lpc32xx: mtd: nand: add MLC NAND controller
The controller's Reed-Solomon ECC hardware is used except of course for raw reads and writes. It covers in- and out-of-band data together. The SPL framework is supported. Signed-off-by: Albert ARIBAUD (3ADEV) <albert.aribaud@3adev.fr>
This commit is contained in:
parent
ac2916a224
commit
c8381bf435
@ -44,3 +44,9 @@ void lpc32xx_mac_init(void)
|
||||
writel(CLK_MAC_REG | CLK_MAC_SLAVE | CLK_MAC_MASTER
|
||||
| CLK_MAC_MII, &clk->macclk_ctrl);
|
||||
}
|
||||
|
||||
void lpc32xx_mlc_nand_init(void)
|
||||
{
|
||||
/* Enable NAND interface */
|
||||
writel(CLK_NAND_MLC | CLK_NAND_MLC_INT, &clk->flashclk_ctrl);
|
||||
}
|
||||
|
@ -147,6 +147,10 @@ struct clk_pm_regs {
|
||||
/* DMA Clock Control Register bits */
|
||||
#define CLK_DMA_ENABLE (1 << 0)
|
||||
|
||||
/* NAND Clock Control Register bits */
|
||||
#define CLK_NAND_MLC (1 << 1)
|
||||
#define CLK_NAND_MLC_INT (1 << 5)
|
||||
|
||||
unsigned int get_sys_clk_rate(void);
|
||||
unsigned int get_hclk_pll_rate(void);
|
||||
unsigned int get_hclk_clk_div(void);
|
||||
|
@ -9,5 +9,6 @@
|
||||
|
||||
void lpc32xx_uart_init(unsigned int uart_id);
|
||||
void lpc32xx_mac_init(void);
|
||||
void lpc32xx_mlc_nand_init(void);
|
||||
|
||||
#endif /* _LPC32XX_SYS_PROTO_H */
|
||||
|
@ -52,6 +52,7 @@ obj-$(CONFIG_NAND_JZ4740) += jz4740_nand.o
|
||||
obj-$(CONFIG_NAND_KB9202) += kb9202_nand.o
|
||||
obj-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o
|
||||
obj-$(CONFIG_NAND_KMETER1) += kmeter1_nand.o
|
||||
obj-$(CONFIG_NAND_LPC32XX_MLC) += lpc32xx_nand_mlc.o
|
||||
obj-$(CONFIG_NAND_MPC5121_NFC) += mpc5121_nfc.o
|
||||
obj-$(CONFIG_NAND_VF610_NFC) += vf610_nfc.o
|
||||
obj-$(CONFIG_NAND_MXC) += mxc_nand.o
|
||||
|
764
drivers/mtd/nand/lpc32xx_nand_mlc.c
Normal file
764
drivers/mtd/nand/lpc32xx_nand_mlc.c
Normal file
@ -0,0 +1,764 @@
|
||||
/*
|
||||
* LPC32xx MLC NAND flash controller driver
|
||||
*
|
||||
* (C) Copyright 2014 3ADEV <http://3adev.com>
|
||||
* Written by Albert ARIBAUD <albert.aribaud@3adev.fr>
|
||||
*
|
||||
* SPDX-License-Identifier: GPL-2.0+
|
||||
*
|
||||
* NOTE:
|
||||
*
|
||||
* The MLC NAND flash controller provides hardware Reed-Solomon ECC
|
||||
* covering in- and out-of-band data together. Therefore, in- and out-
|
||||
* of-band data must be written together in order to have a valid ECC.
|
||||
*
|
||||
* Consequently, pages with meaningful in-band data are written with
|
||||
* blank (all-ones) out-of-band data and a valid ECC, and any later
|
||||
* out-of-band data write will void the ECC.
|
||||
*
|
||||
* Therefore, code which reads such late-written out-of-band data
|
||||
* should not rely on the ECC validity.
|
||||
*/
|
||||
|
||||
#include <common.h>
|
||||
#include <nand.h>
|
||||
#include <asm/errno.h>
|
||||
#include <asm/io.h>
|
||||
#include <nand.h>
|
||||
#include <asm/arch/clk.h>
|
||||
#include <asm/arch/sys_proto.h>
|
||||
|
||||
/*
|
||||
* MLC NAND controller registers.
|
||||
*/
|
||||
struct lpc32xx_nand_mlc_registers {
|
||||
u8 buff[32768]; /* controller's serial data buffer */
|
||||
u8 data[32768]; /* NAND's raw data buffer */
|
||||
u32 cmd;
|
||||
u32 addr;
|
||||
u32 ecc_enc_reg;
|
||||
u32 ecc_dec_reg;
|
||||
u32 ecc_auto_enc_reg;
|
||||
u32 ecc_auto_dec_reg;
|
||||
u32 rpr;
|
||||
u32 wpr;
|
||||
u32 rubp;
|
||||
u32 robp;
|
||||
u32 sw_wp_add_low;
|
||||
u32 sw_wp_add_hig;
|
||||
u32 icr;
|
||||
u32 time_reg;
|
||||
u32 irq_mr;
|
||||
u32 irq_sr;
|
||||
u32 lock_pr;
|
||||
u32 isr;
|
||||
u32 ceh;
|
||||
};
|
||||
|
||||
/* LOCK_PR register defines */
|
||||
#define LOCK_PR_UNLOCK_KEY 0x0000A25E /* Magic unlock value */
|
||||
|
||||
/* ICR defines */
|
||||
#define ICR_LARGE_BLOCKS 0x00000004 /* configure for 2KB blocks */
|
||||
#define ICR_ADDR4 0x00000002 /* configure for 4-word addrs */
|
||||
|
||||
/* CEH defines */
|
||||
#define CEH_NORMAL_CE 0x00000001 /* do not force CE ON */
|
||||
|
||||
/* ISR register defines */
|
||||
#define ISR_NAND_READY 0x00000001
|
||||
#define ISR_CONTROLLER_READY 0x00000002
|
||||
#define ISR_ECC_READY 0x00000004
|
||||
#define ISR_DECODER_ERRORS(s) ((((s) >> 4) & 3)+1)
|
||||
#define ISR_DECODER_FAILURE 0x00000040
|
||||
#define ISR_DECODER_ERROR 0x00000008
|
||||
|
||||
/* time-out for NAND chip / controller loops, in us */
|
||||
#define LPC32X_NAND_TIMEOUT 5000
|
||||
|
||||
/*
|
||||
* There is a single instance of the NAND MLC controller
|
||||
*/
|
||||
|
||||
static struct lpc32xx_nand_mlc_registers __iomem *lpc32xx_nand_mlc_registers
|
||||
= (struct lpc32xx_nand_mlc_registers __iomem *)MLC_NAND_BASE;
|
||||
|
||||
#define clkdiv(v, w, o) (((1+(clk/v)) & w) << o)
|
||||
|
||||
/**
|
||||
* OOB data in each small page are 6 'free' then 10 ECC bytes.
|
||||
* To make things easier, when reading large pages, the four pages'
|
||||
* 'free' OOB bytes are grouped in the first 24 bytes of the OOB buffer,
|
||||
* while the the four ECC bytes are groupe in its last 40 bytes.
|
||||
*
|
||||
* The struct below represents how free vs ecc oob bytes are stored
|
||||
* in the buffer.
|
||||
*
|
||||
* Note: the OOB bytes contain the bad block marker at offsets 0 and 1.
|
||||
*/
|
||||
|
||||
struct lpc32xx_oob {
|
||||
struct {
|
||||
uint8_t free_oob_bytes[6];
|
||||
} free[4];
|
||||
struct {
|
||||
uint8_t ecc_oob_bytes[10];
|
||||
} ecc[4];
|
||||
};
|
||||
|
||||
/*
|
||||
* Initialize the controller
|
||||
*/
|
||||
|
||||
static void lpc32xx_nand_init(void)
|
||||
{
|
||||
unsigned int clk;
|
||||
|
||||
/* Configure controller for no software write protection, x8 bus
|
||||
width, large block device, and 4 address words */
|
||||
|
||||
/* unlock controller registers with magic key */
|
||||
writel(LOCK_PR_UNLOCK_KEY,
|
||||
&lpc32xx_nand_mlc_registers->lock_pr);
|
||||
|
||||
/* enable large blocks and large NANDs */
|
||||
writel(ICR_LARGE_BLOCKS | ICR_ADDR4,
|
||||
&lpc32xx_nand_mlc_registers->icr);
|
||||
|
||||
/* Make sure MLC interrupts are disabled */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->irq_mr);
|
||||
|
||||
/* Normal chip enable operation */
|
||||
writel(CEH_NORMAL_CE,
|
||||
&lpc32xx_nand_mlc_registers->ceh);
|
||||
|
||||
/* Setup NAND timing */
|
||||
clk = get_hclk_clk_rate();
|
||||
|
||||
writel(
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_TCEA_DELAY, 0x03, 24) |
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_BUSY_DELAY, 0x1F, 19) |
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_NAND_TA, 0x07, 16) |
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_HIGH, 0x0F, 12) |
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_RD_LOW, 0x0F, 8) |
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_HIGH, 0x0F, 4) |
|
||||
clkdiv(CONFIG_LPC32XX_NAND_MLC_WR_LOW, 0x0F, 0),
|
||||
&lpc32xx_nand_mlc_registers->time_reg);
|
||||
}
|
||||
|
||||
#if !defined(CONFIG_SPL_BUILD)
|
||||
|
||||
/**
|
||||
* lpc32xx_cmd_ctrl - write command to either cmd or data register
|
||||
*/
|
||||
|
||||
static void lpc32xx_cmd_ctrl(struct mtd_info *mtd, int cmd,
|
||||
unsigned int ctrl)
|
||||
{
|
||||
if (cmd == NAND_CMD_NONE)
|
||||
return;
|
||||
|
||||
if (ctrl & NAND_CLE)
|
||||
writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->cmd);
|
||||
else if (ctrl & NAND_ALE)
|
||||
writeb(cmd & 0Xff, &lpc32xx_nand_mlc_registers->addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_read_byte - read a byte from the NAND
|
||||
* @mtd: MTD device structure
|
||||
*/
|
||||
|
||||
static uint8_t lpc32xx_read_byte(struct mtd_info *mtd)
|
||||
{
|
||||
return readb(&lpc32xx_nand_mlc_registers->data);
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_dev_ready - test if NAND device (actually controller) is ready
|
||||
* @mtd: MTD device structure
|
||||
* @mode: mode to set the ECC HW to.
|
||||
*/
|
||||
|
||||
static int lpc32xx_dev_ready(struct mtd_info *mtd)
|
||||
{
|
||||
/* means *controller* ready for us */
|
||||
int status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
return status & ISR_CONTROLLER_READY;
|
||||
}
|
||||
|
||||
/**
|
||||
* ECC layout -- this is needed whatever ECC mode we are using.
|
||||
* In a 2KB (4*512B) page, R/S codes occupy 40 (4*10) bytes.
|
||||
* To make U-Boot's life easier, we pack 'useable' OOB at the
|
||||
* front and R/S ECC at the back.
|
||||
*/
|
||||
|
||||
static struct nand_ecclayout lpc32xx_largepage_ecclayout = {
|
||||
.eccbytes = 40,
|
||||
.eccpos = {24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
|
||||
34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
|
||||
44, 45, 46, 47, 48, 48, 50, 51, 52, 53,
|
||||
54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
||||
},
|
||||
.oobfree = {
|
||||
/* bytes 0 and 1 are used for the bad block marker */
|
||||
{
|
||||
.offset = 2,
|
||||
.length = 22
|
||||
},
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* lpc32xx_read_page_hwecc - read in- and out-of-band data with ECC
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @buf: buffer to store read data
|
||||
* @oob_required: caller requires OOB data read to chip->oob_poi
|
||||
* @page: page number to read
|
||||
*
|
||||
* Use large block Auto Decode Read Mode(1) as described in User Manual
|
||||
* section 8.6.2.1.
|
||||
*
|
||||
* The initial Read Mode and Read Start commands are sent by the caller.
|
||||
*
|
||||
* ECC will be false if out-of-band data has been updated since in-band
|
||||
* data was initially written.
|
||||
*/
|
||||
|
||||
static int lpc32xx_read_page_hwecc(struct mtd_info *mtd,
|
||||
struct nand_chip *chip, uint8_t *buf, int oob_required,
|
||||
int page)
|
||||
{
|
||||
unsigned int i, status, timeout, err, max_bitflips = 0;
|
||||
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
|
||||
|
||||
/* go through all four small pages */
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* start auto decode (reads 528 NAND bytes) */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
|
||||
/* wait for controller to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_CONTROLLER_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if decoder failed, return failure */
|
||||
if (status & ISR_DECODER_FAILURE)
|
||||
return -1;
|
||||
/* keep count of maximum bitflips performed */
|
||||
if (status & ISR_DECODER_ERROR) {
|
||||
err = ISR_DECODER_ERRORS(status);
|
||||
if (err > max_bitflips)
|
||||
max_bitflips = err;
|
||||
}
|
||||
/* copy first 512 bytes into buffer */
|
||||
memcpy(buf+512*i, lpc32xx_nand_mlc_registers->buff, 512);
|
||||
/* copy next 6 bytes at front of OOB buffer */
|
||||
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
|
||||
/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
|
||||
memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
|
||||
}
|
||||
return max_bitflips;
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_read_page_raw - read raw (in-band, out-of-band and ECC) data
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @buf: buffer to store read data
|
||||
* @oob_required: caller requires OOB data read to chip->oob_poi
|
||||
* @page: page number to read
|
||||
*
|
||||
* Read NAND directly; can read pages with invalid ECC.
|
||||
*/
|
||||
|
||||
static int lpc32xx_read_page_raw(struct mtd_info *mtd,
|
||||
struct nand_chip *chip, uint8_t *buf, int oob_required,
|
||||
int page)
|
||||
{
|
||||
unsigned int i, status, timeout;
|
||||
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
|
||||
|
||||
/* when we get here we've already had the Read Mode(1) */
|
||||
|
||||
/* go through all four small pages */
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* wait for NAND to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_NAND_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if NAND stalled, return failure */
|
||||
if (!(status & ISR_NAND_READY))
|
||||
return -1;
|
||||
/* copy first 512 bytes into buffer */
|
||||
memcpy(buf+512*i, lpc32xx_nand_mlc_registers->data, 512);
|
||||
/* copy next 6 bytes at front of OOB buffer */
|
||||
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->data, 6);
|
||||
/* copy last 10 bytes (R/S ECC) at back of OOB buffer */
|
||||
memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->data, 10);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_read_oob - read out-of-band data
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @page: page number to read
|
||||
*
|
||||
* Read out-of-band data. User Manual section 8.6.4 suggests using Read
|
||||
* Mode(3) which the controller will turn into a Read Mode(1) internally
|
||||
* but nand_base.c will turn Mode(3) into Mode(0), so let's use Mode(0)
|
||||
* directly.
|
||||
*
|
||||
* ECC covers in- and out-of-band data and was written when out-of-band
|
||||
* data was blank. Therefore, if the out-of-band being read here is not
|
||||
* blank, then the ECC will be false and the read will return bitflips,
|
||||
* even in case of ECC failure where we will return 5 bitflips. The
|
||||
* caller should be prepared to handle this.
|
||||
*/
|
||||
|
||||
static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
int page)
|
||||
{
|
||||
unsigned int i, status, timeout, err, max_bitflips = 0;
|
||||
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
|
||||
|
||||
/* No command was sent before calling read_oob() so send one */
|
||||
|
||||
chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
|
||||
|
||||
/* go through all four small pages */
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* start auto decode (reads 528 NAND bytes) */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
|
||||
/* wait for controller to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_CONTROLLER_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if decoder failure, count 'one too many' bitflips */
|
||||
if (status & ISR_DECODER_FAILURE)
|
||||
max_bitflips = 5;
|
||||
/* keep count of maximum bitflips performed */
|
||||
if (status & ISR_DECODER_ERROR) {
|
||||
err = ISR_DECODER_ERRORS(status);
|
||||
if (err > max_bitflips)
|
||||
max_bitflips = err;
|
||||
}
|
||||
/* set read pointer to OOB area */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->robp);
|
||||
/* copy next 6 bytes at front of OOB buffer */
|
||||
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
|
||||
/* copy next 10 bytes (R/S ECC) at back of OOB buffer */
|
||||
memcpy(&oob->ecc[i], lpc32xx_nand_mlc_registers->buff, 10);
|
||||
}
|
||||
return max_bitflips;
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_write_page_hwecc - write in- and out-of-band data with ECC
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @buf: data buffer
|
||||
* @oob_required: must write chip->oob_poi to OOB
|
||||
*
|
||||
* Use large block Auto Encode as per User Manual section 8.6.4.
|
||||
*
|
||||
* The initial Write Serial Input and final Auto Program commands are
|
||||
* sent by the caller.
|
||||
*/
|
||||
|
||||
static int lpc32xx_write_page_hwecc(struct mtd_info *mtd,
|
||||
struct nand_chip *chip, const uint8_t *buf, int oob_required)
|
||||
{
|
||||
unsigned int i, status, timeout;
|
||||
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
|
||||
|
||||
/* when we get here we've already had the SEQIN */
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* start encode (expects 518 writes to buff) */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->ecc_enc_reg);
|
||||
/* copy first 512 bytes from buffer */
|
||||
memcpy(&lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
|
||||
/* copy next 6 bytes from OOB buffer -- excluding ECC */
|
||||
memcpy(&lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
|
||||
/* wait for ECC to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_ECC_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if ECC stalled, return failure */
|
||||
if (!(status & ISR_ECC_READY))
|
||||
return -1;
|
||||
/* Trigger auto encode (writes 528 bytes to NAND) */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_enc_reg);
|
||||
/* wait for controller to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_CONTROLLER_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if controller stalled, return error */
|
||||
if (!(status & ISR_CONTROLLER_READY))
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_write_page_raw - write raw (in-band, out-of-band and ECC) data
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @buf: buffer to store read data
|
||||
* @oob_required: caller requires OOB data read to chip->oob_poi
|
||||
* @page: page number to read
|
||||
*
|
||||
* Use large block write but without encode.
|
||||
*
|
||||
* The initial Write Serial Input and final Auto Program commands are
|
||||
* sent by the caller.
|
||||
*
|
||||
* This function will write the full out-of-band data, including the
|
||||
* ECC area. Therefore, it can write pages with valid *or* invalid ECC.
|
||||
*/
|
||||
|
||||
static int lpc32xx_write_page_raw(struct mtd_info *mtd,
|
||||
struct nand_chip *chip, const uint8_t *buf, int oob_required)
|
||||
{
|
||||
unsigned int i;
|
||||
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
|
||||
|
||||
/* when we get here we've already had the Read Mode(1) */
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* copy first 512 bytes from buffer */
|
||||
memcpy(lpc32xx_nand_mlc_registers->buff, buf+512*i, 512);
|
||||
/* copy next 6 bytes into OOB buffer -- excluding ECC */
|
||||
memcpy(lpc32xx_nand_mlc_registers->buff, &oob->free[i], 6);
|
||||
/* copy next 10 bytes into OOB buffer -- that is 'ECC' */
|
||||
memcpy(lpc32xx_nand_mlc_registers->buff, &oob->ecc[i], 10);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_write_oob - write out-of-band data
|
||||
* @mtd: mtd info structure
|
||||
* @chip: nand chip info structure
|
||||
* @page: page number to read
|
||||
*
|
||||
* Since ECC covers in- and out-of-band data, writing out-of-band data
|
||||
* with ECC will render the page ECC wrong -- or, if the page was blank,
|
||||
* then it will produce a good ECC but a later in-band data write will
|
||||
* render it wrong.
|
||||
*
|
||||
* Therefore, do not compute or write any ECC, and always return success.
|
||||
*
|
||||
* This implies that we do four writes, since non-ECC out-of-band data
|
||||
* are not contiguous in a large page.
|
||||
*/
|
||||
|
||||
static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
|
||||
int page)
|
||||
{
|
||||
/* update oob on all 4 subpages in sequence */
|
||||
unsigned int i, status, timeout;
|
||||
struct lpc32xx_oob *oob = (struct lpc32xx_oob *)chip->oob_poi;
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* start data input */
|
||||
chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x200+0x210*i, page);
|
||||
/* copy 6 non-ECC out-of-band bytes directly into NAND */
|
||||
memcpy(lpc32xx_nand_mlc_registers->data, &oob->free[i], 6);
|
||||
/* program page */
|
||||
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
|
||||
/* wait for NAND to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_NAND_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if NAND stalled, return error */
|
||||
if (!(status & ISR_NAND_READY))
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* lpc32xx_waitfunc - wait until a command is done
|
||||
* @mtd: MTD device structure
|
||||
* @chip: NAND chip structure
|
||||
*
|
||||
* Wait for controller and FLASH to both be ready.
|
||||
*/
|
||||
|
||||
static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
|
||||
{
|
||||
int status;
|
||||
unsigned int timeout;
|
||||
/* wait until both controller and NAND are ready */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
|
||||
== (ISR_CONTROLLER_READY || ISR_NAND_READY))
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if controller or NAND stalled, return error */
|
||||
if ((status & (ISR_CONTROLLER_READY || ISR_NAND_READY))
|
||||
!= (ISR_CONTROLLER_READY || ISR_NAND_READY))
|
||||
return -1;
|
||||
/* write NAND status command */
|
||||
writel(NAND_CMD_STATUS, &lpc32xx_nand_mlc_registers->cmd);
|
||||
/* read back status and return it */
|
||||
return readb(&lpc32xx_nand_mlc_registers->data);
|
||||
}
|
||||
|
||||
/*
|
||||
* We are self-initializing, so we need our own chip struct
|
||||
*/
|
||||
|
||||
static struct nand_chip lpc32xx_chip;
|
||||
|
||||
/*
|
||||
* Initialize the controller
|
||||
*/
|
||||
|
||||
void board_nand_init(void)
|
||||
{
|
||||
/* we have only one device anyway */
|
||||
struct mtd_info *mtd = &nand_info[0];
|
||||
/* chip is struct nand_chip, and is now provided by the driver. */
|
||||
mtd->priv = &lpc32xx_chip;
|
||||
/* to store return status in case we need to print it */
|
||||
int ret;
|
||||
|
||||
/* Set all BOARDSPECIFIC (actually core-specific) fields */
|
||||
|
||||
lpc32xx_chip.IO_ADDR_R = &lpc32xx_nand_mlc_registers->buff;
|
||||
lpc32xx_chip.IO_ADDR_W = &lpc32xx_nand_mlc_registers->buff;
|
||||
lpc32xx_chip.cmd_ctrl = lpc32xx_cmd_ctrl;
|
||||
/* do not set init_size: nand_base.c will read sizes from chip */
|
||||
lpc32xx_chip.dev_ready = lpc32xx_dev_ready;
|
||||
/* do not set setup_read_retry: this is NAND-chip-specific */
|
||||
/* do not set chip_delay: we have dev_ready defined. */
|
||||
lpc32xx_chip.options |= NAND_NO_SUBPAGE_WRITE;
|
||||
|
||||
/* Set needed ECC fields */
|
||||
|
||||
lpc32xx_chip.ecc.mode = NAND_ECC_HW;
|
||||
lpc32xx_chip.ecc.layout = &lpc32xx_largepage_ecclayout;
|
||||
lpc32xx_chip.ecc.size = 512;
|
||||
lpc32xx_chip.ecc.bytes = 10;
|
||||
lpc32xx_chip.ecc.strength = 4;
|
||||
lpc32xx_chip.ecc.read_page = lpc32xx_read_page_hwecc;
|
||||
lpc32xx_chip.ecc.read_page_raw = lpc32xx_read_page_raw;
|
||||
lpc32xx_chip.ecc.write_page = lpc32xx_write_page_hwecc;
|
||||
lpc32xx_chip.ecc.write_page_raw = lpc32xx_write_page_raw;
|
||||
lpc32xx_chip.ecc.read_oob = lpc32xx_read_oob;
|
||||
lpc32xx_chip.ecc.write_oob = lpc32xx_write_oob;
|
||||
lpc32xx_chip.waitfunc = lpc32xx_waitfunc;
|
||||
|
||||
lpc32xx_chip.read_byte = lpc32xx_read_byte; /* FIXME: NEEDED? */
|
||||
|
||||
/* BBT options: read from last two pages */
|
||||
lpc32xx_chip.bbt_options |= NAND_BBT_USE_FLASH | NAND_BBT_LASTBLOCK
|
||||
| NAND_BBT_SCANLASTPAGE | NAND_BBT_SCAN2NDPAGE
|
||||
| NAND_BBT_WRITE;
|
||||
|
||||
/* Initialize NAND interface */
|
||||
lpc32xx_nand_init();
|
||||
|
||||
/* identify chip */
|
||||
ret = nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_CHIPS, NULL);
|
||||
if (ret) {
|
||||
error("nand_scan_ident returned %i", ret);
|
||||
return;
|
||||
}
|
||||
|
||||
/* finish scanning the chip */
|
||||
ret = nand_scan_tail(mtd);
|
||||
if (ret) {
|
||||
error("nand_scan_tail returned %i", ret);
|
||||
return;
|
||||
}
|
||||
|
||||
/* chip is good, register it */
|
||||
ret = nand_register(0);
|
||||
if (ret)
|
||||
error("nand_register returned %i", ret);
|
||||
}
|
||||
|
||||
#else /* defined(CONFIG_SPL_BUILD) */
|
||||
|
||||
void nand_init(void)
|
||||
{
|
||||
/* enable NAND controller */
|
||||
lpc32xx_mlc_nand_init();
|
||||
/* initialize NAND controller */
|
||||
lpc32xx_nand_init();
|
||||
}
|
||||
|
||||
void nand_deselect(void)
|
||||
{
|
||||
/* nothing to do, but SPL requires this function */
|
||||
}
|
||||
|
||||
static int read_single_page(uint8_t *dest, int page,
|
||||
struct lpc32xx_oob *oob)
|
||||
{
|
||||
int status, i, timeout, err, max_bitflips = 0;
|
||||
|
||||
/* enter read mode */
|
||||
writel(NAND_CMD_READ0, &lpc32xx_nand_mlc_registers->cmd);
|
||||
/* send column (lsb then MSB) and page (lsb to MSB) */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->addr);
|
||||
writel(0, &lpc32xx_nand_mlc_registers->addr);
|
||||
writel(page & 0xff, &lpc32xx_nand_mlc_registers->addr);
|
||||
writel((page>>8) & 0xff, &lpc32xx_nand_mlc_registers->addr);
|
||||
writel((page>>16) & 0xff, &lpc32xx_nand_mlc_registers->addr);
|
||||
/* start reading */
|
||||
writel(NAND_CMD_READSTART, &lpc32xx_nand_mlc_registers->cmd);
|
||||
|
||||
/* large page auto decode read */
|
||||
for (i = 0; i < 4; i++) {
|
||||
/* start auto decode (reads 528 NAND bytes) */
|
||||
writel(0, &lpc32xx_nand_mlc_registers->ecc_auto_dec_reg);
|
||||
/* wait for controller to return to ready state */
|
||||
for (timeout = LPC32X_NAND_TIMEOUT; timeout; timeout--) {
|
||||
status = readl(&lpc32xx_nand_mlc_registers->isr);
|
||||
if (status & ISR_CONTROLLER_READY)
|
||||
break;
|
||||
udelay(1);
|
||||
}
|
||||
/* if controller stalled, return error */
|
||||
if (!(status & ISR_CONTROLLER_READY))
|
||||
return -1;
|
||||
/* if decoder failure, return error */
|
||||
if (status & ISR_DECODER_FAILURE)
|
||||
return -1;
|
||||
/* keep count of maximum bitflips performed */
|
||||
if (status & ISR_DECODER_ERROR) {
|
||||
err = ISR_DECODER_ERRORS(status);
|
||||
if (err > max_bitflips)
|
||||
max_bitflips = err;
|
||||
}
|
||||
/* copy first 512 bytes into buffer */
|
||||
memcpy(dest+i*512, lpc32xx_nand_mlc_registers->buff, 512);
|
||||
/* copy next 6 bytes bytes into OOB buffer */
|
||||
memcpy(&oob->free[i], lpc32xx_nand_mlc_registers->buff, 6);
|
||||
}
|
||||
return max_bitflips;
|
||||
}
|
||||
|
||||
/*
|
||||
* Load U-Boot signed image.
|
||||
* This loads an image from NAND, skipping bad blocks.
|
||||
* A block is declared bad if at least one of its readable pages has
|
||||
* a bad block marker in its OOB at position 0.
|
||||
* If all pages ion a block are unreadable, the block is considered
|
||||
* bad (i.e., assumed not to be part of the image) and skipped.
|
||||
*
|
||||
* IMPORTANT NOTE:
|
||||
*
|
||||
* If the first block of the image is fully unreadable, it will be
|
||||
* ignored and skipped as if it had been marked bad. If it was not
|
||||
* actually marked bad at the time of writing the image, the resulting
|
||||
* image loaded will lack a header and magic number. It could thus be
|
||||
* considered as a raw, headerless, image and SPL might erroneously
|
||||
* jump into it.
|
||||
*
|
||||
* In order to avoid this risk, LPC32XX-based boards which use this
|
||||
* driver MUST define CONFIG_SPL_PANIC_ON_RAW_IMAGE.
|
||||
*/
|
||||
|
||||
#define BYTES_PER_PAGE 2048
|
||||
#define PAGES_PER_BLOCK 64
|
||||
#define BYTES_PER_BLOCK (BYTES_PER_PAGE * PAGES_PER_BLOCK)
|
||||
#define PAGES_PER_CHIP_MAX 524288
|
||||
|
||||
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
|
||||
{
|
||||
int bytes_left = size;
|
||||
int pages_left = DIV_ROUND_UP(size, BYTES_PER_PAGE);
|
||||
int blocks_left = DIV_ROUND_UP(size, BYTES_PER_BLOCK);
|
||||
int block = 0;
|
||||
int page = offs / BYTES_PER_PAGE;
|
||||
/* perform reads block by block */
|
||||
while (blocks_left) {
|
||||
/* compute first page number to read */
|
||||
void *block_page_dst = dst;
|
||||
/* read at most one block, possibly less */
|
||||
int block_bytes_left = bytes_left;
|
||||
if (block_bytes_left > BYTES_PER_BLOCK)
|
||||
block_bytes_left = BYTES_PER_BLOCK;
|
||||
/* keep track of good, failed, and "bad" pages */
|
||||
int block_pages_good = 0;
|
||||
int block_pages_bad = 0;
|
||||
int block_pages_err = 0;
|
||||
/* we shall read a full block of pages, maybe less */
|
||||
int block_pages_left = pages_left;
|
||||
if (block_pages_left > PAGES_PER_BLOCK)
|
||||
block_pages_left = PAGES_PER_BLOCK;
|
||||
int block_pages = block_pages_left;
|
||||
int block_page = page;
|
||||
/* while pages are left and the block is not known as bad */
|
||||
while ((block_pages > 0) && (block_pages_bad == 0)) {
|
||||
/* we will read OOB, too, for bad block markers */
|
||||
struct lpc32xx_oob oob;
|
||||
/* read page */
|
||||
int res = read_single_page(block_page_dst, block_page,
|
||||
&oob);
|
||||
/* count readable pages */
|
||||
if (res >= 0) {
|
||||
/* this page is good */
|
||||
block_pages_good++;
|
||||
/* this page is bad */
|
||||
if ((oob.free[0].free_oob_bytes[0] != 0xff)
|
||||
| (oob.free[0].free_oob_bytes[1] != 0xff))
|
||||
block_pages_bad++;
|
||||
} else
|
||||
/* count errors */
|
||||
block_pages_err++;
|
||||
/* we're done with this page */
|
||||
block_page++;
|
||||
block_page_dst += BYTES_PER_PAGE;
|
||||
if (block_pages)
|
||||
block_pages--;
|
||||
}
|
||||
/* a fully unreadable block is considered bad */
|
||||
if (block_pages_good == 0)
|
||||
block_pages_bad = block_pages_err;
|
||||
/* errors are fatal only in good blocks */
|
||||
if ((block_pages_err > 0) && (block_pages_bad == 0))
|
||||
return -1;
|
||||
/* we keep reads only of good blocks */
|
||||
if (block_pages_bad == 0) {
|
||||
dst += block_bytes_left;
|
||||
bytes_left -= block_bytes_left;
|
||||
pages_left -= block_pages_left;
|
||||
blocks_left--;
|
||||
}
|
||||
/* good or bad, we're done with this block */
|
||||
block++;
|
||||
page += PAGES_PER_BLOCK;
|
||||
}
|
||||
|
||||
/* report success */
|
||||
return 0;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_SPL_BUILD */
|
Loading…
Reference in New Issue
Block a user