
|
/*
|
|
* Optional count
|
|
*/
|
|
if (argc == 5)
|
|
count = simple_strtoul(argv[4], NULL, 16);
|
|
else
|
|
count = 1;
|
|
|
|
while (count-- > 0) {
|
|
if (i2c_write(chip, addr++, alen, &byte, 1) != 0)
|
|
puts ("Error writing the chip.\n");
|
|
/*
|
|
* Wait for the write to complete. The write can take
|
|
* up to 10mSec (we allow a little more time).
|
|
*
|
|
* On some chips, while the write is in progress, the
|
|
* chip doesn't respond. This apparently isn't a
|
|
* universal feature so we don't take advantage of it.
|
|
*/
|
|
/*
|
|
* No write delay with FRAM devices.
|
|
*/
|
|
#if !defined(CFG_I2C_FRAM)
|
|
udelay(11000);
|
|
#endif
|
|
|
|
#if 0
|
|
for (timeout = 0; timeout < 10; timeout++) {
|
|
udelay(2000);
|
|
if (i2c_probe(chip) == 0)
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/* Calculate a CRC on memory
|
|
*
|
|
* Syntax:
|
|
* icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
|
|
*/
|
|
int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
uchar chip;
|
|
ulong addr;
|
|
uint alen;
|
|
int count;
|
|
uchar byte;
|
|
ulong crc;
|
|
ulong err;
|
|
int j;
|
|
|
|
if (argc < 4) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Chip is always specified.
|
|
*/
|
|
chip = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
/*
|
|
* Address is always specified.
|
|
*/
|
|
addr = simple_strtoul(argv[2], NULL, 16);
|
|
alen = 1;
|
|
for (j = 0; j < 8; j++) {
|
|
if (argv[2][j] == '.') {
|
|
alen = argv[2][j+1] - '0';
|
|
if (alen > 4) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
break;
|
|
} else if (argv[2][j] == '\0')
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Count is always specified
|
|
*/
|
|
count = simple_strtoul(argv[3], NULL, 16);
|
|
|
|
printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
|
|
/*
|
|
* CRC a byte at a time. This is going to be slooow, but hey, the
|
|
* memories are small and slow too so hopefully nobody notices.
|
|
*/
|
|
crc = 0;
|
|
err = 0;
|
|
while (count-- > 0) {
|
|
if (i2c_read(chip, addr, alen, &byte, 1) != 0)
|
|
err++;
|
|
crc = crc32 (crc, &byte, 1);
|
|
addr++;
|
|
}
|
|
if (err > 0)
|
|
puts ("Error reading the chip,\n");
|
|
else
|
|
printf ("%08lx\n", crc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Modify memory.
|
|
*
|
|
* Syntax:
|
|
* imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
|
|
* inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
|
|
*/
|
|
|
|
static int
|
|
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
|
|
{
|
|
uchar chip;
|
|
ulong addr;
|
|
uint alen;
|
|
ulong data;
|
|
int size = 1;
|
|
int nbytes;
|
|
int j;
|
|
extern char console_buffer[];
|
|
|
|
if (argc != 3) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_BOOT_RETRY_TIME
|
|
reset_cmd_timeout(); /* got a good command to get here */
|
|
#endif
|
|
/*
|
|
* We use the last specified parameters, unless new ones are
|
|
* entered.
|
|
*/
|
|
chip = i2c_mm_last_chip;
|
|
addr = i2c_mm_last_addr;
|
|
alen = i2c_mm_last_alen;
|
|
|
|
if ((flag & CMD_FLAG_REPEAT) == 0) {
|
|
/*
|
|
* New command specified. Check for a size specification.
|
|
* Defaults to byte if no or incorrect specification.
|
|
*/
|
|
size = cmd_get_data_size(argv[0], 1);
|
|
|
|
/*
|
|
* Chip is always specified.
|
|
*/
|
|
chip = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
/*
|
|
* Address is always specified.
|
|
*/
|
|
addr = simple_strtoul(argv[2], NULL, 16);
|
|
alen = 1;
|
|
for (j = 0; j < 8; j++) {
|
|
if (argv[2][j] == '.') {
|
|
alen = argv[2][j+1] - '0';
|
|
if (alen > 4) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
break;
|
|
} else if (argv[2][j] == '\0')
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Print the address, followed by value. Then accept input for
|
|
* the next value. A non-converted value exits.
|
|
*/
|
|
do {
|
|
printf("%08lx:", addr);
|
|
if (i2c_read(chip, addr, alen, (uchar *)&data, size) != 0)
|
|
puts ("\nError reading the chip,\n");
|
|
else {
|
|
data = cpu_to_be32(data);
|
|
if (size == 1)
|
|
printf(" %02lx", (data >> 24) & 0x000000FF);
|
|
else if (size == 2)
|
|
printf(" %04lx", (data >> 16) & 0x0000FFFF);
|
|
else
|
|
printf(" %08lx", data);
|
|
}
|
|
|
|
nbytes = readline (" ? ");
|
|
if (nbytes == 0) {
|
|
/*
|
|
* <CR> pressed as only input, don't modify current
|
|
* location and move to next.
|
|
*/
|
|
if (incrflag)
|
|
addr += size;
|
|
nbytes = size;
|
|
#ifdef CONFIG_BOOT_RETRY_TIME
|
|
reset_cmd_timeout(); /* good enough to not time out */
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_BOOT_RETRY_TIME
|
|
else if (nbytes == -2)
|
|
break; /* timed out, exit the command */
|
|
#endif
|
|
else {
|
|
char *endp;
|
|
|
|
data = simple_strtoul(console_buffer, &endp, 16);
|
|
if (size == 1)
|
|
data = data << 24;
|
|
else if (size == 2)
|
|
data = data << 16;
|
|
data = be32_to_cpu(data);
|
|
nbytes = endp - console_buffer;
|
|
if (nbytes) {
|
|
#ifdef CONFIG_BOOT_RETRY_TIME
|
|
/*
|
|
* good enough to not time out
|
|
*/
|
|
reset_cmd_timeout();
|
|
#endif
|
|
if (i2c_write(chip, addr, alen, (uchar *)&data, size) != 0)
|
|
puts ("Error writing the chip.\n");
|
|
#ifdef CFG_EEPROM_PAGE_WRITE_DELAY_MS
|
|
udelay(CFG_EEPROM_PAGE_WRITE_DELAY_MS * 1000);
|
|
#endif
|
|
if (incrflag)
|
|
addr += size;
|
|
}
|
|
}
|
|
} while (nbytes);
|
|
|
|
chip = i2c_mm_last_chip;
|
|
addr = i2c_mm_last_addr;
|
|
alen = i2c_mm_last_alen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Syntax:
|
|
* iprobe {addr}{.0, .1, .2}
|
|
*/
|
|
int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
int j;
|
|
#if defined(CFG_I2C_NOPROBES)
|
|
int k, skip;
|
|
uchar bus = GET_BUS_NUM;
|
|
#endif /* NOPROBES */
|
|
|
|
puts ("Valid chip addresses:");
|
|
for (j = 0; j < 128; j++) {
|
|
#if defined(CFG_I2C_NOPROBES)
|
|
skip = 0;
|
|
for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
|
|
if (COMPARE_BUS(bus, k) && COMPARE_ADDR(j, k)) {
|
|
skip = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (skip)
|
|
continue;
|
|
#endif
|
|
if (i2c_probe(j) == 0)
|
|
printf(" %02X", j);
|
|
}
|
|
putc ('\n');
|
|
|
|
#if defined(CFG_I2C_NOPROBES)
|
|
puts ("Excluded chip addresses:");
|
|
for (k=0; k < NUM_ELEMENTS_NOPROBE; k++) {
|
|
if (COMPARE_BUS(bus,k))
|
|
printf(" %02X", NO_PROBE_ADDR(k));
|
|
}
|
|
putc ('\n');
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Syntax:
|
|
* iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
|
|
* {length} - Number of bytes to read
|
|
* {delay} - A DECIMAL number and defaults to 1000 uSec
|
|
*/
|
|
int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
u_char chip;
|
|
ulong alen;
|
|
uint addr;
|
|
uint length;
|
|
u_char bytes[16];
|
|
int delay;
|
|
int j;
|
|
|
|
if (argc < 3) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Chip is always specified.
|
|
*/
|
|
chip = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
/*
|
|
* Address is always specified.
|
|
*/
|
|
addr = simple_strtoul(argv[2], NULL, 16);
|
|
alen = 1;
|
|
for (j = 0; j < 8; j++) {
|
|
if (argv[2][j] == '.') {
|
|
alen = argv[2][j+1] - '0';
|
|
if (alen > 4) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
break;
|
|
} else if (argv[2][j] == '\0')
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Length is the number of objects, not number of bytes.
|
|
*/
|
|
length = 1;
|
|
length = simple_strtoul(argv[3], NULL, 16);
|
|
if (length > sizeof(bytes))
|
|
length = sizeof(bytes);
|
|
|
|
/*
|
|
* The delay time (uSec) is optional.
|
|
*/
|
|
delay = 1000;
|
|
if (argc > 3)
|
|
delay = simple_strtoul(argv[4], NULL, 10);
|
|
/*
|
|
* Run the loop...
|
|
*/
|
|
while (1) {
|
|
if (i2c_read(chip, addr, alen, bytes, length) != 0)
|
|
puts ("Error reading the chip.\n");
|
|
udelay(delay);
|
|
}
|
|
|
|
/* NOTREACHED */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* The SDRAM command is separately configured because many
|
|
* (most?) embedded boards don't use SDRAM DIMMs.
|
|
*/
|
|
#if defined(CONFIG_CMD_SDRAM)
|
|
|
|
/*
|
|
* Syntax:
|
|
* sdram {i2c_chip}
|
|
*/
|
|
int do_sdram ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
enum {unknown, EDO, SDRAM, DDR2} type;
|
|
u_char chip;
|
|
u_char data[128];
|
|
u_char cksum;
|
|
int j;
|
|
|
|
if (argc < 2) {
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 1;
|
|
}
|
|
/*
|
|
* Chip is always specified.
|
|
*/
|
|
chip = simple_strtoul(argv[1], NULL, 16);
|
|
|
|
if (i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
|
|
puts ("No SDRAM Serial Presence Detect found.\n");
|
|
return 1;
|
|
}
|
|
|
|
cksum = 0;
|
|
for (j = 0; j < 63; j++) {
|
|
cksum += data[j];
|
|
}
|
|
if (cksum != data[63]) {
|
|
printf ("WARNING: Configuration data checksum failure:\n"
|
|
" is 0x%02x, calculated 0x%02x\n",
|
|
data[63], cksum);
|
|
}
|
|
printf("SPD data revision %d.%d\n",
|
|
(data[62] >> 4) & 0x0F, data[62] & 0x0F);
|
|
printf("Bytes used 0x%02X\n", data[0]);
|
|
printf("Serial memory size 0x%02X\n", 1 << data[1]);
|
|
puts ("Memory type ");
|
|
switch(data[2]) {
|
|
case 2:
|
|
type = EDO;
|
|
puts ("EDO\n");
|
|
break;
|
|
case 4:
|
|
type = SDRAM;
|
|
puts ("SDRAM\n");
|
|
break;
|
|
case 8:
|
|
type = DDR2;
|
|
puts ("DDR2\n");
|
|
break;
|
|
default:
|
|
type = unknown;
|
|
puts ("unknown\n");
|
|
break;
|
|
}
|
|
puts ("Row address bits ");
|
|
if ((data[3] & 0x00F0) == 0)
|
|
printf("%d\n", data[3] & 0x0F);
|
|
else
|
|
printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
|
|
puts ("Column address bits ");
|
|
if ((data[4] & 0x00F0) == 0)
|
|
printf("%d\n", data[4] & 0x0F);
|
|
else
|
|
printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("Number of ranks %d\n",
|
|
(data[5] & 0x07) + 1);
|
|
break;
|
|
default:
|
|
printf("Module rows %d\n", data[5]);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("Module data width %d bits\n", data[6]);
|
|
break;
|
|
default:
|
|
printf("Module data width %d bits\n",
|
|
(data[7] << 8) | data[6]);
|
|
break;
|
|
}
|
|
|
|
puts ("Interface signal levels ");
|
|
switch(data[8]) {
|
|
case 0: puts ("TTL 5.0 V\n"); break;
|
|
case 1: puts ("LVTTL\n"); break;
|
|
case 2: puts ("HSTL 1.5 V\n"); break;
|
|
case 3: puts ("SSTL 3.3 V\n"); break;
|
|
case 4: puts ("SSTL 2.5 V\n"); break;
|
|
case 5: puts ("SSTL 1.8 V\n"); break;
|
|
default: puts ("unknown\n"); break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM cycle time %d.",
|
|
(data[9] >> 4) & 0x0F);
|
|
switch (data[9] & 0x0F) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2:
|
|
case 0x3:
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
case 0x7:
|
|
case 0x8:
|
|
case 0x9:
|
|
printf("%d ns\n", data[9] & 0x0F);
|
|
break;
|
|
case 0xA:
|
|
puts("25 ns\n");
|
|
break;
|
|
case 0xB:
|
|
puts("33 ns\n");
|
|
break;
|
|
case 0xC:
|
|
puts("66 ns\n");
|
|
break;
|
|
case 0xD:
|
|
puts("75 ns\n");
|
|
break;
|
|
default:
|
|
puts("?? ns\n");
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
printf("SDRAM cycle time %d.%d nS\n",
|
|
(data[9] >> 4) & 0x0F, data[9] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM access time 0.%d%d ns\n",
|
|
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
|
|
break;
|
|
default:
|
|
printf("SDRAM access time %d.%d nS\n",
|
|
(data[10] >> 4) & 0x0F, data[10] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
puts ("EDC configuration ");
|
|
switch(data[11]) {
|
|
case 0: puts ("None\n"); break;
|
|
case 1: puts ("Parity\n"); break;
|
|
case 2: puts ("ECC\n"); break;
|
|
default: puts ("unknown\n"); break;
|
|
}
|
|
if ((data[12] & 0x80) == 0)
|
|
puts ("No self refresh, rate ");
|
|
else
|
|
puts ("Self refresh, rate ");
|
|
switch(data[12] & 0x7F) {
|
|
case 0: puts ("15.625 uS\n"); break;
|
|
case 1: puts ("3.9 uS\n"); break;
|
|
case 2: puts ("7.8 uS \n"); break;
|
|
case 3: puts ("31.3 uS\n"); break;
|
|
case 4: puts ("62.5 uS\n"); break;
|
|
case 5: puts ("125 uS\n"); break;
|
|
default: puts ("unknown\n"); break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM width (primary) %d\n", data[13]);
|
|
break;
|
|
default:
|
|
printf("SDRAM width (primary) %d\n", data[13] & 0x7F);
|
|
if ((data[13] & 0x80) != 0) {
|
|
printf(" (second bank) %d\n",
|
|
2 * (data[13] & 0x7F));
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
if (data[14] != 0)
|
|
printf("EDC width %d\n", data[14]);
|
|
break;
|
|
default:
|
|
if (data[14] != 0) {
|
|
printf("EDC width %d\n",
|
|
data[14] & 0x7F);
|
|
|
|
if ((data[14] & 0x80) != 0) {
|
|
printf(" (second bank) %d\n",
|
|
2 * (data[14] & 0x7F));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (DDR2 != type ) {
|
|
printf("Min clock delay, back-to-back random column addresses "
|
|
"%d\n", data[15]);
|
|
}
|
|
|
|
puts ("Burst length(s) ");
|
|
if (data[16] & 0x80) puts (" Page");
|
|
if (data[16] & 0x08) puts (" 8");
|
|
if (data[16] & 0x04) puts (" 4");
|
|
if (data[16] & 0x02) puts (" 2");
|
|
if (data[16] & 0x01) puts (" 1");
|
|
putc ('\n');
|
|
printf("Number of banks %d\n", data[17]);
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
puts ("CAS latency(s) ");
|
|
if (data[18] & 0x83) puts (" TBD");
|
|
if (data[18] & 0x40) puts (" 6");
|
|
if (data[18] & 0x20) puts (" 5");
|
|
if (data[18] & 0x10) puts (" 4");
|
|
if (data[18] & 0x08) puts (" 3");
|
|
if (data[18] & 0x04) puts (" 2");
|
|
putc ('\n');
|
|
break;
|
|
default:
|
|
puts ("CAS latency(s) ");
|
|
if (data[18] & 0x80) puts (" TBD");
|
|
if (data[18] & 0x40) puts (" 7");
|
|
if (data[18] & 0x20) puts (" 6");
|
|
if (data[18] & 0x10) puts (" 5");
|
|
if (data[18] & 0x08) puts (" 4");
|
|
if (data[18] & 0x04) puts (" 3");
|
|
if (data[18] & 0x02) puts (" 2");
|
|
if (data[18] & 0x01) puts (" 1");
|
|
putc ('\n');
|
|
break;
|
|
}
|
|
|
|
if (DDR2 != type) {
|
|
puts ("CS latency(s) ");
|
|
if (data[19] & 0x80) puts (" TBD");
|
|
if (data[19] & 0x40) puts (" 6");
|
|
if (data[19] & 0x20) puts (" 5");
|
|
if (data[19] & 0x10) puts (" 4");
|
|
if (data[19] & 0x08) puts (" 3");
|
|
if (data[19] & 0x04) puts (" 2");
|
|
if (data[19] & 0x02) puts (" 1");
|
|
if (data[19] & 0x01) puts (" 0");
|
|
putc ('\n');
|
|
}
|
|
|
|
if (DDR2 != type) {
|
|
puts ("WE latency(s) ");
|
|
if (data[20] & 0x80) puts (" TBD");
|
|
if (data[20] & 0x40) puts (" 6");
|
|
if (data[20] & 0x20) puts (" 5");
|
|
if (data[20] & 0x10) puts (" 4");
|
|
if (data[20] & 0x08) puts (" 3");
|
|
if (data[20] & 0x04) puts (" 2");
|
|
if (data[20] & 0x02) puts (" 1");
|
|
if (data[20] & 0x01) puts (" 0");
|
|
putc ('\n');
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
puts ("Module attributes:\n");
|
|
if (data[21] & 0x80)
|
|
puts (" TBD (bit 7)\n");
|
|
if (data[21] & 0x40)
|
|
puts (" Analysis probe installed\n");
|
|
if (data[21] & 0x20)
|
|
puts (" TBD (bit 5)\n");
|
|
if (data[21] & 0x10)
|
|
puts (" FET switch external enable\n");
|
|
printf(" %d PLLs on DIMM\n", (data[21] >> 2) & 0x03);
|
|
if (data[20] & 0x11) {
|
|
printf(" %d active registers on DIMM\n",
|
|
(data[21] & 0x03) + 1);
|
|
}
|
|
break;
|
|
default:
|
|
puts ("Module attributes:\n");
|
|
if (!data[21])
|
|
puts (" (none)\n");
|
|
if (data[21] & 0x80)
|
|
puts (" TBD (bit 7)\n");
|
|
if (data[21] & 0x40)
|
|
puts (" Redundant row address\n");
|
|
if (data[21] & 0x20)
|
|
puts (" Differential clock input\n");
|
|
if (data[21] & 0x10)
|
|
puts (" Registerd DQMB inputs\n");
|
|
if (data[21] & 0x08)
|
|
puts (" Buffered DQMB inputs\n");
|
|
if (data[21] & 0x04)
|
|
puts (" On-card PLL\n");
|
|
if (data[21] & 0x02)
|
|
puts (" Registered address/control lines\n");
|
|
if (data[21] & 0x01)
|
|
puts (" Buffered address/control lines\n");
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
|
|
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
|
|
if (data[22] & 0x20) puts (" TBD (bit 5)\n");
|
|
if (data[22] & 0x10) puts (" TBD (bit 4)\n");
|
|
if (data[22] & 0x08) puts (" TBD (bit 3)\n");
|
|
if (data[22] & 0x04)
|
|
puts (" Supports parital array self refresh\n");
|
|
if (data[22] & 0x02)
|
|
puts (" Supports 50 ohm ODT\n");
|
|
if (data[22] & 0x01)
|
|
puts (" Supports weak driver\n");
|
|
break;
|
|
default:
|
|
puts ("Device attributes:\n");
|
|
if (data[22] & 0x80) puts (" TBD (bit 7)\n");
|
|
if (data[22] & 0x40) puts (" TBD (bit 6)\n");
|
|
if (data[22] & 0x20) puts (" Upper Vcc tolerance 5%\n");
|
|
else puts (" Upper Vcc tolerance 10%\n");
|
|
if (data[22] & 0x10) puts (" Lower Vcc tolerance 5%\n");
|
|
else puts (" Lower Vcc tolerance 10%\n");
|
|
if (data[22] & 0x08) puts (" Supports write1/read burst\n");
|
|
if (data[22] & 0x04) puts (" Supports precharge all\n");
|
|
if (data[22] & 0x02) puts (" Supports auto precharge\n");
|
|
if (data[22] & 0x01) puts (" Supports early RAS# precharge\n");
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM cycle time (2nd highest CAS latency) %d.",
|
|
(data[23] >> 4) & 0x0F);
|
|
|
|
switch (data[23] & 0x0F) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2:
|
|
case 0x3:
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
case 0x7:
|
|
case 0x8:
|
|
case 0x9:
|
|
printf("%d ns\n", data[23] & 0x0F);
|
|
break;
|
|
case 0xA:
|
|
puts("25 ns\n");
|
|
break;
|
|
case 0xB:
|
|
puts("33 ns\n");
|
|
break;
|
|
case 0xC:
|
|
puts("66 ns\n");
|
|
break;
|
|
case 0xD:
|
|
puts("75 ns\n");
|
|
break;
|
|
default:
|
|
puts("?? ns\n");
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
printf("SDRAM cycle time (2nd highest CAS latency) %d."
|
|
"%d nS\n", (data[23] >> 4) & 0x0F, data[23] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM access from clock (2nd highest CAS latency) 0."
|
|
"%d%d ns\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
|
|
break;
|
|
default:
|
|
printf("SDRAM access from clock (2nd highest CAS latency) %d."
|
|
"%d nS\n", (data[24] >> 4) & 0x0F, data[24] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM cycle time (3rd highest CAS latency) %d.",
|
|
(data[25] >> 4) & 0x0F);
|
|
|
|
switch (data[25] & 0x0F) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2:
|
|
case 0x3:
|
|
case 0x4:
|
|
case 0x5:
|
|
case 0x6:
|
|
case 0x7:
|
|
case 0x8:
|
|
case 0x9:
|
|
printf("%d ns\n", data[25] & 0x0F);
|
|
break;
|
|
case 0xA:
|
|
puts("25 ns\n");
|
|
break;
|
|
case 0xB:
|
|
puts("33 ns\n");
|
|
break;
|
|
case 0xC:
|
|
puts("66 ns\n");
|
|
break;
|
|
case 0xD:
|
|
puts("75 ns\n");
|
|
break;
|
|
default:
|
|
puts("?? ns\n");
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
printf("SDRAM cycle time (3rd highest CAS latency) %d."
|
|
"%d nS\n", (data[25] >> 4) & 0x0F, data[25] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("SDRAM access from clock (3rd highest CAS latency) 0."
|
|
"%d%d ns\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
|
|
break;
|
|
default:
|
|
printf("SDRAM access from clock (3rd highest CAS latency) %d."
|
|
"%d nS\n", (data[26] >> 4) & 0x0F, data[26] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("Minimum row precharge %d", data[27] >> 2);
|
|
switch (data[27] & 0x03) {
|
|
case 0x0: puts(".00 ns\n"); break;
|
|
case 0x1: puts(".25 ns\n"); break;
|
|
case 0x2: puts(".50 ns\n"); break;
|
|
case 0x3: puts(".75 ns\n"); break;
|
|
}
|
|
break;
|
|
default:
|
|
printf("Minimum row precharge %d nS\n", data[27]);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("Row active to row active min %d", data[28] >> 2);
|
|
switch (data[28] & 0x03) {
|
|
case 0x0: puts(".00 ns\n"); break;
|
|
case 0x1: puts(".25 ns\n"); break;
|
|
case 0x2: puts(".50 ns\n"); break;
|
|
case 0x3: puts(".75 ns\n"); break;
|
|
}
|
|
break;
|
|
default:
|
|
printf("Row active to row active min %d nS\n", data[28]);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("RAS to CAS delay min %d", data[29] >> 2);
|
|
switch (data[29] & 0x03) {
|
|
case 0x0: puts(".00 ns\n"); break;
|
|
case 0x1: puts(".25 ns\n"); break;
|
|
case 0x2: puts(".50 ns\n"); break;
|
|
case 0x3: puts(".75 ns\n"); break;
|
|
}
|
|
break;
|
|
default:
|
|
printf("RAS to CAS delay min %d nS\n", data[29]);
|
|
break;
|
|
}
|
|
|
|
printf("Minimum RAS pulse width %d nS\n", data[30]);
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
puts ("Density of each row ");
|
|
if (data[31] & 0x80) puts (" 512 MiB\n");
|
|
if (data[31] & 0x40) puts (" 256 MiB\n");
|
|
if (data[31] & 0x20) puts (" 128 MiB\n");
|
|
if (data[31] & 0x10) puts (" 16 GiB\n");
|
|
if (data[31] & 0x08) puts (" 8 GiB\n");
|
|
if (data[31] & 0x04) puts (" 4 GiB\n");
|
|
if (data[31] & 0x02) puts (" 2 GiB\n");
|
|
if (data[31] & 0x01) puts (" 1 GiB\n");
|
|
break;
|
|
default:
|
|
puts ("Density of each row ");
|
|
if (data[31] & 0x80) puts (" 512 MiB\n");
|
|
if (data[31] & 0x40) puts (" 256 MiB\n");
|
|
if (data[31] & 0x20) puts (" 128 MiB\n");
|
|
if (data[31] & 0x10) puts (" 64 MiB\n");
|
|
if (data[31] & 0x08) puts (" 32 MiB\n");
|
|
if (data[31] & 0x04) puts (" 16 MiB\n");
|
|
if (data[31] & 0x02) puts (" 8 MiB\n");
|
|
if (data[31] & 0x01) puts (" 4 MiB\n");
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
puts("Command and Address setup ");
|
|
if (data[32] >= 0xA0) {
|
|
printf("1.%d%d ns\n",
|
|
((data[32] >> 4) & 0x0F) - 10, data[32] & 0x0F);
|
|
} else {
|
|
printf("0.%d%d ns\n",
|
|
((data[32] >> 4) & 0x0F), data[32] & 0x0F);
|
|
}
|
|
break;
|
|
default:
|
|
printf("Command and Address setup %c%d.%d nS\n",
|
|
(data[32] & 0x80) ? '-' : '+',
|
|
(data[32] >> 4) & 0x07, data[32] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
puts("Command and Address hold ");
|
|
if (data[33] >= 0xA0) {
|
|
printf("1.%d%d ns\n",
|
|
((data[33] >> 4) & 0x0F) - 10, data[33] & 0x0F);
|
|
} else {
|
|
printf("0.%d%d ns\n",
|
|
((data[33] >> 4) & 0x0F), data[33] & 0x0F);
|
|
}
|
|
break;
|
|
default:
|
|
printf("Command and Address hold %c%d.%d nS\n",
|
|
(data[33] & 0x80) ? '-' : '+',
|
|
(data[33] >> 4) & 0x07, data[33] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("Data signal input setup 0.%d%d ns\n",
|
|
(data[34] >> 4) & 0x0F, data[34] & 0x0F);
|
|
break;
|
|
default:
|
|
printf("Data signal input setup %c%d.%d nS\n",
|
|
(data[34] & 0x80) ? '-' : '+',
|
|
(data[34] >> 4) & 0x07, data[34] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
switch (type) {
|
|
case DDR2:
|
|
printf("Data signal input hold 0.%d%d ns\n",
|
|
(data[35] >> 4) & 0x0F, data[35] & 0x0F);
|
|
break;
|
|
default:
|
|
printf("Data signal input hold %c%d.%d nS\n",
|
|
(data[35] & 0x80) ? '-' : '+',
|
|
(data[35] >> 4) & 0x07, data[35] & 0x0F);
|
|
break;
|
|
}
|
|
|
|
puts ("Manufacturer's JEDEC ID ");
|
|
for (j = 64; j <= 71; j++)
|
|
printf("%02X ", data[j]);
|
|
putc ('\n');
|
|
printf("Manufacturing Location %02X\n", data[72]);
|
|
puts ("Manufacturer's Part Number ");
|
|
for (j = 73; j <= 90; j++)
|
|
printf("%02X ", data[j]);
|
|
putc ('\n');
|
|
printf("Revision Code %02X %02X\n", data[91], data[92]);
|
|
printf("Manufacturing Date %02X %02X\n", data[93], data[94]);
|
|
puts ("Assembly Serial Number ");
|
|
for (j = 95; j <= 98; j++)
|
|
printf("%02X ", data[j]);
|
|
putc ('\n');
|
|
|
|
if (DDR2 != type) {
|
|
printf("Speed rating PC%d\n",
|
|
data[126] == 0x66 ? 66 : data[126]);
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_I2C_CMD_TREE)
|
|
#if defined(CONFIG_I2C_MULTI_BUS)
|
|
int do_i2c_bus_num(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
int bus_idx, ret=0;
|
|
|
|
if (argc == 1)
|
|
/* querying current setting */
|
|
printf("Current bus is %d\n", i2c_get_bus_num());
|
|
else {
|
|
bus_idx = simple_strtoul(argv[1], NULL, 10);
|
|
printf("Setting bus to %d\n", bus_idx);
|
|
ret = i2c_set_bus_num(bus_idx);
|
|
if (ret)
|
|
printf("Failure changing bus number (%d)\n", ret);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif /* CONFIG_I2C_MULTI_BUS */
|
|
|
|
int do_i2c_bus_speed(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
int speed, ret=0;
|
|
|
|
if (argc == 1)
|
|
/* querying current speed */
|
|
printf("Current bus speed=%d\n", i2c_get_bus_speed());
|
|
else {
|
|
speed = simple_strtoul(argv[1], NULL, 10);
|
|
printf("Setting bus speed to %d Hz\n", speed);
|
|
ret = i2c_set_bus_speed(speed);
|
|
if (ret)
|
|
printf("Failure changing bus speed (%d)\n", ret);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int do_i2c(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])
|
|
{
|
|
#if defined(CONFIG_I2C_MULTI_BUS)
|
|
if (!strncmp(argv[1], "de", 2))
|
|
return do_i2c_bus_num(cmdtp, flag, --argc, ++argv);
|
|
#endif /* CONFIG_I2C_MULTI_BUS */
|
|
if (!strncmp(argv[1], "sp", 2))
|
|
return do_i2c_bus_speed(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "md", 2))
|
|
return do_i2c_md(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "mm", 2))
|
|
return do_i2c_mm(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "mw", 2))
|
|
return do_i2c_mw(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "nm", 2))
|
|
return do_i2c_nm(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "cr", 2))
|
|
return do_i2c_crc(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "pr", 2))
|
|
return do_i2c_probe(cmdtp, flag, --argc, ++argv);
|
|
if (!strncmp(argv[1], "lo", 2))
|
|
return do_i2c_loop(cmdtp, flag, --argc, ++argv);
|
|
#if defined(CONFIG_CMD_SDRAM)
|
|
if (!strncmp(argv[1], "sd", 2))
|
|
return do_sdram(cmdtp, flag, --argc, ++argv);
|
|
#endif
|
|
else
|
|
printf ("Usage:\n%s\n", cmdtp->usage);
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_I2C_CMD_TREE */
|
|
|
|
/***************************************************/
|
|
|
|
#if defined(CONFIG_I2C_CMD_TREE)
|
|
U_BOOT_CMD(
|
|
i2c, 6, 1, do_i2c,
|
|
"i2c - I2C sub-system\n",
|
|
#if defined(CONFIG_I2C_MULTI_BUS)
|
|
"dev [dev] - show or set current I2C bus\n"
|
|
#endif /* CONFIG_I2C_MULTI_BUS */
|
|
"i2c speed [speed] - show or set I2C bus speed\n"
|
|
"i2c md chip address[.0, .1, .2] [# of objects] - read from I2C device\n"
|
|
"i2c mm chip address[.0, .1, .2] - write to I2C device (auto-incrementing)\n"
|
|
"i2c mw chip address[.0, .1, .2] value [count] - write to I2C device (fill)\n"
|
|
"i2c nm chip address[.0, .1, .2] - write to I2C device (constant address)\n"
|
|
"i2c crc32 chip address[.0, .1, .2] count - compute CRC32 checksum\n"
|
|
"i2c probe - show devices on the I2C bus\n"
|
|
"i2c loop chip address[.0, .1, .2] [# of objects] - looping read of device\n"
|
|
#if defined(CONFIG_CMD_SDRAM)
|
|
"i2c sdram chip - print SDRAM configuration information\n"
|
|
#endif
|
|
);
|
|
#endif /* CONFIG_I2C_CMD_TREE */
|
|
U_BOOT_CMD(
|
|
imd, 4, 1, do_i2c_md, \
|
|
"imd - i2c memory display\n", \
|
|
"chip address[.0, .1, .2] [# of objects]\n - i2c memory display\n" \
|
|
);
|
|
|
|
U_BOOT_CMD(
|
|
imm, 3, 1, do_i2c_mm,
|
|
"imm - i2c memory modify (auto-incrementing)\n",
|
|
"chip address[.0, .1, .2]\n"
|
|
" - memory modify, auto increment address\n"
|
|
);
|
|
U_BOOT_CMD(
|
|
inm, 3, 1, do_i2c_nm,
|
|
"inm - memory modify (constant address)\n",
|
|
"chip address[.0, .1, .2]\n - memory modify, read and keep address\n"
|
|
);
|
|
|
|
U_BOOT_CMD(
|
|
imw, 5, 1, do_i2c_mw,
|
|
"imw - memory write (fill)\n",
|
|
"chip address[.0, .1, .2] value [count]\n - memory write (fill)\n"
|
|
);
|
|
|
|
U_BOOT_CMD(
|
|
icrc32, 5, 1, do_i2c_crc,
|
|
"icrc32 - checksum calculation\n",
|
|
"chip address[.0, .1, .2] count\n - compute CRC32 checksum\n"
|
|
);
|
|
|
|
U_BOOT_CMD(
|
|
iprobe, 1, 1, do_i2c_probe,
|
|
"iprobe - probe to discover valid I2C chip addresses\n",
|
|
"\n -discover valid I2C chip addresses\n"
|
|
);
|
|
|
|
/*
|
|
* Require full name for "iloop" because it is an infinite loop!
|
|
*/
|
|
U_BOOT_CMD(
|
|
iloop, 5, 1, do_i2c_loop,
|
|
"iloop - infinite loop on address range\n",
|
|
"chip address[.0, .1, .2] [# of objects]\n"
|
|
" - loop, reading a set of addresses\n"
|
|
);
|
|
|
|
#if defined(CONFIG_CMD_SDRAM)
|
|
U_BOOT_CMD(
|
|
isdram, 2, 1, do_sdram,
|
|
"isdram - print SDRAM configuration information\n",
|
|
"chip\n - print SDRAM configuration information\n"
|
|
" (valid chip values 50..57)\n"
|
|
);
|
|
#endif
|