#ifndef __ASM_SH_UNALIGNED_SH4A_H #define __ASM_SH_UNALIGNED_SH4A_H /* * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only. * Support for 64-bit accesses are done through shifting and masking * relative to the endianness. Unaligned stores are not supported by the * instruction encoding, so these continue to use the packed * struct. * * The same note as with the movli.l/movco.l pair applies here, as long * as the load is gauranteed to be inlined, nothing else will hook in to * r0 and we get the return value for free. * * NOTE: Due to the fact we require r0 encoding, care should be taken to * avoid mixing these heavily with other r0 consumers, such as the atomic * ops. Failure to adhere to this can result in the compiler running out * of spill registers and blowing up when building at low optimization * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777. */ #include <linux/types.h> #include <asm/byteorder.h> static __always_inline u32 __get_unaligned_cpu32(const u8 *p) { unsigned long unaligned; __asm__ __volatile__ ( "movua.l @%1, %0\n\t" : "=z" (unaligned) : "r" (p) ); return unaligned; } struct __una_u16 { u16 x __attribute__((packed)); }; struct __una_u32 { u32 x __attribute__((packed)); }; struct __una_u64 { u64 x __attribute__((packed)); }; static inline u16 __get_unaligned_cpu16(const u8 *p) { #ifdef __LITTLE_ENDIAN return p[0] | p[1] << 8; #else return p[0] << 8 | p[1]; #endif } /* * Even though movua.l supports auto-increment on the read side, it can * only store to r0 due to instruction encoding constraints, so just let * the compiler sort it out on its own. */ static inline u64 __get_unaligned_cpu64(const u8 *p) { #ifdef __LITTLE_ENDIAN return (u64)__get_unaligned_cpu32(p + 4) << 32 | __get_unaligned_cpu32(p); #else return (u64)__get_unaligned_cpu32(p) << 32 | __get_unaligned_cpu32(p + 4); #endif } static inline u16 get_unaligned_le16(const void *p) { return le16_to_cpu(__get_unaligned_cpu16(p)); } static inline u32 get_unaligned_le32(const void *p) { return le32_to_cpu(__get_unaligned_cpu32(p)); } static inline u64 get_unaligned_le64(const void *p) { return le64_to_cpu(__get_unaligned_cpu64(p)); } static inline u16 get_unaligned_be16(const void *p) { return be16_to_cpu(__get_unaligned_cpu16(p)); } static inline u32 get_unaligned_be32(const void *p) { return be32_to_cpu(__get_unaligned_cpu32(p)); } static inline u64 get_unaligned_be64(const void *p) { return be64_to_cpu(__get_unaligned_cpu64(p)); } static inline void __put_le16_noalign(u8 *p, u16 val) { *p++ = val; *p++ = val >> 8; } static inline void __put_le32_noalign(u8 *p, u32 val) { __put_le16_noalign(p, val); __put_le16_noalign(p + 2, val >> 16); } static inline void __put_le64_noalign(u8 *p, u64 val) { __put_le32_noalign(p, val); __put_le32_noalign(p + 4, val >> 32); } static inline void __put_be16_noalign(u8 *p, u16 val) { *p++ = val >> 8; *p++ = val; } static inline void __put_be32_noalign(u8 *p, u32 val) { __put_be16_noalign(p, val >> 16); __put_be16_noalign(p + 2, val); } static inline void __put_be64_noalign(u8 *p, u64 val) { __put_be32_noalign(p, val >> 32); __put_be32_noalign(p + 4, val); } static inline void put_unaligned_le16(u16 val, void *p) { #ifdef __LITTLE_ENDIAN ((struct __una_u16 *)p)->x = val; #else __put_le16_noalign(p, val); #endif } static inline void put_unaligned_le32(u32 val, void *p) { #ifdef __LITTLE_ENDIAN ((struct __una_u32 *)p)->x = val; #else __put_le32_noalign(p, val); #endif } static inline void put_unaligned_le64(u64 val, void *p) { #ifdef __LITTLE_ENDIAN ((struct __una_u64 *)p)->x = val; #else __put_le64_noalign(p, val); #endif } static inline void put_unaligned_be16(u16 val, void *p) { #ifdef __BIG_ENDIAN ((struct __una_u16 *)p)->x = val; #else __put_be16_noalign(p, val); #endif } static inline void put_unaligned_be32(u32 val, void *p) { #ifdef __BIG_ENDIAN ((struct __una_u32 *)p)->x = val; #else __put_be32_noalign(p, val); #endif } static inline void put_unaligned_be64(u64 val, void *p) { #ifdef __BIG_ENDIAN ((struct __una_u64 *)p)->x = val; #else __put_be64_noalign(p, val); #endif } /* * Cause a link-time error if we try an unaligned access other than * 1,2,4 or 8 bytes long */ extern void __bad_unaligned_access_size(void); #define __get_unaligned_le(ptr) ((__force typeof(*(ptr)))({ \ __builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr), \ __builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_le16((ptr)), \ __builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_le32((ptr)), \ __builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_le64((ptr)), \ __bad_unaligned_access_size())))); \ })) #define __get_unaligned_be(ptr) ((__force typeof(*(ptr)))({ \ __builtin_choose_expr(sizeof(*(ptr)) == 1, *(ptr), \ __builtin_choose_expr(sizeof(*(ptr)) == 2, get_unaligned_be16((ptr)), \ __builtin_choose_expr(sizeof(*(ptr)) == 4, get_unaligned_be32((ptr)), \ __builtin_choose_expr(sizeof(*(ptr)) == 8, get_unaligned_be64((ptr)), \ __bad_unaligned_access_size())))); \ })) #define __put_unaligned_le(val, ptr) ({ \ void *__gu_p = (ptr); \ switch (sizeof(*(ptr))) { \ case 1: \ *(u8 *)__gu_p = (__force u8)(val); \ break; \ case 2: \ put_unaligned_le16((__force u16)(val), __gu_p); \ break; \ case 4: \ put_unaligned_le32((__force u32)(val), __gu_p); \ break; \ case 8: \ put_unaligned_le64((__force u64)(val), __gu_p); \ break; \ default: \ __bad_unaligned_access_size(); \ break; \ } \ (void)0; }) #define __put_unaligned_be(val, ptr) ({ \ void *__gu_p = (ptr); \ switch (sizeof(*(ptr))) { \ case 1: \ *(u8 *)__gu_p = (__force u8)(val); \ break; \ case 2: \ put_unaligned_be16((__force u16)(val), __gu_p); \ break; \ case 4: \ put_unaligned_be32((__force u32)(val), __gu_p); \ break; \ case 8: \ put_unaligned_be64((__force u64)(val), __gu_p); \ break; \ default: \ __bad_unaligned_access_size(); \ break; \ } \ (void)0; }) #ifdef __LITTLE_ENDIAN # define get_unaligned __get_unaligned_le # define put_unaligned __put_unaligned_le #else # define get_unaligned __get_unaligned_be # define put_unaligned __put_unaligned_be #endif #endif /* __ASM_SH_UNALIGNED_SH4A_H */