spi: Extend the core to ease integration of SPI memory controllers
Some controllers are exposing high-level interfaces to access various kind of SPI memories. Unfortunately they do not fit in the current spi_controller model and usually have drivers placed in drivers/mtd/spi-nor which are only supporting SPI NORs and not SPI memories in general. This is an attempt at defining a SPI memory interface which works for all kinds of SPI memories (NORs, NANDs, SRAMs). Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com> Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com> Acked-by: Jagan Teki <jagan@openedev.com>
This commit is contained in:
parent
f86787280b
commit
d13f5b254a
@ -18,6 +18,13 @@ config DM_SPI
|
||||
|
||||
if DM_SPI
|
||||
|
||||
config SPI_MEM
|
||||
bool "SPI memory extension"
|
||||
help
|
||||
Enable this option if you want to enable the SPI memory extension.
|
||||
This extension is meant to simplify interaction with SPI memories
|
||||
by providing an high-level interface to send memory-like commands.
|
||||
|
||||
config ALTERA_SPI
|
||||
bool "Altera SPI driver"
|
||||
help
|
||||
|
@ -8,6 +8,7 @@ ifdef CONFIG_DM_SPI
|
||||
obj-y += spi-uclass.o
|
||||
obj-$(CONFIG_SANDBOX) += spi-emul-uclass.o
|
||||
obj-$(CONFIG_SOFT_SPI) += soft_spi.o
|
||||
obj-$(CONFIG_SPI_MEM) += spi-mem.o
|
||||
else
|
||||
obj-y += spi.o
|
||||
obj-$(CONFIG_SOFT_SPI) += soft_spi_legacy.o
|
||||
|
501
drivers/spi/spi-mem.c
Normal file
501
drivers/spi/spi-mem.c
Normal file
@ -0,0 +1,501 @@
|
||||
// SPDX-License-Identifier: GPL-2.0+
|
||||
/*
|
||||
* Copyright (C) 2018 Exceet Electronics GmbH
|
||||
* Copyright (C) 2018 Bootlin
|
||||
*
|
||||
* Author: Boris Brezillon <boris.brezillon@bootlin.com>
|
||||
*/
|
||||
|
||||
#ifndef __UBOOT__
|
||||
#include <linux/dmaengine.h>
|
||||
#include <linux/pm_runtime.h>
|
||||
#include "internals.h"
|
||||
#else
|
||||
#include <spi.h>
|
||||
#include <spi-mem.h>
|
||||
#endif
|
||||
|
||||
#ifndef __UBOOT__
|
||||
/**
|
||||
* spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
|
||||
* memory operation
|
||||
* @ctlr: the SPI controller requesting this dma_map()
|
||||
* @op: the memory operation containing the buffer to map
|
||||
* @sgt: a pointer to a non-initialized sg_table that will be filled by this
|
||||
* function
|
||||
*
|
||||
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
||||
* This helper prepares everything for you and provides a ready-to-use
|
||||
* sg_table. This function is not intended to be called from spi drivers.
|
||||
* Only SPI controller drivers should use it.
|
||||
* Note that the caller must ensure the memory region pointed by
|
||||
* op->data.buf.{in,out} is DMA-able before calling this function.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error code otherwise.
|
||||
*/
|
||||
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sgt)
|
||||
{
|
||||
struct device *dmadev;
|
||||
|
||||
if (!op->data.nbytes)
|
||||
return -EINVAL;
|
||||
|
||||
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
||||
dmadev = ctlr->dma_tx->device->dev;
|
||||
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
||||
dmadev = ctlr->dma_rx->device->dev;
|
||||
else
|
||||
dmadev = ctlr->dev.parent;
|
||||
|
||||
if (!dmadev)
|
||||
return -EINVAL;
|
||||
|
||||
return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
|
||||
op->data.dir == SPI_MEM_DATA_IN ?
|
||||
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
|
||||
|
||||
/**
|
||||
* spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
|
||||
* memory operation
|
||||
* @ctlr: the SPI controller requesting this dma_unmap()
|
||||
* @op: the memory operation containing the buffer to unmap
|
||||
* @sgt: a pointer to an sg_table previously initialized by
|
||||
* spi_controller_dma_map_mem_op_data()
|
||||
*
|
||||
* Some controllers might want to do DMA on the data buffer embedded in @op.
|
||||
* This helper prepares things so that the CPU can access the
|
||||
* op->data.buf.{in,out} buffer again.
|
||||
*
|
||||
* This function is not intended to be called from SPI drivers. Only SPI
|
||||
* controller drivers should use it.
|
||||
*
|
||||
* This function should be called after the DMA operation has finished and is
|
||||
* only valid if the previous spi_controller_dma_map_mem_op_data() call
|
||||
* returned 0.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error code otherwise.
|
||||
*/
|
||||
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sgt)
|
||||
{
|
||||
struct device *dmadev;
|
||||
|
||||
if (!op->data.nbytes)
|
||||
return;
|
||||
|
||||
if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
|
||||
dmadev = ctlr->dma_tx->device->dev;
|
||||
else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
|
||||
dmadev = ctlr->dma_rx->device->dev;
|
||||
else
|
||||
dmadev = ctlr->dev.parent;
|
||||
|
||||
spi_unmap_buf(ctlr, dmadev, sgt,
|
||||
op->data.dir == SPI_MEM_DATA_IN ?
|
||||
DMA_FROM_DEVICE : DMA_TO_DEVICE);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
|
||||
#endif /* __UBOOT__ */
|
||||
|
||||
static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
|
||||
{
|
||||
u32 mode = slave->mode;
|
||||
|
||||
switch (buswidth) {
|
||||
case 1:
|
||||
return 0;
|
||||
|
||||
case 2:
|
||||
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
|
||||
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
|
||||
return 0;
|
||||
|
||||
break;
|
||||
|
||||
case 4:
|
||||
if ((tx && (mode & SPI_TX_QUAD)) ||
|
||||
(!tx && (mode & SPI_RX_QUAD)))
|
||||
return 0;
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
bool spi_mem_default_supports_op(struct spi_slave *slave,
|
||||
const struct spi_mem_op *op)
|
||||
{
|
||||
if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
|
||||
return false;
|
||||
|
||||
if (op->addr.nbytes &&
|
||||
spi_check_buswidth_req(slave, op->addr.buswidth, true))
|
||||
return false;
|
||||
|
||||
if (op->dummy.nbytes &&
|
||||
spi_check_buswidth_req(slave, op->dummy.buswidth, true))
|
||||
return false;
|
||||
|
||||
if (op->data.nbytes &&
|
||||
spi_check_buswidth_req(slave, op->data.buswidth,
|
||||
op->data.dir == SPI_MEM_DATA_OUT))
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
|
||||
|
||||
/**
|
||||
* spi_mem_supports_op() - Check if a memory device and the controller it is
|
||||
* connected to support a specific memory operation
|
||||
* @slave: the SPI device
|
||||
* @op: the memory operation to check
|
||||
*
|
||||
* Some controllers are only supporting Single or Dual IOs, others might only
|
||||
* support specific opcodes, or it can even be that the controller and device
|
||||
* both support Quad IOs but the hardware prevents you from using it because
|
||||
* only 2 IO lines are connected.
|
||||
*
|
||||
* This function checks whether a specific operation is supported.
|
||||
*
|
||||
* Return: true if @op is supported, false otherwise.
|
||||
*/
|
||||
bool spi_mem_supports_op(struct spi_slave *slave,
|
||||
const struct spi_mem_op *op)
|
||||
{
|
||||
struct udevice *bus = slave->dev->parent;
|
||||
struct dm_spi_ops *ops = spi_get_ops(bus);
|
||||
|
||||
if (ops->mem_ops && ops->mem_ops->supports_op)
|
||||
return ops->mem_ops->supports_op(slave, op);
|
||||
|
||||
return spi_mem_default_supports_op(slave, op);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_supports_op);
|
||||
|
||||
/**
|
||||
* spi_mem_exec_op() - Execute a memory operation
|
||||
* @slave: the SPI device
|
||||
* @op: the memory operation to execute
|
||||
*
|
||||
* Executes a memory operation.
|
||||
*
|
||||
* This function first checks that @op is supported and then tries to execute
|
||||
* it.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error code otherwise.
|
||||
*/
|
||||
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
|
||||
{
|
||||
struct udevice *bus = slave->dev->parent;
|
||||
struct dm_spi_ops *ops = spi_get_ops(bus);
|
||||
unsigned int pos = 0;
|
||||
const u8 *tx_buf = NULL;
|
||||
u8 *rx_buf = NULL;
|
||||
u8 *op_buf;
|
||||
int op_len;
|
||||
u32 flag;
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
if (!spi_mem_supports_op(slave, op))
|
||||
return -ENOTSUPP;
|
||||
|
||||
if (ops->mem_ops) {
|
||||
#ifndef __UBOOT__
|
||||
/*
|
||||
* Flush the message queue before executing our SPI memory
|
||||
* operation to prevent preemption of regular SPI transfers.
|
||||
*/
|
||||
spi_flush_queue(ctlr);
|
||||
|
||||
if (ctlr->auto_runtime_pm) {
|
||||
ret = pm_runtime_get_sync(ctlr->dev.parent);
|
||||
if (ret < 0) {
|
||||
dev_err(&ctlr->dev,
|
||||
"Failed to power device: %d\n",
|
||||
ret);
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
mutex_lock(&ctlr->bus_lock_mutex);
|
||||
mutex_lock(&ctlr->io_mutex);
|
||||
#endif
|
||||
ret = ops->mem_ops->exec_op(slave, op);
|
||||
#ifndef __UBOOT__
|
||||
mutex_unlock(&ctlr->io_mutex);
|
||||
mutex_unlock(&ctlr->bus_lock_mutex);
|
||||
|
||||
if (ctlr->auto_runtime_pm)
|
||||
pm_runtime_put(ctlr->dev.parent);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Some controllers only optimize specific paths (typically the
|
||||
* read path) and expect the core to use the regular SPI
|
||||
* interface in other cases.
|
||||
*/
|
||||
if (!ret || ret != -ENOTSUPP)
|
||||
return ret;
|
||||
}
|
||||
|
||||
#ifndef __UBOOT__
|
||||
tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
|
||||
op->dummy.nbytes;
|
||||
|
||||
/*
|
||||
* Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
|
||||
* we're guaranteed that this buffer is DMA-able, as required by the
|
||||
* SPI layer.
|
||||
*/
|
||||
tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
|
||||
if (!tmpbuf)
|
||||
return -ENOMEM;
|
||||
|
||||
spi_message_init(&msg);
|
||||
|
||||
tmpbuf[0] = op->cmd.opcode;
|
||||
xfers[xferpos].tx_buf = tmpbuf;
|
||||
xfers[xferpos].len = sizeof(op->cmd.opcode);
|
||||
xfers[xferpos].tx_nbits = op->cmd.buswidth;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen++;
|
||||
|
||||
if (op->addr.nbytes) {
|
||||
int i;
|
||||
|
||||
for (i = 0; i < op->addr.nbytes; i++)
|
||||
tmpbuf[i + 1] = op->addr.val >>
|
||||
(8 * (op->addr.nbytes - i - 1));
|
||||
|
||||
xfers[xferpos].tx_buf = tmpbuf + 1;
|
||||
xfers[xferpos].len = op->addr.nbytes;
|
||||
xfers[xferpos].tx_nbits = op->addr.buswidth;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen += op->addr.nbytes;
|
||||
}
|
||||
|
||||
if (op->dummy.nbytes) {
|
||||
memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
|
||||
xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
|
||||
xfers[xferpos].len = op->dummy.nbytes;
|
||||
xfers[xferpos].tx_nbits = op->dummy.buswidth;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen += op->dummy.nbytes;
|
||||
}
|
||||
|
||||
if (op->data.nbytes) {
|
||||
if (op->data.dir == SPI_MEM_DATA_IN) {
|
||||
xfers[xferpos].rx_buf = op->data.buf.in;
|
||||
xfers[xferpos].rx_nbits = op->data.buswidth;
|
||||
} else {
|
||||
xfers[xferpos].tx_buf = op->data.buf.out;
|
||||
xfers[xferpos].tx_nbits = op->data.buswidth;
|
||||
}
|
||||
|
||||
xfers[xferpos].len = op->data.nbytes;
|
||||
spi_message_add_tail(&xfers[xferpos], &msg);
|
||||
xferpos++;
|
||||
totalxferlen += op->data.nbytes;
|
||||
}
|
||||
|
||||
ret = spi_sync(slave, &msg);
|
||||
|
||||
kfree(tmpbuf);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (msg.actual_length != totalxferlen)
|
||||
return -EIO;
|
||||
#else
|
||||
|
||||
/* U-Boot does not support parallel SPI data lanes */
|
||||
if ((op->cmd.buswidth != 1) ||
|
||||
(op->addr.nbytes && op->addr.buswidth != 1) ||
|
||||
(op->dummy.nbytes && op->dummy.buswidth != 1) ||
|
||||
(op->data.nbytes && op->data.buswidth != 1)) {
|
||||
printf("Dual/Quad raw SPI transfers not supported\n");
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
if (op->data.nbytes) {
|
||||
if (op->data.dir == SPI_MEM_DATA_IN)
|
||||
rx_buf = op->data.buf.in;
|
||||
else
|
||||
tx_buf = op->data.buf.out;
|
||||
}
|
||||
|
||||
op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;
|
||||
op_buf = calloc(1, op_len);
|
||||
|
||||
ret = spi_claim_bus(slave);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
op_buf[pos++] = op->cmd.opcode;
|
||||
|
||||
if (op->addr.nbytes) {
|
||||
for (i = 0; i < op->addr.nbytes; i++)
|
||||
op_buf[pos + i] = op->addr.val >>
|
||||
(8 * (op->addr.nbytes - i - 1));
|
||||
|
||||
pos += op->addr.nbytes;
|
||||
}
|
||||
|
||||
if (op->dummy.nbytes)
|
||||
memset(op_buf + pos, 0xff, op->dummy.nbytes);
|
||||
|
||||
/* 1st transfer: opcode + address + dummy cycles */
|
||||
flag = SPI_XFER_BEGIN;
|
||||
/* Make sure to set END bit if no tx or rx data messages follow */
|
||||
if (!tx_buf && !rx_buf)
|
||||
flag |= SPI_XFER_END;
|
||||
|
||||
ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/* 2nd transfer: rx or tx data path */
|
||||
if (tx_buf || rx_buf) {
|
||||
ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
|
||||
rx_buf, SPI_XFER_END);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
spi_release_bus(slave);
|
||||
|
||||
for (i = 0; i < pos; i++)
|
||||
debug("%02x ", op_buf[i]);
|
||||
debug("| [%dB %s] ",
|
||||
tx_buf || rx_buf ? op->data.nbytes : 0,
|
||||
tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
|
||||
for (i = 0; i < op->data.nbytes; i++)
|
||||
debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
|
||||
debug("[ret %d]\n", ret);
|
||||
|
||||
free(op_buf);
|
||||
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
#endif /* __UBOOT__ */
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_exec_op);
|
||||
|
||||
/**
|
||||
* spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
|
||||
* match controller limitations
|
||||
* @slave: the SPI device
|
||||
* @op: the operation to adjust
|
||||
*
|
||||
* Some controllers have FIFO limitations and must split a data transfer
|
||||
* operation into multiple ones, others require a specific alignment for
|
||||
* optimized accesses. This function allows SPI mem drivers to split a single
|
||||
* operation into multiple sub-operations when required.
|
||||
*
|
||||
* Return: a negative error code if the controller can't properly adjust @op,
|
||||
* 0 otherwise. Note that @op->data.nbytes will be updated if @op
|
||||
* can't be handled in a single step.
|
||||
*/
|
||||
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
|
||||
{
|
||||
struct udevice *bus = slave->dev->parent;
|
||||
struct dm_spi_ops *ops = spi_get_ops(bus);
|
||||
|
||||
if (ops->mem_ops && ops->mem_ops->adjust_op_size)
|
||||
return ops->mem_ops->adjust_op_size(slave, op);
|
||||
|
||||
return 0;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
|
||||
|
||||
#ifndef __UBOOT__
|
||||
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
|
||||
{
|
||||
return container_of(drv, struct spi_mem_driver, spidrv.driver);
|
||||
}
|
||||
|
||||
static int spi_mem_probe(struct spi_device *spi)
|
||||
{
|
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||||
struct spi_mem *mem;
|
||||
|
||||
mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
|
||||
if (!mem)
|
||||
return -ENOMEM;
|
||||
|
||||
mem->spi = spi;
|
||||
spi_set_drvdata(spi, mem);
|
||||
|
||||
return memdrv->probe(mem);
|
||||
}
|
||||
|
||||
static int spi_mem_remove(struct spi_device *spi)
|
||||
{
|
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||||
struct spi_mem *mem = spi_get_drvdata(spi);
|
||||
|
||||
if (memdrv->remove)
|
||||
return memdrv->remove(mem);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void spi_mem_shutdown(struct spi_device *spi)
|
||||
{
|
||||
struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
|
||||
struct spi_mem *mem = spi_get_drvdata(spi);
|
||||
|
||||
if (memdrv->shutdown)
|
||||
memdrv->shutdown(mem);
|
||||
}
|
||||
|
||||
/**
|
||||
* spi_mem_driver_register_with_owner() - Register a SPI memory driver
|
||||
* @memdrv: the SPI memory driver to register
|
||||
* @owner: the owner of this driver
|
||||
*
|
||||
* Registers a SPI memory driver.
|
||||
*
|
||||
* Return: 0 in case of success, a negative error core otherwise.
|
||||
*/
|
||||
|
||||
int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
|
||||
struct module *owner)
|
||||
{
|
||||
memdrv->spidrv.probe = spi_mem_probe;
|
||||
memdrv->spidrv.remove = spi_mem_remove;
|
||||
memdrv->spidrv.shutdown = spi_mem_shutdown;
|
||||
|
||||
return __spi_register_driver(owner, &memdrv->spidrv);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
|
||||
|
||||
/**
|
||||
* spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
|
||||
* @memdrv: the SPI memory driver to unregister
|
||||
*
|
||||
* Unregisters a SPI memory driver.
|
||||
*/
|
||||
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
|
||||
{
|
||||
spi_unregister_driver(&memdrv->spidrv);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
|
||||
#endif /* __UBOOT__ */
|
258
include/spi-mem.h
Normal file
258
include/spi-mem.h
Normal file
@ -0,0 +1,258 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0+ */
|
||||
/*
|
||||
* Copyright (C) 2018 Exceet Electronics GmbH
|
||||
* Copyright (C) 2018 Bootlin
|
||||
*
|
||||
* Author:
|
||||
* Peter Pan <peterpandong@micron.com>
|
||||
* Boris Brezillon <boris.brezillon@bootlin.com>
|
||||
*/
|
||||
|
||||
#ifndef __UBOOT_SPI_MEM_H
|
||||
#define __UBOOT_SPI_MEM_H
|
||||
|
||||
#include <common.h>
|
||||
#include <dm.h>
|
||||
#include <errno.h>
|
||||
#include <spi.h>
|
||||
|
||||
#define SPI_MEM_OP_CMD(__opcode, __buswidth) \
|
||||
{ \
|
||||
.buswidth = __buswidth, \
|
||||
.opcode = __opcode, \
|
||||
}
|
||||
|
||||
#define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \
|
||||
{ \
|
||||
.nbytes = __nbytes, \
|
||||
.val = __val, \
|
||||
.buswidth = __buswidth, \
|
||||
}
|
||||
|
||||
#define SPI_MEM_OP_NO_ADDR { }
|
||||
|
||||
#define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \
|
||||
{ \
|
||||
.nbytes = __nbytes, \
|
||||
.buswidth = __buswidth, \
|
||||
}
|
||||
|
||||
#define SPI_MEM_OP_NO_DUMMY { }
|
||||
|
||||
#define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \
|
||||
{ \
|
||||
.dir = SPI_MEM_DATA_IN, \
|
||||
.nbytes = __nbytes, \
|
||||
.buf.in = __buf, \
|
||||
.buswidth = __buswidth, \
|
||||
}
|
||||
|
||||
#define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \
|
||||
{ \
|
||||
.dir = SPI_MEM_DATA_OUT, \
|
||||
.nbytes = __nbytes, \
|
||||
.buf.out = __buf, \
|
||||
.buswidth = __buswidth, \
|
||||
}
|
||||
|
||||
#define SPI_MEM_OP_NO_DATA { }
|
||||
|
||||
/**
|
||||
* enum spi_mem_data_dir - describes the direction of a SPI memory data
|
||||
* transfer from the controller perspective
|
||||
* @SPI_MEM_DATA_IN: data coming from the SPI memory
|
||||
* @SPI_MEM_DATA_OUT: data sent the SPI memory
|
||||
*/
|
||||
enum spi_mem_data_dir {
|
||||
SPI_MEM_DATA_IN,
|
||||
SPI_MEM_DATA_OUT,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct spi_mem_op - describes a SPI memory operation
|
||||
* @cmd.buswidth: number of IO lines used to transmit the command
|
||||
* @cmd.opcode: operation opcode
|
||||
* @addr.nbytes: number of address bytes to send. Can be zero if the operation
|
||||
* does not need to send an address
|
||||
* @addr.buswidth: number of IO lines used to transmit the address cycles
|
||||
* @addr.val: address value. This value is always sent MSB first on the bus.
|
||||
* Note that only @addr.nbytes are taken into account in this
|
||||
* address value, so users should make sure the value fits in the
|
||||
* assigned number of bytes.
|
||||
* @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can
|
||||
* be zero if the operation does not require dummy bytes
|
||||
* @dummy.buswidth: number of IO lanes used to transmit the dummy bytes
|
||||
* @data.buswidth: number of IO lanes used to send/receive the data
|
||||
* @data.dir: direction of the transfer
|
||||
* @data.buf.in: input buffer
|
||||
* @data.buf.out: output buffer
|
||||
*/
|
||||
struct spi_mem_op {
|
||||
struct {
|
||||
u8 buswidth;
|
||||
u8 opcode;
|
||||
} cmd;
|
||||
|
||||
struct {
|
||||
u8 nbytes;
|
||||
u8 buswidth;
|
||||
u64 val;
|
||||
} addr;
|
||||
|
||||
struct {
|
||||
u8 nbytes;
|
||||
u8 buswidth;
|
||||
} dummy;
|
||||
|
||||
struct {
|
||||
u8 buswidth;
|
||||
enum spi_mem_data_dir dir;
|
||||
unsigned int nbytes;
|
||||
/* buf.{in,out} must be DMA-able. */
|
||||
union {
|
||||
void *in;
|
||||
const void *out;
|
||||
} buf;
|
||||
} data;
|
||||
};
|
||||
|
||||
#define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \
|
||||
{ \
|
||||
.cmd = __cmd, \
|
||||
.addr = __addr, \
|
||||
.dummy = __dummy, \
|
||||
.data = __data, \
|
||||
}
|
||||
|
||||
#ifndef __UBOOT__
|
||||
/**
|
||||
* struct spi_mem - describes a SPI memory device
|
||||
* @spi: the underlying SPI device
|
||||
* @drvpriv: spi_mem_driver private data
|
||||
*
|
||||
* Extra information that describe the SPI memory device and may be needed by
|
||||
* the controller to properly handle this device should be placed here.
|
||||
*
|
||||
* One example would be the device size since some controller expose their SPI
|
||||
* mem devices through a io-mapped region.
|
||||
*/
|
||||
struct spi_mem {
|
||||
struct udevice *dev;
|
||||
void *drvpriv;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct spi_mem_set_drvdata() - attach driver private data to a SPI mem
|
||||
* device
|
||||
* @mem: memory device
|
||||
* @data: data to attach to the memory device
|
||||
*/
|
||||
static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data)
|
||||
{
|
||||
mem->drvpriv = data;
|
||||
}
|
||||
|
||||
/**
|
||||
* struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem
|
||||
* device
|
||||
* @mem: memory device
|
||||
*
|
||||
* Return: the data attached to the mem device.
|
||||
*/
|
||||
static inline void *spi_mem_get_drvdata(struct spi_mem *mem)
|
||||
{
|
||||
return mem->drvpriv;
|
||||
}
|
||||
#endif /* __UBOOT__ */
|
||||
|
||||
/**
|
||||
* struct spi_controller_mem_ops - SPI memory operations
|
||||
* @adjust_op_size: shrink the data xfer of an operation to match controller's
|
||||
* limitations (can be alignment of max RX/TX size
|
||||
* limitations)
|
||||
* @supports_op: check if an operation is supported by the controller
|
||||
* @exec_op: execute a SPI memory operation
|
||||
*
|
||||
* This interface should be implemented by SPI controllers providing an
|
||||
* high-level interface to execute SPI memory operation, which is usually the
|
||||
* case for QSPI controllers.
|
||||
*/
|
||||
struct spi_controller_mem_ops {
|
||||
int (*adjust_op_size)(struct spi_slave *slave, struct spi_mem_op *op);
|
||||
bool (*supports_op)(struct spi_slave *slave,
|
||||
const struct spi_mem_op *op);
|
||||
int (*exec_op)(struct spi_slave *slave,
|
||||
const struct spi_mem_op *op);
|
||||
};
|
||||
|
||||
#ifndef __UBOOT__
|
||||
/**
|
||||
* struct spi_mem_driver - SPI memory driver
|
||||
* @spidrv: inherit from a SPI driver
|
||||
* @probe: probe a SPI memory. Usually where detection/initialization takes
|
||||
* place
|
||||
* @remove: remove a SPI memory
|
||||
* @shutdown: take appropriate action when the system is shutdown
|
||||
*
|
||||
* This is just a thin wrapper around a spi_driver. The core takes care of
|
||||
* allocating the spi_mem object and forwarding the probe/remove/shutdown
|
||||
* request to the spi_mem_driver. The reason we use this wrapper is because
|
||||
* we might have to stuff more information into the spi_mem struct to let
|
||||
* SPI controllers know more about the SPI memory they interact with, and
|
||||
* having this intermediate layer allows us to do that without adding more
|
||||
* useless fields to the spi_device object.
|
||||
*/
|
||||
struct spi_mem_driver {
|
||||
struct spi_driver spidrv;
|
||||
int (*probe)(struct spi_mem *mem);
|
||||
int (*remove)(struct spi_mem *mem);
|
||||
void (*shutdown)(struct spi_mem *mem);
|
||||
};
|
||||
|
||||
#if IS_ENABLED(CONFIG_SPI_MEM)
|
||||
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sg);
|
||||
|
||||
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sg);
|
||||
#else
|
||||
static inline int
|
||||
spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sg)
|
||||
{
|
||||
return -ENOTSUPP;
|
||||
}
|
||||
|
||||
static inline void
|
||||
spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
|
||||
const struct spi_mem_op *op,
|
||||
struct sg_table *sg)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_SPI_MEM */
|
||||
#endif /* __UBOOT__ */
|
||||
|
||||
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op);
|
||||
|
||||
bool spi_mem_supports_op(struct spi_slave *slave, const struct spi_mem_op *op);
|
||||
|
||||
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op);
|
||||
|
||||
#ifndef __UBOOT__
|
||||
int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv,
|
||||
struct module *owner);
|
||||
|
||||
void spi_mem_driver_unregister(struct spi_mem_driver *drv);
|
||||
|
||||
#define spi_mem_driver_register(__drv) \
|
||||
spi_mem_driver_register_with_owner(__drv, THIS_MODULE)
|
||||
|
||||
#define module_spi_mem_driver(__drv) \
|
||||
module_driver(__drv, spi_mem_driver_register, \
|
||||
spi_mem_driver_unregister)
|
||||
#endif
|
||||
|
||||
#endif /* __LINUX_SPI_MEM_H */
|
@ -9,6 +9,8 @@
|
||||
#ifndef _SPI_H_
|
||||
#define _SPI_H_
|
||||
|
||||
#include <common.h>
|
||||
|
||||
/* SPI mode flags */
|
||||
#define SPI_CPHA BIT(0) /* clock phase */
|
||||
#define SPI_CPOL BIT(1) /* clock polarity */
|
||||
@ -402,6 +404,15 @@ struct dm_spi_ops {
|
||||
int (*xfer)(struct udevice *dev, unsigned int bitlen, const void *dout,
|
||||
void *din, unsigned long flags);
|
||||
|
||||
/**
|
||||
* Optimized handlers for SPI memory-like operations.
|
||||
*
|
||||
* Optimized/dedicated operations for interactions with SPI memory. This
|
||||
* field is optional and should only be implemented if the controller
|
||||
* has native support for memory like operations.
|
||||
*/
|
||||
const struct spi_controller_mem_ops *mem_ops;
|
||||
|
||||
/**
|
||||
* Set transfer speed.
|
||||
* This sets a new speed to be applied for next spi_xfer().
|
||||
|
Loading…
Reference in New Issue
Block a user