u-boot/lib/efi_loader/efi_device_path_to_text.c
Heinrich Schuchardt fbc04c0dab efi_loader: fix display of NVMe EUI-64
UEFI specification 2.9A requires to display the EUI-64 "in hexadecimal
format with byte 7 first (i.e., on the left) and byte 0 last".

This is in contrast to what the NVMe specification wants.
But it is what EDK II has been implementing.

Here is an example with the patch applied:

    qemu-system-aarch64 -machine virt -cpu cortex-a72 -nographic \
    -bios denx/u-boot.bin \
    -device nvme,id=nvme1,serial=9ff81223 \
    -device nvme-ns,bus=nvme1,drive=nvme1n0,eui64=0x123456789ABCDEF0 \
    -drive file=arm64.img,if=none,format=raw,id=nvme1n0

    => nvme scan
    => efidebug devices
    Device Path
    ====================
    /VenHw(…)/NVMe(0x1,f0-de-bc-9a-78-56-34-12)

Signed-off-by: Heinrich Schuchardt <heinrich.schuchardt@canonical.com>
2022-09-03 10:49:17 +02:00

454 lines
11 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* EFI device path interface
*
* Copyright (c) 2017 Heinrich Schuchardt
*/
#include <common.h>
#include <blk.h>
#include <efi_loader.h>
#include <malloc.h>
#define MAC_OUTPUT_LEN 22
#define UNKNOWN_OUTPUT_LEN 23
#define MAX_NODE_LEN 512
#define MAX_PATH_LEN 1024
const efi_guid_t efi_guid_device_path_to_text_protocol =
EFI_DEVICE_PATH_TO_TEXT_PROTOCOL_GUID;
/**
* efi_str_to_u16() - convert ASCII string to UTF-16
*
* A u16 buffer is allocated from pool. The ASCII string is copied to the u16
* buffer.
*
* @str: ASCII string
* Return: UTF-16 string. NULL if out of memory.
*/
static u16 *efi_str_to_u16(char *str)
{
efi_uintn_t len;
u16 *out, *dst;
efi_status_t ret;
len = sizeof(u16) * (utf8_utf16_strlen(str) + 1);
ret = efi_allocate_pool(EFI_BOOT_SERVICES_DATA, len, (void **)&out);
if (ret != EFI_SUCCESS)
return NULL;
dst = out;
utf8_utf16_strcpy(&dst, str);
return out;
}
static char *dp_unknown(char *s, struct efi_device_path *dp)
{
s += sprintf(s, "UNKNOWN(%04x,%04x)", dp->type, dp->sub_type);
return s;
}
static char *dp_hardware(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_MEMORY: {
struct efi_device_path_memory *mdp =
(struct efi_device_path_memory *)dp;
s += sprintf(s, "MemoryMapped(0x%x,0x%llx,0x%llx)",
mdp->memory_type,
mdp->start_address,
mdp->end_address);
break;
}
case DEVICE_PATH_SUB_TYPE_VENDOR: {
int i, n;
struct efi_device_path_vendor *vdp =
(struct efi_device_path_vendor *)dp;
s += sprintf(s, "VenHw(%pUl", &vdp->guid);
n = (int)vdp->dp.length - sizeof(struct efi_device_path_vendor);
/* Node must fit into MAX_NODE_LEN) */
if (n > 0 && n < MAX_NODE_LEN / 2 - 22) {
s += sprintf(s, ",");
for (i = 0; i < n; ++i)
s += sprintf(s, "%02x", vdp->vendor_data[i]);
}
s += sprintf(s, ")");
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
static char *dp_acpi(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_ACPI_DEVICE: {
struct efi_device_path_acpi_path *adp =
(struct efi_device_path_acpi_path *)dp;
s += sprintf(s, "Acpi(PNP%04X,%d)", EISA_PNP_NUM(adp->hid),
adp->uid);
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
static char *dp_msging(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_MSG_ATAPI: {
struct efi_device_path_atapi *ide =
(struct efi_device_path_atapi *)dp;
s += sprintf(s, "Ata(%d,%d,%d)", ide->primary_secondary,
ide->slave_master, ide->logical_unit_number);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_SCSI: {
struct efi_device_path_scsi *ide =
(struct efi_device_path_scsi *)dp;
s += sprintf(s, "Scsi(%u,%u)", ide->target_id,
ide->logical_unit_number);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_UART: {
struct efi_device_path_uart *uart =
(struct efi_device_path_uart *)dp;
const char parity_str[6] = {'D', 'N', 'E', 'O', 'M', 'S'};
const char *stop_bits_str[4] = { "D", "1", "1.5", "2" };
s += sprintf(s, "Uart(%lld,%d,", uart->baud_rate,
uart->data_bits);
/*
* Parity and stop bits can either both use keywords or both use
* numbers but numbers and keywords should not be mixed. Let's
* go for keywords as this is what EDK II does. For illegal
* values fall back to numbers.
*/
if (uart->parity < 6)
s += sprintf(s, "%c,", parity_str[uart->parity]);
else
s += sprintf(s, "%d,", uart->parity);
if (uart->stop_bits < 4)
s += sprintf(s, "%s)", stop_bits_str[uart->stop_bits]);
else
s += sprintf(s, "%d)", uart->stop_bits);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_USB: {
struct efi_device_path_usb *udp =
(struct efi_device_path_usb *)dp;
s += sprintf(s, "USB(0x%x,0x%x)", udp->parent_port_number,
udp->usb_interface);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_MAC_ADDR: {
int i, n = sizeof(struct efi_mac_addr);
struct efi_device_path_mac_addr *mdp =
(struct efi_device_path_mac_addr *)dp;
if (mdp->if_type <= 1)
n = 6;
s += sprintf(s, "MAC(");
for (i = 0; i < n; ++i)
s += sprintf(s, "%02x", mdp->mac.addr[i]);
s += sprintf(s, ",%u)", mdp->if_type);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_USB_CLASS: {
struct efi_device_path_usb_class *ucdp =
(struct efi_device_path_usb_class *)dp;
s += sprintf(s, "UsbClass(0x%x,0x%x,0x%x,0x%x,0x%x)",
ucdp->vendor_id, ucdp->product_id,
ucdp->device_class, ucdp->device_subclass,
ucdp->device_protocol);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_SATA: {
struct efi_device_path_sata *sdp =
(struct efi_device_path_sata *) dp;
s += sprintf(s, "Sata(0x%x,0x%x,0x%x)",
sdp->hba_port,
sdp->port_multiplier_port,
sdp->logical_unit_number);
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_NVME: {
struct efi_device_path_nvme *ndp =
(struct efi_device_path_nvme *)dp;
u32 ns_id;
memcpy(&ns_id, &ndp->ns_id, sizeof(ns_id));
s += sprintf(s, "NVMe(0x%x,", ns_id);
/* Display byte 7 first, byte 0 last */
for (int i = 0; i < 8; ++i)
s += sprintf(s, "%s%02x", i ? "-" : "",
ndp->eui64[i ^ 7]);
s += sprintf(s, ")");
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_URI: {
struct efi_device_path_uri *udp =
(struct efi_device_path_uri *)dp;
int n;
n = (int)udp->dp.length - sizeof(struct efi_device_path_uri);
s += sprintf(s, "Uri(");
if (n > 0 && n < MAX_NODE_LEN - 6)
s += snprintf(s, n, "%s", (char *)udp->uri);
s += sprintf(s, ")");
break;
}
case DEVICE_PATH_SUB_TYPE_MSG_SD:
case DEVICE_PATH_SUB_TYPE_MSG_MMC: {
const char *typename =
(dp->sub_type == DEVICE_PATH_SUB_TYPE_MSG_SD) ?
"SD" : "eMMC";
struct efi_device_path_sd_mmc_path *sddp =
(struct efi_device_path_sd_mmc_path *)dp;
s += sprintf(s, "%s(%u)", typename, sddp->slot_number);
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
/*
* Convert a media device path node to text.
*
* @s output buffer
* @dp device path node
* Return: next unused buffer address
*/
static char *dp_media(char *s, struct efi_device_path *dp)
{
switch (dp->sub_type) {
case DEVICE_PATH_SUB_TYPE_HARD_DRIVE_PATH: {
struct efi_device_path_hard_drive_path *hddp =
(struct efi_device_path_hard_drive_path *)dp;
void *sig = hddp->partition_signature;
u64 start;
u64 end;
/* Copy from packed structure to aligned memory */
memcpy(&start, &hddp->partition_start, sizeof(start));
memcpy(&end, &hddp->partition_end, sizeof(end));
switch (hddp->signature_type) {
case SIG_TYPE_MBR: {
u32 signature;
memcpy(&signature, sig, sizeof(signature));
s += sprintf(
s, "HD(%d,MBR,0x%08x,0x%llx,0x%llx)",
hddp->partition_number, signature, start, end);
break;
}
case SIG_TYPE_GUID:
s += sprintf(
s, "HD(%d,GPT,%pUl,0x%llx,0x%llx)",
hddp->partition_number, sig, start, end);
break;
default:
s += sprintf(
s, "HD(%d,0x%02x,0,0x%llx,0x%llx)",
hddp->partition_number, hddp->partmap_type,
start, end);
break;
}
break;
}
case DEVICE_PATH_SUB_TYPE_CDROM_PATH: {
struct efi_device_path_cdrom_path *cddp =
(struct efi_device_path_cdrom_path *)dp;
s += sprintf(s, "CDROM(%u,0x%llx,0x%llx)", cddp->boot_entry,
cddp->partition_start, cddp->partition_size);
break;
}
case DEVICE_PATH_SUB_TYPE_VENDOR_PATH: {
int i, n;
struct efi_device_path_vendor *vdp =
(struct efi_device_path_vendor *)dp;
s += sprintf(s, "VenMedia(%pUl", &vdp->guid);
n = (int)vdp->dp.length - sizeof(struct efi_device_path_vendor);
/* Node must fit into MAX_NODE_LEN) */
if (n > 0 && n < MAX_NODE_LEN / 2 - 24) {
s += sprintf(s, ",");
for (i = 0; i < n; ++i)
s += sprintf(s, "%02x", vdp->vendor_data[i]);
}
s += sprintf(s, ")");
break;
}
case DEVICE_PATH_SUB_TYPE_FILE_PATH: {
struct efi_device_path_file_path *fp =
(struct efi_device_path_file_path *)dp;
u16 *buffer;
int slen = dp->length - sizeof(*dp);
/* two bytes for \0, extra byte if dp->length is odd */
buffer = calloc(1, slen + 3);
if (!buffer) {
log_err("Out of memory\n");
return s;
}
memcpy(buffer, fp->str, dp->length - sizeof(*dp));
s += snprintf(s, MAX_NODE_LEN - 1, "%ls", buffer);
free(buffer);
break;
}
default:
s = dp_unknown(s, dp);
break;
}
return s;
}
/*
* Converts a single node to a char string.
*
* @buffer output buffer
* @dp device path or node
* Return: end of string
*/
static char *efi_convert_single_device_node_to_text(
char *buffer,
struct efi_device_path *dp)
{
char *str = buffer;
switch (dp->type) {
case DEVICE_PATH_TYPE_HARDWARE_DEVICE:
str = dp_hardware(str, dp);
break;
case DEVICE_PATH_TYPE_ACPI_DEVICE:
str = dp_acpi(str, dp);
break;
case DEVICE_PATH_TYPE_MESSAGING_DEVICE:
str = dp_msging(str, dp);
break;
case DEVICE_PATH_TYPE_MEDIA_DEVICE:
str = dp_media(str, dp);
break;
case DEVICE_PATH_TYPE_END:
break;
default:
str = dp_unknown(str, dp);
}
*str = '\0';
return str;
}
/*
* This function implements the ConvertDeviceNodeToText service of the
* EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* device_node device node to be converted
* display_only true if the shorter text representation shall be used
* allow_shortcuts true if shortcut forms may be used
* Return: text representation of the device path
* NULL if out of memory of device_path is NULL
*/
static uint16_t EFIAPI *efi_convert_device_node_to_text(
struct efi_device_path *device_node,
bool display_only,
bool allow_shortcuts)
{
char str[MAX_NODE_LEN];
uint16_t *text = NULL;
EFI_ENTRY("%p, %d, %d", device_node, display_only, allow_shortcuts);
if (!device_node)
goto out;
efi_convert_single_device_node_to_text(str, device_node);
text = efi_str_to_u16(str);
out:
EFI_EXIT(EFI_SUCCESS);
return text;
}
/*
* This function implements the ConvertDevicePathToText service of the
* EFI_DEVICE_PATH_TO_TEXT_PROTOCOL.
* See the Unified Extensible Firmware Interface (UEFI) specification
* for details.
*
* device_path device path to be converted
* display_only true if the shorter text representation shall be used
* allow_shortcuts true if shortcut forms may be used
* Return: text representation of the device path
* NULL if out of memory of device_path is NULL
*/
static uint16_t EFIAPI *efi_convert_device_path_to_text(
struct efi_device_path *device_path,
bool display_only,
bool allow_shortcuts)
{
uint16_t *text = NULL;
char buffer[MAX_PATH_LEN];
char *str = buffer;
EFI_ENTRY("%p, %d, %d", device_path, display_only, allow_shortcuts);
if (!device_path)
goto out;
while (device_path && str + MAX_NODE_LEN < buffer + MAX_PATH_LEN) {
if (device_path->type == DEVICE_PATH_TYPE_END) {
if (device_path->sub_type !=
DEVICE_PATH_SUB_TYPE_INSTANCE_END)
break;
*str++ = ',';
} else {
*str++ = '/';
str = efi_convert_single_device_node_to_text(
str, device_path);
}
*(u8 **)&device_path += device_path->length;
}
*str = 0;
text = efi_str_to_u16(buffer);
out:
EFI_EXIT(EFI_SUCCESS);
return text;
}
/* helper for debug prints.. efi_free_pool() the result. */
uint16_t *efi_dp_str(struct efi_device_path *dp)
{
return EFI_CALL(efi_convert_device_path_to_text(dp, true, true));
}
const struct efi_device_path_to_text_protocol efi_device_path_to_text = {
.convert_device_node_to_text = efi_convert_device_node_to_text,
.convert_device_path_to_text = efi_convert_device_path_to_text,
};