u-boot/post/drivers/rtc.c
Yuri Tikhonov 0a51e9248e POST: preparations for moving CONFIG_POST to Makefiles
Remove CONFIG_POST ifdefs from the post/ source files.

Signed-off-by: Yuri Tikhonov <yur@emcraft.com>
Signed-off-by: Wolfgang Denk <wd@denx.de>
2008-04-22 14:38:38 +02:00

181 lines
3.9 KiB
C

/*
* (C) Copyright 2002
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
/*
* RTC test
*
* The Real Time Clock (RTC) operation is verified by this test.
* The following features are verified:
* o) Time uniformity
* This is verified by reading RTC in polling within
* a short period of time.
* o) Passing month boundaries
* This is checked by setting RTC to a second before
* a month boundary and reading it after its passing the
* boundary. The test is performed for both leap- and
* nonleap-years.
*/
#include <post.h>
#include <rtc.h>
#if CONFIG_POST & CFG_POST_RTC
static int rtc_post_skip (ulong * diff)
{
struct rtc_time tm1;
struct rtc_time tm2;
ulong start1;
ulong start2;
rtc_get (&tm1);
start1 = get_timer (0);
while (1) {
rtc_get (&tm2);
start2 = get_timer (0);
if (tm1.tm_sec != tm2.tm_sec)
break;
if (start2 - start1 > 1500)
break;
}
if (tm1.tm_sec != tm2.tm_sec) {
*diff = start2 - start1;
return 0;
} else {
return -1;
}
}
static void rtc_post_restore (struct rtc_time *tm, unsigned int sec)
{
time_t t = mktime (tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_hour,
tm->tm_min, tm->tm_sec) + sec;
struct rtc_time ntm;
to_tm (t, &ntm);
rtc_set (&ntm);
}
int rtc_post_test (int flags)
{
ulong diff;
unsigned int i;
struct rtc_time svtm;
static unsigned int daysnl[] =
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
static unsigned int daysl[] =
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
unsigned int ynl = 1999;
unsigned int yl = 2000;
unsigned int skipped = 0;
/* Time uniformity */
if (rtc_post_skip (&diff) != 0) {
post_log ("Timeout while waiting for a new second !\n");
return -1;
}
for (i = 0; i < 5; i++) {
if (rtc_post_skip (&diff) != 0) {
post_log ("Timeout while waiting for a new second !\n");
return -1;
}
if (diff < 950 || diff > 1050) {
post_log ("Invalid second duration !\n");
return -1;
}
}
/* Passing month boundaries */
if (rtc_post_skip (&diff) != 0) {
post_log ("Timeout while waiting for a new second !\n");
return -1;
}
rtc_get (&svtm);
for (i = 0; i < 12; i++) {
time_t t = mktime (ynl, i + 1, daysnl[i], 23, 59, 59);
struct rtc_time tm;
to_tm (t, &tm);
rtc_set (&tm);
skipped++;
if (rtc_post_skip (&diff) != 0) {
rtc_post_restore (&svtm, skipped);
post_log ("Timeout while waiting for a new second !\n");
return -1;
}
rtc_get (&tm);
if (tm.tm_mon == i + 1) {
rtc_post_restore (&svtm, skipped);
post_log ("Month %d boundary is not passed !\n", i + 1);
return -1;
}
}
for (i = 0; i < 12; i++) {
time_t t = mktime (yl, i + 1, daysl[i], 23, 59, 59);
struct rtc_time tm;
to_tm (t, &tm);
rtc_set (&tm);
skipped++;
if (rtc_post_skip (&diff) != 0) {
rtc_post_restore (&svtm, skipped);
post_log ("Timeout while waiting for a new second !\n");
return -1;
}
rtc_get (&tm);
if (tm.tm_mon == i + 1) {
rtc_post_restore (&svtm, skipped);
post_log ("Month %d boundary is not passed !\n", i + 1);
return -1;
}
}
rtc_post_restore (&svtm, skipped);
return 0;
}
#endif /* CONFIG_POST & CFG_POST_RTC */