dm: x86: spi: Convert ICH SPI driver to driver model

Convert this driver over to use driver model. Since all x86 platforms use
it, move x86 to use driver model for SPI and SPI flash. Adjust all dependent
code and remove the old x86 spi_init() function.

Note that this does not make full use of the new PCI uclass as yet. We still
scan the bus looking for the device. It should move to finding its details
in the device tree.

Signed-off-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
Simon Glass 2015-03-26 09:29:26 -06:00
parent 8d987abc6a
commit ba4575626e
8 changed files with 296 additions and 284 deletions

View File

@ -90,6 +90,15 @@ config DM_GPIO
config DM_SERIAL config DM_SERIAL
default y default y
config DM_SERIAL
default y
config DM_SPI
default y
config DM_SPI_FLASH
default y
config SYS_MALLOC_F_LEN config SYS_MALLOC_F_LEN
default 0x800 default 0x800

View File

@ -105,7 +105,7 @@ static struct mrc_data_container *find_next_mrc_cache(struct fmap_entry *entry,
return cache; return cache;
} }
int mrccache_update(struct spi_flash *sf, struct fmap_entry *entry, int mrccache_update(struct udevice *sf, struct fmap_entry *entry,
struct mrc_data_container *cur) struct mrc_data_container *cur)
{ {
struct mrc_data_container *cache; struct mrc_data_container *cache;
@ -135,7 +135,7 @@ int mrccache_update(struct spi_flash *sf, struct fmap_entry *entry,
debug("Erasing the MRC cache region of %x bytes at %x\n", debug("Erasing the MRC cache region of %x bytes at %x\n",
entry->length, entry->offset); entry->length, entry->offset);
ret = spi_flash_erase(sf, entry->offset, entry->length); ret = spi_flash_erase_dm(sf, entry->offset, entry->length);
if (ret) { if (ret) {
debug("Failed to erase flash region\n"); debug("Failed to erase flash region\n");
return ret; return ret;
@ -146,7 +146,8 @@ int mrccache_update(struct spi_flash *sf, struct fmap_entry *entry,
/* Write the data out */ /* Write the data out */
offset = (ulong)cache - base_addr + entry->offset; offset = (ulong)cache - base_addr + entry->offset;
debug("Write MRC cache update to flash at %lx\n", offset); debug("Write MRC cache update to flash at %lx\n", offset);
ret = spi_flash_write(sf, offset, cur->data_size + sizeof(*cur), cur); ret = spi_flash_write_dm(sf, offset, cur->data_size + sizeof(*cur),
cur);
if (ret) { if (ret) {
debug("Failed to write to SPI flash\n"); debug("Failed to write to SPI flash\n");
return ret; return ret;

View File

@ -89,11 +89,12 @@ void dram_init_banksize(void)
} }
} }
static int get_mrc_entry(struct spi_flash **sfp, struct fmap_entry *entry) static int get_mrc_entry(struct udevice **devp, struct fmap_entry *entry)
{ {
const void *blob = gd->fdt_blob; const void *blob = gd->fdt_blob;
int node, spi_node, mrc_node; int node, spi_node, mrc_node;
int upto; int upto;
int ret;
/* Find the flash chip within the SPI controller node */ /* Find the flash chip within the SPI controller node */
upto = 0; upto = 0;
@ -112,10 +113,13 @@ static int get_mrc_entry(struct spi_flash **sfp, struct fmap_entry *entry)
if (fdtdec_read_fmap_entry(blob, mrc_node, "rm-mrc-cache", entry)) if (fdtdec_read_fmap_entry(blob, mrc_node, "rm-mrc-cache", entry))
return -EINVAL; return -EINVAL;
if (sfp) { if (devp) {
*sfp = spi_flash_probe_fdt(blob, node, spi_node); debug("getting sf\n");
if (!*sfp) ret = uclass_get_device_by_of_offset(UCLASS_SPI_FLASH, node,
return -EBADF; devp);
debug("ret = %d\n", ret);
if (ret)
return ret;
} }
return 0; return 0;
@ -246,7 +250,7 @@ static int sdram_save_mrc_data(void)
{ {
struct mrc_data_container *data; struct mrc_data_container *data;
struct fmap_entry entry; struct fmap_entry entry;
struct spi_flash *sf; struct udevice *sf;
int ret; int ret;
if (!gd->arch.mrc_output_len) if (!gd->arch.mrc_output_len)
@ -266,7 +270,6 @@ static int sdram_save_mrc_data(void)
free(data); free(data);
err_data: err_data:
spi_flash_free(sf);
err_entry: err_entry:
if (ret) if (ret)
debug("%s: Failed: %d\n", __func__, ret); debug("%s: Failed: %d\n", __func__, ret);

View File

@ -20,7 +20,7 @@ __packed struct mrc_data_container {
}; };
struct fmap_entry; struct fmap_entry;
struct spi_flash; struct udevice;
/** /**
* mrccache_find_current() - find the latest MRC cache record * mrccache_find_current() - find the latest MRC cache record
@ -45,7 +45,7 @@ struct mrc_data_container *mrccache_find_current(struct fmap_entry *entry);
* @return 0 if updated, -EEXIST if the record is the same as the latest * @return 0 if updated, -EEXIST if the record is the same as the latest
* record, other error if SPI write failed * record, other error if SPI write failed
*/ */
int mrccache_update(struct spi_flash *sf, struct fmap_entry *entry, int mrccache_update(struct udevice *sf, struct fmap_entry *entry,
struct mrc_data_container *cur); struct mrc_data_container *cur);
#endif #endif

View File

@ -89,11 +89,3 @@ int init_bd_struct_r(void)
return 0; return 0;
} }
int init_func_spi(void)
{
puts("SPI: ");
spi_init();
puts("ready\n");
return 0;
}

View File

@ -780,9 +780,6 @@ init_fnc_t init_sequence_r[] = {
#ifdef CONFIG_PPC #ifdef CONFIG_PPC
initr_spi, initr_spi,
#endif #endif
#if defined(CONFIG_X86) && defined(CONFIG_SPI)
init_func_spi,
#endif
#ifdef CONFIG_CMD_NAND #ifdef CONFIG_CMD_NAND
initr_nand, initr_nand,
#endif #endif

View File

@ -7,6 +7,7 @@
*/ */
#include <common.h> #include <common.h>
#include <dm.h>
#include <errno.h> #include <errno.h>
#include <malloc.h> #include <malloc.h>
#include <spi.h> #include <spi.h>
@ -19,154 +20,99 @@
#define SPI_OPCODE_WREN 0x06 #define SPI_OPCODE_WREN 0x06
#define SPI_OPCODE_FAST_READ 0x0b #define SPI_OPCODE_FAST_READ 0x0b
struct ich_ctlr { struct ich_spi_platdata {
pci_dev_t dev; /* PCI device number */ pci_dev_t dev; /* PCI device number */
int ich_version; /* Controller version, 7 or 9 */ int ich_version; /* Controller version, 7 or 9 */
bool use_sbase; /* Use SBASE instead of RCB */ bool use_sbase; /* Use SBASE instead of RCB */
int ichspi_lock;
int locked;
uint8_t *opmenu;
int menubytes;
void *base; /* Base of register set */
uint16_t *preop;
uint16_t *optype;
uint32_t *addr;
uint8_t *data;
unsigned databytes;
uint8_t *status;
uint16_t *control;
uint32_t *bbar;
uint32_t *pr; /* only for ich9 */
uint8_t *speed; /* pointer to speed control */
ulong max_speed; /* Maximum bus speed in MHz */
}; };
struct ich_ctlr ctlr; struct ich_spi_priv {
int ichspi_lock;
int locked;
int opmenu;
int menubytes;
void *base; /* Base of register set */
int preop;
int optype;
int addr;
int data;
unsigned databytes;
int status;
int control;
int bbar;
uint32_t *pr; /* only for ich9 */
int speed; /* pointer to speed control */
ulong max_speed; /* Maximum bus speed in MHz */
ulong cur_speed; /* Current bus speed */
struct spi_trans trans; /* current transaction in progress */
};
static inline struct ich_spi_slave *to_ich_spi(struct spi_slave *slave) static u8 ich_readb(struct ich_spi_priv *priv, int reg)
{ {
return container_of(slave, struct ich_spi_slave, slave); u8 value = readb(priv->base + reg);
}
static unsigned int ich_reg(const void *addr) debug("read %2.2x from %4.4x\n", value, reg);
{
return (unsigned)(addr - ctlr.base) & 0xffff;
}
static u8 ich_readb(const void *addr)
{
u8 value = readb(addr);
debug("read %2.2x from %4.4x\n", value, ich_reg(addr));
return value; return value;
} }
static u16 ich_readw(const void *addr) static u16 ich_readw(struct ich_spi_priv *priv, int reg)
{ {
u16 value = readw(addr); u16 value = readw(priv->base + reg);
debug("read %4.4x from %4.4x\n", value, ich_reg(addr)); debug("read %4.4x from %4.4x\n", value, reg);
return value; return value;
} }
static u32 ich_readl(const void *addr) static u32 ich_readl(struct ich_spi_priv *priv, int reg)
{ {
u32 value = readl(addr); u32 value = readl(priv->base + reg);
debug("read %8.8x from %4.4x\n", value, ich_reg(addr)); debug("read %8.8x from %4.4x\n", value, reg);
return value; return value;
} }
static void ich_writeb(u8 value, void *addr) static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
{ {
writeb(value, addr); writeb(value, priv->base + reg);
debug("wrote %2.2x to %4.4x\n", value, ich_reg(addr)); debug("wrote %2.2x to %4.4x\n", value, reg);
} }
static void ich_writew(u16 value, void *addr) static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
{ {
writew(value, addr); writew(value, priv->base + reg);
debug("wrote %4.4x to %4.4x\n", value, ich_reg(addr)); debug("wrote %4.4x to %4.4x\n", value, reg);
} }
static void ich_writel(u32 value, void *addr) static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
{ {
writel(value, addr); writel(value, priv->base + reg);
debug("wrote %8.8x to %4.4x\n", value, ich_reg(addr)); debug("wrote %8.8x to %4.4x\n", value, reg);
} }
static void write_reg(const void *value, void *dest, uint32_t size) static void write_reg(struct ich_spi_priv *priv, const void *value,
int dest_reg, uint32_t size)
{ {
memcpy_toio(dest, value, size); memcpy_toio(priv->base + dest_reg, value, size);
} }
static void read_reg(const void *src, void *value, uint32_t size) static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
uint32_t size)
{ {
memcpy_fromio(value, src, size); memcpy_fromio(value, priv->base + src_reg, size);
} }
static void ich_set_bbar(struct ich_ctlr *ctlr, uint32_t minaddr) static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
{ {
const uint32_t bbar_mask = 0x00ffff00; const uint32_t bbar_mask = 0x00ffff00;
uint32_t ichspi_bbar; uint32_t ichspi_bbar;
minaddr &= bbar_mask; minaddr &= bbar_mask;
ichspi_bbar = ich_readl(ctlr->bbar) & ~bbar_mask; ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
ichspi_bbar |= minaddr; ichspi_bbar |= minaddr;
ich_writel(ichspi_bbar, ctlr->bbar); ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
}
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
puts("spi_cs_is_valid used but not implemented\n");
return 0;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct ich_spi_slave *ich;
ich = spi_alloc_slave(struct ich_spi_slave, bus, cs);
if (!ich) {
puts("ICH SPI: Out of memory\n");
return NULL;
}
/*
* Yes this controller can only write a small number of bytes at
* once! The limit is typically 64 bytes.
*/
ich->slave.max_write_size = ctlr.databytes;
ich->speed = max_hz;
/*
* ICH 7 SPI controller only supports array read command
* and byte program command for SST flash
*/
if (ctlr.ich_version == 7 || ctlr.use_sbase) {
ich->slave.op_mode_rx = SPI_OPM_RX_AS;
ich->slave.op_mode_tx = SPI_OPM_TX_BP;
}
return &ich->slave;
}
struct spi_slave *spi_setup_slave_fdt(const void *blob, int slave_node,
int spi_node)
{
/* We only support a single SPI at present */
return spi_setup_slave(0, 0, 20000000, 0);
}
void spi_free_slave(struct spi_slave *slave)
{
struct ich_spi_slave *ich = to_ich_spi(slave);
free(ich);
} }
/* /*
@ -209,7 +155,7 @@ static int ich9_can_do_33mhz(pci_dev_t dev)
return speed == 1; return speed == 1;
} }
static int ich_find_spi_controller(struct ich_ctlr *ich) static int ich_find_spi_controller(struct ich_spi_platdata *ich)
{ {
int last_bus = pci_last_busno(); int last_bus = pci_last_busno();
int bus; int bus;
@ -242,131 +188,77 @@ static int ich_find_spi_controller(struct ich_ctlr *ich)
return -ENODEV; return -ENODEV;
} }
static int ich_init_controller(struct ich_ctlr *ctlr) static int ich_init_controller(struct ich_spi_platdata *plat,
struct ich_spi_priv *ctlr)
{ {
uint8_t *rcrb; /* Root Complex Register Block */ uint8_t *rcrb; /* Root Complex Register Block */
uint32_t rcba; /* Root Complex Base Address */ uint32_t rcba; /* Root Complex Base Address */
uint32_t sbase_addr; uint32_t sbase_addr;
uint8_t *sbase; uint8_t *sbase;
pci_read_config_dword(ctlr->dev, 0xf0, &rcba); pci_read_config_dword(plat->dev, 0xf0, &rcba);
/* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */ /* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */
rcrb = (uint8_t *)(rcba & 0xffffc000); rcrb = (uint8_t *)(rcba & 0xffffc000);
/* SBASE is similar */ /* SBASE is similar */
pci_read_config_dword(ctlr->dev, 0x54, &sbase_addr); pci_read_config_dword(plat->dev, 0x54, &sbase_addr);
sbase = (uint8_t *)(sbase_addr & 0xfffffe00); sbase = (uint8_t *)(sbase_addr & 0xfffffe00);
if (ctlr->ich_version == 7) { if (plat->ich_version == 7) {
struct ich7_spi_regs *ich7_spi; struct ich7_spi_regs *ich7_spi;
ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020); ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020);
ctlr->ichspi_lock = ich_readw(&ich7_spi->spis) & SPIS_LOCK; ctlr->ichspi_lock = readw(&ich7_spi->spis) & SPIS_LOCK;
ctlr->opmenu = ich7_spi->opmenu; ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
ctlr->menubytes = sizeof(ich7_spi->opmenu); ctlr->menubytes = sizeof(ich7_spi->opmenu);
ctlr->optype = &ich7_spi->optype; ctlr->optype = offsetof(struct ich7_spi_regs, optype);
ctlr->addr = &ich7_spi->spia; ctlr->addr = offsetof(struct ich7_spi_regs, spia);
ctlr->data = (uint8_t *)ich7_spi->spid; ctlr->data = offsetof(struct ich7_spi_regs, spid);
ctlr->databytes = sizeof(ich7_spi->spid); ctlr->databytes = sizeof(ich7_spi->spid);
ctlr->status = (uint8_t *)&ich7_spi->spis; ctlr->status = offsetof(struct ich7_spi_regs, spis);
ctlr->control = &ich7_spi->spic; ctlr->control = offsetof(struct ich7_spi_regs, spic);
ctlr->bbar = &ich7_spi->bbar; ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
ctlr->preop = &ich7_spi->preop; ctlr->preop = offsetof(struct ich7_spi_regs, preop);
ctlr->base = ich7_spi; ctlr->base = ich7_spi;
} else if (ctlr->ich_version == 9) { } else if (plat->ich_version == 9) {
struct ich9_spi_regs *ich9_spi; struct ich9_spi_regs *ich9_spi;
if (ctlr->use_sbase) if (plat->use_sbase)
ich9_spi = (struct ich9_spi_regs *)sbase; ich9_spi = (struct ich9_spi_regs *)sbase;
else else
ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800); ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800);
ctlr->ichspi_lock = ich_readw(&ich9_spi->hsfs) & HSFS_FLOCKDN; ctlr->ichspi_lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
ctlr->opmenu = ich9_spi->opmenu; ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
ctlr->menubytes = sizeof(ich9_spi->opmenu); ctlr->menubytes = sizeof(ich9_spi->opmenu);
ctlr->optype = &ich9_spi->optype; ctlr->optype = offsetof(struct ich9_spi_regs, optype);
ctlr->addr = &ich9_spi->faddr; ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
ctlr->data = (uint8_t *)ich9_spi->fdata; ctlr->data = offsetof(struct ich9_spi_regs, fdata);
ctlr->databytes = sizeof(ich9_spi->fdata); ctlr->databytes = sizeof(ich9_spi->fdata);
ctlr->status = &ich9_spi->ssfs; ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
ctlr->control = (uint16_t *)ich9_spi->ssfc; ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
ctlr->speed = ich9_spi->ssfc + 2; ctlr->speed = ctlr->control + 2;
ctlr->bbar = &ich9_spi->bbar; ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
ctlr->preop = &ich9_spi->preop; ctlr->preop = offsetof(struct ich9_spi_regs, preop);
ctlr->pr = &ich9_spi->pr[0]; ctlr->pr = &ich9_spi->pr[0];
ctlr->base = ich9_spi; ctlr->base = ich9_spi;
} else { } else {
debug("ICH SPI: Unrecognized ICH version %d.\n", debug("ICH SPI: Unrecognised ICH version %d\n",
ctlr->ich_version); plat->ich_version);
return -1; return -EINVAL;
} }
/* Work out the maximum speed we can support */ /* Work out the maximum speed we can support */
ctlr->max_speed = 20000000; ctlr->max_speed = 20000000;
if (ctlr->ich_version == 9 && ich9_can_do_33mhz(ctlr->dev)) if (plat->ich_version == 9 && ich9_can_do_33mhz(plat->dev))
ctlr->max_speed = 33000000; ctlr->max_speed = 33000000;
debug("ICH SPI: Version %d detected at %p, speed %ld\n", debug("ICH SPI: Version %d detected at %p, speed %ld\n",
ctlr->ich_version, ctlr->base, ctlr->max_speed); plat->ich_version, ctlr->base, ctlr->max_speed);
ich_set_bbar(ctlr, 0); ich_set_bbar(ctlr, 0);
return 0; return 0;
} }
void spi_init(void)
{
uint8_t bios_cntl;
if (ich_find_spi_controller(&ctlr)) {
printf("ICH SPI: Cannot find device\n");
return;
}
if (ich_init_controller(&ctlr)) {
printf("ICH SPI: Cannot setup controller\n");
return;
}
/*
* Disable the BIOS write protect so write commands are allowed. On
* v9, deassert SMM BIOS Write Protect Disable.
*/
if (ctlr.use_sbase) {
struct ich9_spi_regs *ich9_spi;
ich9_spi = (struct ich9_spi_regs *)ctlr.base;
bios_cntl = ich_readb(&ich9_spi->bcr);
bios_cntl &= ~(1 << 5); /* clear Enable InSMM_STS (EISS) */
bios_cntl |= 1; /* Write Protect Disable (WPD) */
ich_writeb(bios_cntl, &ich9_spi->bcr);
} else {
pci_read_config_byte(ctlr.dev, 0xdc, &bios_cntl);
if (ctlr.ich_version == 9)
bios_cntl &= ~(1 << 5);
pci_write_config_byte(ctlr.dev, 0xdc, bios_cntl | 0x1);
}
}
int spi_claim_bus(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
void spi_cs_activate(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
void spi_cs_deactivate(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
static inline void spi_use_out(struct spi_trans *trans, unsigned bytes) static inline void spi_use_out(struct spi_trans *trans, unsigned bytes)
{ {
trans->out += bytes; trans->out += bytes;
@ -412,19 +304,19 @@ static void spi_setup_type(struct spi_trans *trans, int data_bytes)
} }
} }
static int spi_setup_opcode(struct spi_trans *trans) static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans)
{ {
uint16_t optypes; uint16_t optypes;
uint8_t opmenu[ctlr.menubytes]; uint8_t opmenu[ctlr->menubytes];
trans->opcode = trans->out[0]; trans->opcode = trans->out[0];
spi_use_out(trans, 1); spi_use_out(trans, 1);
if (!ctlr.ichspi_lock) { if (!ctlr->ichspi_lock) {
/* The lock is off, so just use index 0. */ /* The lock is off, so just use index 0. */
ich_writeb(trans->opcode, ctlr.opmenu); ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
optypes = ich_readw(ctlr.optype); optypes = ich_readw(ctlr, ctlr->optype);
optypes = (optypes & 0xfffc) | (trans->type & 0x3); optypes = (optypes & 0xfffc) | (trans->type & 0x3);
ich_writew(optypes, ctlr.optype); ich_writew(ctlr, optypes, ctlr->optype);
return 0; return 0;
} else { } else {
/* The lock is on. See if what we need is on the menu. */ /* The lock is on. See if what we need is on the menu. */
@ -435,20 +327,20 @@ static int spi_setup_opcode(struct spi_trans *trans)
if (trans->opcode == SPI_OPCODE_WREN) if (trans->opcode == SPI_OPCODE_WREN)
return 0; return 0;
read_reg(ctlr.opmenu, opmenu, sizeof(opmenu)); read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
for (opcode_index = 0; opcode_index < ctlr.menubytes; for (opcode_index = 0; opcode_index < ctlr->menubytes;
opcode_index++) { opcode_index++) {
if (opmenu[opcode_index] == trans->opcode) if (opmenu[opcode_index] == trans->opcode)
break; break;
} }
if (opcode_index == ctlr.menubytes) { if (opcode_index == ctlr->menubytes) {
printf("ICH SPI: Opcode %x not found\n", printf("ICH SPI: Opcode %x not found\n",
trans->opcode); trans->opcode);
return -1; return -EINVAL;
} }
optypes = ich_readw(ctlr.optype); optypes = ich_readw(ctlr, ctlr->optype);
optype = (optypes >> (opcode_index * 2)) & 0x3; optype = (optypes >> (opcode_index * 2)) & 0x3;
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS && if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS && optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
@ -459,7 +351,7 @@ static int spi_setup_opcode(struct spi_trans *trans)
if (optype != trans->type) { if (optype != trans->type) {
printf("ICH SPI: Transaction doesn't fit type %d\n", printf("ICH SPI: Transaction doesn't fit type %d\n",
optype); optype);
return -1; return -ENOSPC;
} }
return opcode_index; return opcode_index;
} }
@ -481,7 +373,7 @@ static int spi_setup_offset(struct spi_trans *trans)
return 1; return 1;
default: default:
printf("Unrecognized SPI transaction type %#x\n", trans->type); printf("Unrecognized SPI transaction type %#x\n", trans->type);
return -1; return -EPROTO;
} }
} }
@ -492,16 +384,19 @@ static int spi_setup_offset(struct spi_trans *trans)
* *
* Return the last read status value on success or -1 on failure. * Return the last read status value on success or -1 on failure.
*/ */
static int ich_status_poll(u16 bitmask, int wait_til_set) static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
int wait_til_set)
{ {
int timeout = 600000; /* This will result in 6s */ int timeout = 600000; /* This will result in 6s */
u16 status = 0; u16 status = 0;
while (timeout--) { while (timeout--) {
status = ich_readw(ctlr.status); status = ich_readw(ctlr, ctlr->status);
if (wait_til_set ^ ((status & bitmask) == 0)) { if (wait_til_set ^ ((status & bitmask) == 0)) {
if (wait_til_set) if (wait_til_set) {
ich_writew((status & bitmask), ctlr.status); ich_writew(ctlr, status & bitmask,
ctlr->status);
}
return status; return status;
} }
udelay(10); udelay(10);
@ -509,30 +404,28 @@ static int ich_status_poll(u16 bitmask, int wait_til_set)
printf("ICH SPI: SCIP timeout, read %x, expected %x\n", printf("ICH SPI: SCIP timeout, read %x, expected %x\n",
status, bitmask); status, bitmask);
return -1; return -ETIMEDOUT;
} }
/* static int ich_spi_xfer(struct udevice *dev, unsigned int bitlen,
int spi_xfer(struct spi_slave *slave, const void *dout, const void *dout, void *din, unsigned long flags)
unsigned int bitsout, void *din, unsigned int bitsin)
*/
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{ {
struct ich_spi_slave *ich = to_ich_spi(slave); struct udevice *bus = dev_get_parent(dev);
struct ich_spi_priv *ctlr = dev_get_priv(bus);
uint16_t control; uint16_t control;
int16_t opcode_index; int16_t opcode_index;
int with_address; int with_address;
int status; int status;
int bytes = bitlen / 8; int bytes = bitlen / 8;
struct spi_trans *trans = &ich->trans; struct spi_trans *trans = &ctlr->trans;
unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END); unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END);
int using_cmd = 0; int using_cmd = 0;
int ret;
/* Ee don't support writing partial bytes. */ /* Ee don't support writing partial bytes. */
if (bitlen % 8) { if (bitlen % 8) {
debug("ICH SPI: Accessing partial bytes not supported\n"); debug("ICH SPI: Accessing partial bytes not supported\n");
return -1; return -EPROTONOSUPPORT;
} }
/* An empty end transaction can be ignored */ /* An empty end transaction can be ignored */
@ -546,7 +439,7 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
if (dout && type == SPI_XFER_BEGIN) { if (dout && type == SPI_XFER_BEGIN) {
if (bytes > ICH_MAX_CMD_LEN) { if (bytes > ICH_MAX_CMD_LEN) {
debug("ICH SPI: Command length limit exceeded\n"); debug("ICH SPI: Command length limit exceeded\n");
return -1; return -ENOSPC;
} }
memcpy(trans->cmd, dout, bytes); memcpy(trans->cmd, dout, bytes);
trans->cmd_len = bytes; trans->cmd_len = bytes;
@ -577,21 +470,22 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
/* There has to always at least be an opcode. */ /* There has to always at least be an opcode. */
if (!trans->bytesout) { if (!trans->bytesout) {
debug("ICH SPI: No opcode for transfer\n"); debug("ICH SPI: No opcode for transfer\n");
return -1; return -EPROTO;
} }
if (ich_status_poll(SPIS_SCIP, 0) == -1) ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
return -1; if (ret < 0)
return ret;
ich_writew(SPIS_CDS | SPIS_FCERR, ctlr.status); ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
spi_setup_type(trans, using_cmd ? bytes : 0); spi_setup_type(trans, using_cmd ? bytes : 0);
opcode_index = spi_setup_opcode(trans); opcode_index = spi_setup_opcode(ctlr, trans);
if (opcode_index < 0) if (opcode_index < 0)
return -1; return -EINVAL;
with_address = spi_setup_offset(trans); with_address = spi_setup_offset(trans);
if (with_address < 0) if (with_address < 0)
return -1; return -EINVAL;
if (trans->opcode == SPI_OPCODE_WREN) { if (trans->opcode == SPI_OPCODE_WREN) {
/* /*
@ -599,20 +493,20 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
* in order to prevent the Management Engine from * in order to prevent the Management Engine from
* issuing a transaction between WREN and DATA. * issuing a transaction between WREN and DATA.
*/ */
if (!ctlr.ichspi_lock) if (!ctlr->ichspi_lock)
ich_writew(trans->opcode, ctlr.preop); ich_writew(ctlr, trans->opcode, ctlr->preop);
return 0; return 0;
} }
if (ctlr.speed && ctlr.max_speed >= 33000000) { if (ctlr->speed && ctlr->max_speed >= 33000000) {
int byte; int byte;
byte = ich_readb(ctlr.speed); byte = ich_readb(ctlr, ctlr->speed);
if (ich->speed >= 33000000) if (ctlr->cur_speed >= 33000000)
byte |= SSFC_SCF_33MHZ; byte |= SSFC_SCF_33MHZ;
else else
byte &= ~SSFC_SCF_33MHZ; byte &= ~SSFC_SCF_33MHZ;
ich_writeb(byte, ctlr.speed); ich_writeb(ctlr, byte, ctlr->speed);
} }
/* See if we have used up the command data */ /* See if we have used up the command data */
@ -623,35 +517,36 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
} }
/* Preset control fields */ /* Preset control fields */
control = ich_readw(ctlr.control); control = ich_readw(ctlr, ctlr->control);
control &= ~SSFC_RESERVED; control &= ~SSFC_RESERVED;
control = SPIC_SCGO | ((opcode_index & 0x07) << 4); control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
/* Issue atomic preop cycle if needed */ /* Issue atomic preop cycle if needed */
if (ich_readw(ctlr.preop)) if (ich_readw(ctlr, ctlr->preop))
control |= SPIC_ACS; control |= SPIC_ACS;
if (!trans->bytesout && !trans->bytesin) { if (!trans->bytesout && !trans->bytesin) {
/* SPI addresses are 24 bit only */ /* SPI addresses are 24 bit only */
if (with_address) if (with_address) {
ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr); ich_writel(ctlr, trans->offset & 0x00FFFFFF,
ctlr->addr);
}
/* /*
* This is a 'no data' command (like Write Enable), its * This is a 'no data' command (like Write Enable), its
* bitesout size was 1, decremented to zero while executing * bitesout size was 1, decremented to zero while executing
* spi_setup_opcode() above. Tell the chip to send the * spi_setup_opcode() above. Tell the chip to send the
* command. * command.
*/ */
ich_writew(control, ctlr.control); ich_writew(ctlr, control, ctlr->control);
/* wait for the result */ /* wait for the result */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
if (status == -1) if (status < 0)
return -1; return status;
if (status & SPIS_FCERR) { if (status & SPIS_FCERR) {
debug("ICH SPI: Command transaction error\n"); debug("ICH SPI: Command transaction error\n");
return -1; return -EIO;
} }
return 0; return 0;
@ -664,9 +559,9 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
* and followed by other SPI commands, and this sequence is controlled * and followed by other SPI commands, and this sequence is controlled
* by the SPI chip driver. * by the SPI chip driver.
*/ */
if (trans->bytesout > ctlr.databytes) { if (trans->bytesout > ctlr->databytes) {
debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n"); debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n");
return -1; return -EPROTO;
} }
/* /*
@ -677,41 +572,41 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
uint32_t data_length; uint32_t data_length;
/* SPI addresses are 24 bit only */ /* SPI addresses are 24 bit only */
ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr); ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);
if (trans->bytesout) if (trans->bytesout)
data_length = min(trans->bytesout, ctlr.databytes); data_length = min(trans->bytesout, ctlr->databytes);
else else
data_length = min(trans->bytesin, ctlr.databytes); data_length = min(trans->bytesin, ctlr->databytes);
/* Program data into FDATA0 to N */ /* Program data into FDATA0 to N */
if (trans->bytesout) { if (trans->bytesout) {
write_reg(trans->out, ctlr.data, data_length); write_reg(ctlr, trans->out, ctlr->data, data_length);
spi_use_out(trans, data_length); spi_use_out(trans, data_length);
if (with_address) if (with_address)
trans->offset += data_length; trans->offset += data_length;
} }
/* Add proper control fields' values */ /* Add proper control fields' values */
control &= ~((ctlr.databytes - 1) << 8); control &= ~((ctlr->databytes - 1) << 8);
control |= SPIC_DS; control |= SPIC_DS;
control |= (data_length - 1) << 8; control |= (data_length - 1) << 8;
/* write it */ /* write it */
ich_writew(control, ctlr.control); ich_writew(ctlr, control, ctlr->control);
/* Wait for Cycle Done Status or Flash Cycle Error. */ /* Wait for Cycle Done Status or Flash Cycle Error. */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
if (status == -1) if (status < 0)
return -1; return status;
if (status & SPIS_FCERR) { if (status & SPIS_FCERR) {
debug("ICH SPI: Data transaction error\n"); debug("ICH SPI: Data transaction error\n");
return -1; return -EIO;
} }
if (trans->bytesin) { if (trans->bytesin) {
read_reg(ctlr.data, trans->in, data_length); read_reg(ctlr, ctlr->data, trans->in, data_length);
spi_use_in(trans, data_length); spi_use_in(trans, data_length);
if (with_address) if (with_address)
trans->offset += data_length; trans->offset += data_length;
@ -719,7 +614,7 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
} }
/* Clear atomic preop now that xfer is done */ /* Clear atomic preop now that xfer is done */
ich_writew(0, ctlr.preop); ich_writew(ctlr, 0, ctlr->preop);
return 0; return 0;
} }
@ -731,15 +626,18 @@ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
* don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's * don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's
* done elsewhere. * done elsewhere.
*/ */
int spi_write_protect_region(uint32_t lower_limit, uint32_t length, int hint) int spi_write_protect_region(struct udevice *dev, uint32_t lower_limit,
uint32_t length, int hint)
{ {
struct udevice *bus = dev->parent;
struct ich_spi_priv *ctlr = dev_get_priv(bus);
uint32_t tmplong; uint32_t tmplong;
uint32_t upper_limit; uint32_t upper_limit;
if (!ctlr.pr) { if (!ctlr->pr) {
printf("%s: operation not supported on this chipset\n", printf("%s: operation not supported on this chipset\n",
__func__); __func__);
return -1; return -ENOSYS;
} }
if (length == 0 || if (length == 0 ||
@ -747,7 +645,7 @@ int spi_write_protect_region(uint32_t lower_limit, uint32_t length, int hint)
hint < 0 || hint > 4) { hint < 0 || hint > 4) {
printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__, printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__,
lower_limit, length, hint); lower_limit, length, hint);
return -1; return -EPERM;
} }
upper_limit = lower_limit + length - 1; upper_limit = lower_limit + length - 1;
@ -766,8 +664,121 @@ int spi_write_protect_region(uint32_t lower_limit, uint32_t length, int hint)
((lower_limit & 0x01fff000) >> 12); ((lower_limit & 0x01fff000) >> 12);
printf("%s: writing 0x%08x to %p\n", __func__, tmplong, printf("%s: writing 0x%08x to %p\n", __func__, tmplong,
&ctlr.pr[hint]); &ctlr->pr[hint]);
ctlr.pr[hint] = tmplong; ctlr->pr[hint] = tmplong;
return 0; return 0;
} }
static int ich_spi_probe(struct udevice *bus)
{
struct ich_spi_platdata *plat = dev_get_platdata(bus);
struct ich_spi_priv *priv = dev_get_priv(bus);
uint8_t bios_cntl;
int ret;
ret = ich_init_controller(plat, priv);
if (ret)
return ret;
/*
* Disable the BIOS write protect so write commands are allowed. On
* v9, deassert SMM BIOS Write Protect Disable.
*/
if (plat->use_sbase) {
struct ich9_spi_regs *ich9_spi;
ich9_spi = priv->base;
bios_cntl = ich_readb(priv, ich9_spi->bcr);
bios_cntl &= ~(1 << 5); /* clear Enable InSMM_STS (EISS) */
bios_cntl |= 1; /* Write Protect Disable (WPD) */
ich_writeb(priv, bios_cntl, ich9_spi->bcr);
} else {
pci_read_config_byte(plat->dev, 0xdc, &bios_cntl);
if (plat->ich_version == 9)
bios_cntl &= ~(1 << 5);
pci_write_config_byte(plat->dev, 0xdc, bios_cntl | 0x1);
}
priv->cur_speed = priv->max_speed;
return 0;
}
static int ich_spi_ofdata_to_platdata(struct udevice *bus)
{
struct ich_spi_platdata *plat = dev_get_platdata(bus);
int ret;
ret = ich_find_spi_controller(plat);
if (ret)
return ret;
return 0;
}
static int ich_spi_set_speed(struct udevice *bus, uint speed)
{
struct ich_spi_priv *priv = dev_get_priv(bus);
priv->cur_speed = speed;
return 0;
}
static int ich_spi_set_mode(struct udevice *bus, uint mode)
{
debug("%s: mode=%d\n", __func__, mode);
return 0;
}
static int ich_spi_child_pre_probe(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct ich_spi_platdata *plat = dev_get_platdata(bus);
struct ich_spi_priv *priv = dev_get_priv(bus);
struct spi_slave *slave = dev_get_parentdata(dev);
/*
* Yes this controller can only write a small number of bytes at
* once! The limit is typically 64 bytes.
*/
slave->max_write_size = priv->databytes;
/*
* ICH 7 SPI controller only supports array read command
* and byte program command for SST flash
*/
if (plat->ich_version == 7) {
slave->op_mode_rx = SPI_OPM_RX_AS;
slave->op_mode_tx = SPI_OPM_TX_BP;
}
return 0;
}
static const struct dm_spi_ops ich_spi_ops = {
.xfer = ich_spi_xfer,
.set_speed = ich_spi_set_speed,
.set_mode = ich_spi_set_mode,
/*
* cs_info is not needed, since we require all chip selects to be
* in the device tree explicitly
*/
};
static const struct udevice_id ich_spi_ids[] = {
{ .compatible = "intel,ich-spi" },
{ }
};
U_BOOT_DRIVER(ich_spi) = {
.name = "ich_spi",
.id = UCLASS_SPI,
.of_match = ich_spi_ids,
.ops = &ich_spi_ops,
.ofdata_to_platdata = ich_spi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct ich_spi_platdata),
.priv_auto_alloc_size = sizeof(struct ich_spi_priv),
.child_pre_probe = ich_spi_child_pre_probe,
.probe = ich_spi_probe,
};

View File

@ -204,7 +204,6 @@
#define CONFIG_CMD_SF_TEST #define CONFIG_CMD_SF_TEST
#define CONFIG_CMD_SPI #define CONFIG_CMD_SPI
#define CONFIG_SPI #define CONFIG_SPI
#define CONFIG_OF_SPI_FLASH
/*----------------------------------------------------------------------- /*-----------------------------------------------------------------------
* Environment configuration * Environment configuration