Nand mxc_nand add v1.1 controller support

Add support for version 1.1 of the nfc nand flash
controller which is on the i.mx25 soc.

Signed-off-by: John Rigby <jcrigby@gmail.com>
CC: Scott Wood <scottwood@freescale.com>
This commit is contained in:
John Rigby 2010-01-26 19:24:18 -07:00 committed by Scott Wood
parent f3bb63a304
commit b081c2e9b9

View File

@ -22,27 +22,65 @@
#include <nand.h>
#include <linux/err.h>
#include <asm/io.h>
#ifdef CONFIG_MX27
#if defined(CONFIG_MX27) || defined(CONFIG_MX25)
#include <asm/arch/imx-regs.h>
#endif
#define DRIVER_NAME "mxc_nand"
/*
* TODO: Use same register defs here as nand_spl mxc nand driver.
*/
/*
* Register map and bit definitions for the Freescale NAND Flash Controller
* present in various i.MX devices.
*
* MX31 and MX27 have version 1 which has
* 4 512 byte main buffers and
* 4 16 byte spare buffers
* to support up to 2K byte pagesize nand.
* Reading or writing a 2K page requires 4 FDI/FDO cycles.
*
* MX25 has version 1.1 which has
* 8 512 byte main buffers and
* 8 64 byte spare buffers
* to support up to 4K byte pagesize nand.
* Reading or writing a 2K or 4K page requires only 1 FDI/FDO cycle.
* Also some of registers are moved and/or changed meaning as seen below.
*/
#if defined(CONFIG_MX31) || defined(CONFIG_MX27)
#define MXC_NFC_V1
#elif defined(CONFIG_MX25)
#define MXC_NFC_V1_1
#else
#warning "MXC NFC version not defined"
#endif
#if defined(MXC_NFC_V1)
#define NAND_MXC_NR_BUFS 4
#define NAND_MXC_SPARE_BUF_SIZE 16
#define NAND_MXC_REG_OFFSET 0xe00
#define is_mxc_nfc_11() 0
#elif defined(MXC_NFC_V1_1)
#define NAND_MXC_NR_BUFS 8
#define NAND_MXC_SPARE_BUF_SIZE 64
#define NAND_MXC_REG_OFFSET 0x1e00
#define is_mxc_nfc_11() 1
#else
#error "define CONFIG_NAND_MXC_VXXX to use mtd mxc nand driver"
#endif
struct nfc_regs {
/* NFC RAM BUFFER Main area 0 */
uint8_t main_area0[0x200];
uint8_t main_area1[0x200];
uint8_t main_area2[0x200];
uint8_t main_area3[0x200];
/* SPARE BUFFER Spare area 0 */
uint8_t spare_area0[0x10];
uint8_t spare_area1[0x10];
uint8_t spare_area2[0x10];
uint8_t spare_area3[0x10];
uint8_t pad[0x5c0];
/* NFC registers */
uint8_t main_area[NAND_MXC_NR_BUFS][0x200];
uint8_t spare_area[NAND_MXC_NR_BUFS][NAND_MXC_SPARE_BUF_SIZE];
/*
* reserved size is offset of nfc registers
* minus total main and spare sizes
*/
uint8_t reserved1[NAND_MXC_REG_OFFSET
- NAND_MXC_NR_BUFS * (512 + NAND_MXC_SPARE_BUF_SIZE)];
#if defined(MXC_NFC_V1)
uint16_t nfc_buf_size;
uint16_t reserved;
uint16_t reserved2;
uint16_t nfc_buf_addr;
uint16_t nfc_flash_addr;
uint16_t nfc_flash_cmd;
@ -56,6 +94,30 @@ struct nfc_regs {
uint16_t nfc_nf_wrprst;
uint16_t nfc_config1;
uint16_t nfc_config2;
#elif defined(MXC_NFC_V1_1)
uint16_t reserved2[2];
uint16_t nfc_buf_addr;
uint16_t nfc_flash_addr;
uint16_t nfc_flash_cmd;
uint16_t nfc_config;
uint16_t nfc_ecc_status_result;
uint16_t nfc_ecc_status_result2;
uint16_t nfc_spare_area_size;
uint16_t nfc_wrprot;
uint16_t reserved3[2];
uint16_t nfc_nf_wrprst;
uint16_t nfc_config1;
uint16_t nfc_config2;
uint16_t reserved4;
uint16_t nfc_unlockstart_blkaddr;
uint16_t nfc_unlockend_blkaddr;
uint16_t nfc_unlockstart_blkaddr1;
uint16_t nfc_unlockend_blkaddr1;
uint16_t nfc_unlockstart_blkaddr2;
uint16_t nfc_unlockend_blkaddr2;
uint16_t nfc_unlockstart_blkaddr3;
uint16_t nfc_unlockend_blkaddr3;
#endif
};
/*
@ -100,6 +162,11 @@ struct nfc_regs {
*/
#define NFC_INT 0x8000
#ifdef MXC_NFC_V1_1
#define NFC_4_8N_ECC (1 << 0)
#else
#define NFC_4_8N_ECC 0
#endif
#define NFC_SP_EN (1 << 2)
#define NFC_ECC_EN (1 << 3)
#define NFC_BIG (1 << 5)
@ -119,6 +186,7 @@ struct mxc_nand_host {
int pagesize_2k;
int clk_act;
uint16_t col_addr;
unsigned int page_addr;
};
static struct mxc_nand_host mxc_host;
@ -135,26 +203,45 @@ static struct mxc_nand_host *host = &mxc_host;
#define SPARE_SINGLEBIT_ERROR 0x1
/* OOB placement block for use with hardware ecc generation */
#ifdef CONFIG_MXC_NAND_HWECC
#if defined(MXC_NFC_V1)
#ifndef CONFIG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {{0, 5}, {11, 5}, }
.oobfree = { {0, 5}, {11, 5}, }
};
#else
static struct nand_ecclayout nand_soft_eccoob = {
.eccbytes = 6,
.eccpos = {6, 7, 8, 9, 10, 11},
.oobfree = {{0, 5}, {12, 4}, }
static struct nand_ecclayout nand_hw_eccoob2k = {
.eccbytes = 20,
.eccpos = {
6, 7, 8, 9, 10,
22, 23, 24, 25, 26,
38, 39, 40, 41, 42,
54, 55, 56, 57, 58,
},
.oobfree = { {2, 4}, {11, 11}, {27, 11}, {43, 11}, {59, 5} },
};
#endif
static struct nand_ecclayout nand_hw_eccoob_largepage = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
#elif defined(MXC_NFC_V1_1)
#ifndef CONFIG_SYS_NAND_LARGEPAGE
static struct nand_ecclayout nand_hw_eccoob = {
.eccbytes = 9,
.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
.oobfree = { {2, 5} }
};
#else
static struct nand_ecclayout nand_hw_eccoob2k = {
.eccbytes = 36,
.eccpos = {
7, 8, 9, 10, 11, 12, 13, 14, 15,
23, 24, 25, 26, 27, 28, 29, 30, 31,
39, 40, 41, 42, 43, 44, 45, 46, 47,
55, 56, 57, 58, 59, 60, 61, 62, 63,
},
.oobfree = { {2, 5}, {16, 7}, {32, 7}, {48, 7} },
};
#endif
#endif
#ifdef CONFIG_MX27
static int is_16bit_nand(void)
@ -178,6 +265,17 @@ static int is_16bit_nand(void)
else
return 0;
}
#elif defined(CONFIG_MX25)
static int is_16bit_nand(void)
{
struct ccm_regs *ccm =
(struct ccm_regs *)IMX_CCM_BASE;
if (readl(&ccm->rcsr) & CCM_RCSR_NF_16BIT_SEL)
return 1;
else
return 0;
}
#else
#warning "8/16 bit NAND autodetection not supported"
static int is_16bit_nand(void)
@ -258,7 +356,24 @@ static void send_addr(struct mxc_nand_host *host, uint16_t addr)
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
int spare_only)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
if (spare_only)
MTDDEBUG(MTD_DEBUG_LEVEL1, "send_prog_page (%d)\n", spare_only);
if (is_mxc_nfc_11()) {
int i;
/*
* The controller copies the 64 bytes of spare data from
* the first 16 bytes of each of the 4 64 byte spare buffers.
* Copy the contiguous data starting in spare_area[0] to
* the four spare area buffers.
*/
for (i = 1; i < 4; i++) {
void __iomem *src = &host->regs->spare_area[0][i * 16];
void __iomem *dst = &host->regs->spare_area[i][0];
mxc_nand_memcpy32(dst, src, 16);
}
}
writew(buf_id, &host->regs->nfc_buf_addr);
@ -303,6 +418,22 @@ static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
/* Wait for operation to complete */
wait_op_done(host, TROP_US_DELAY, spare_only);
if (is_mxc_nfc_11()) {
int i;
/*
* The controller copies the 64 bytes of spare data to
* the first 16 bytes of each of the 4 spare buffers.
* Make the data contiguous starting in spare_area[0].
*/
for (i = 1; i < 4; i++) {
void __iomem *src = &host->regs->spare_area[i][0];
void __iomem *dst = &host->regs->spare_area[0][i * 16];
mxc_nand_memcpy32(dst, src, 16);
}
}
}
/* Request the NANDFC to perform a read of the NAND device ID. */
@ -330,7 +461,7 @@ static void send_read_id(struct mxc_nand_host *host)
*/
static uint16_t get_dev_status(struct mxc_nand_host *host)
{
void __iomem *main_buf = host->regs->main_area1;
void __iomem *main_buf = host->regs->main_area[1];
uint32_t store;
uint16_t ret, tmp;
/* Issue status request to NAND device */
@ -379,6 +510,330 @@ static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
*/
}
#ifdef MXC_NFC_V1_1
static void _mxc_nand_enable_hwecc(struct mtd_info *mtd, int on)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t tmp = readw(&host->regs->nfc_config1);
if (on)
tmp |= NFC_ECC_EN;
else
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
}
static int mxc_nand_read_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
int page, int sndcmd)
{
struct mxc_nand_host *host = chip->priv;
uint8_t *buf = chip->oob_poi;
int length = mtd->oobsize;
int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *bufpoi = buf;
int i, toread;
MTDDEBUG(MTD_DEBUG_LEVEL0,
"%s: Reading OOB area of page %u to oob %p\n",
__FUNCTION__, host->page_addr, buf);
chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, page);
for (i = 0; i < chip->ecc.steps; i++) {
toread = min_t(int, length, chip->ecc.prepad);
if (toread) {
chip->read_buf(mtd, bufpoi, toread);
bufpoi += toread;
length -= toread;
}
bufpoi += chip->ecc.bytes;
host->col_addr += chip->ecc.bytes;
length -= chip->ecc.bytes;
toread = min_t(int, length, chip->ecc.postpad);
if (toread) {
chip->read_buf(mtd, bufpoi, toread);
bufpoi += toread;
length -= toread;
}
}
if (length > 0)
chip->read_buf(mtd, bufpoi, length);
_mxc_nand_enable_hwecc(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_READOOB,
mtd->writesize + chip->ecc.prepad, page);
bufpoi = buf + chip->ecc.prepad;
length = mtd->oobsize - chip->ecc.prepad;
for (i = 0; i < chip->ecc.steps; i++) {
toread = min_t(int, length, chip->ecc.bytes);
chip->read_buf(mtd, bufpoi, toread);
bufpoi += eccpitch;
length -= eccpitch;
host->col_addr += chip->ecc.postpad + chip->ecc.prepad;
}
_mxc_nand_enable_hwecc(mtd, 1);
return 1;
}
static int mxc_nand_read_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf,
int page)
{
struct mxc_nand_host *host = chip->priv;
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *oob = chip->oob_poi;
int steps, size;
int n;
_mxc_nand_enable_hwecc(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, host->page_addr);
for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
host->col_addr = n * eccsize;
chip->read_buf(mtd, buf, eccsize);
buf += eccsize;
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->read_buf(mtd, oob, size);
_mxc_nand_enable_hwecc(mtd, 0);
return 0;
}
static int mxc_nand_read_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
uint8_t *buf,
int page)
{
struct mxc_nand_host *host = chip->priv;
int n, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsteps = chip->ecc.steps;
uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
MTDDEBUG(MTD_DEBUG_LEVEL1, "Reading page %u to buf %p oob %p\n",
host->page_addr, buf, oob);
/* first read out the data area and the available portion of OOB */
for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
int stat;
host->col_addr = n * eccsize;
chip->read_buf(mtd, p, eccsize);
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->read_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
oob += eccbytes;
if (chip->ecc.postpad) {
chip->read_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
n = mtd->oobsize - (oob - chip->oob_poi);
if (n)
chip->read_buf(mtd, oob, n);
/* Then switch ECC off and read the OOB area to get the ECC code */
_mxc_nand_enable_hwecc(mtd, 0);
chip->cmdfunc(mtd, NAND_CMD_READOOB, mtd->writesize, host->page_addr);
eccsteps = chip->ecc.steps;
oob = chip->oob_poi + chip->ecc.prepad;
for (n = 0; eccsteps; n++, eccsteps--, p += eccsize) {
host->col_addr = mtd->writesize +
n * eccpitch +
chip->ecc.prepad;
chip->read_buf(mtd, oob, eccbytes);
oob += eccbytes + chip->ecc.postpad;
}
_mxc_nand_enable_hwecc(mtd, 1);
return 0;
}
static int mxc_nand_write_oob_syndrome(struct mtd_info *mtd,
struct nand_chip *chip, int page)
{
struct mxc_nand_host *host = chip->priv;
int eccpitch = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
int length = mtd->oobsize;
int i, len, status, steps = chip->ecc.steps;
const uint8_t *bufpoi = chip->oob_poi;
chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
for (i = 0; i < steps; i++) {
len = min_t(int, length, eccpitch);
chip->write_buf(mtd, bufpoi, len);
bufpoi += len;
length -= len;
host->col_addr += chip->ecc.prepad + chip->ecc.postpad;
}
if (length > 0)
chip->write_buf(mtd, bufpoi, length);
chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
status = chip->waitfunc(mtd, chip);
return status & NAND_STATUS_FAIL ? -EIO : 0;
}
static void mxc_nand_write_page_raw_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf)
{
struct mxc_nand_host *host = chip->priv;
int eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
uint8_t *oob = chip->oob_poi;
int steps, size;
int n;
for (n = 0, steps = chip->ecc.steps; steps > 0; n++, steps--) {
host->col_addr = n * eccsize;
chip->write_buf(mtd, buf, eccsize);
buf += eccsize;
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
host->col_addr += eccbytes;
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
size = mtd->oobsize - (oob - chip->oob_poi);
if (size)
chip->write_buf(mtd, oob, size);
}
static void mxc_nand_write_page_syndrome(struct mtd_info *mtd,
struct nand_chip *chip,
const uint8_t *buf)
{
struct mxc_nand_host *host = chip->priv;
int i, n, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccpitch = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
int eccsteps = chip->ecc.steps;
const uint8_t *p = buf;
uint8_t *oob = chip->oob_poi;
chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
for (i = n = 0;
eccsteps;
n++, eccsteps--, i += eccbytes, p += eccsize) {
host->col_addr = n * eccsize;
chip->write_buf(mtd, p, eccsize);
host->col_addr = mtd->writesize + n * eccpitch;
if (chip->ecc.prepad) {
chip->write_buf(mtd, oob, chip->ecc.prepad);
oob += chip->ecc.prepad;
}
chip->write_buf(mtd, oob, eccbytes);
oob += eccbytes;
if (chip->ecc.postpad) {
chip->write_buf(mtd, oob, chip->ecc.postpad);
oob += chip->ecc.postpad;
}
}
/* Calculate remaining oob bytes */
i = mtd->oobsize - (oob - chip->oob_poi);
if (i)
chip->write_buf(mtd, oob, i);
}
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
struct nand_chip *nand_chip = mtd->priv;
struct mxc_nand_host *host = nand_chip->priv;
uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);
int subpages = mtd->writesize / nand_chip->subpagesize;
int pg2blk_shift = nand_chip->phys_erase_shift -
nand_chip->page_shift;
do {
if ((ecc_status & 0xf) > 4) {
static int last_bad = -1;
if (last_bad != host->page_addr >> pg2blk_shift) {
last_bad = host->page_addr >> pg2blk_shift;
printk(KERN_DEBUG
"MXC_NAND: HWECC uncorrectable ECC error"
" in block %u page %u subpage %d\n",
last_bad, host->page_addr,
mtd->writesize / nand_chip->subpagesize
- subpages);
}
return -1;
}
ecc_status >>= 4;
subpages--;
} while (subpages > 0);
return 0;
}
#else
#define mxc_nand_read_page_syndrome NULL
#define mxc_nand_read_page_raw_syndrome NULL
#define mxc_nand_read_oob_syndrome NULL
#define mxc_nand_write_page_syndrome NULL
#define mxc_nand_write_page_raw_syndrome NULL
#define mxc_nand_write_oob_syndrome NULL
#define mxc_nfc_11_nand_correct_data NULL
static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
u_char *read_ecc, u_char *calc_ecc)
{
@ -400,6 +855,9 @@ static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
return 0;
}
#endif
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
u_char *ecc_code)
@ -415,9 +873,9 @@ static u_char mxc_nand_read_byte(struct mtd_info *mtd)
uint8_t ret = 0;
uint16_t col;
uint16_t __iomem *main_buf =
(uint16_t __iomem *)host->regs->main_area0;
(uint16_t __iomem *)host->regs->main_area[0];
uint16_t __iomem *spare_buf =
(uint16_t __iomem *)host->regs->spare_area0;
(uint16_t __iomem *)host->regs->spare_area[0];
union {
uint16_t word;
uint8_t bytes[2];
@ -464,9 +922,10 @@ static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
col += mtd->writesize;
if (col < mtd->writesize) {
p = (uint16_t __iomem *)(host->regs->main_area0 + (col >> 1));
p = (uint16_t __iomem *)(host->regs->main_area[0] +
(col >> 1));
} else {
p = (uint16_t __iomem *)(host->regs->spare_area0 +
p = (uint16_t __iomem *)(host->regs->spare_area[0] +
((col - mtd->writesize) >> 1));
}
@ -525,9 +984,9 @@ static void mxc_nand_write_buf(struct mtd_info *mtd,
void __iomem *p;
if (col < mtd->writesize) {
p = host->regs->main_area0 + (col & ~3);
p = host->regs->main_area[0] + (col & ~3);
} else {
p = host->regs->spare_area0 -
p = host->regs->spare_area[0] -
mtd->writesize + (col & ~3);
}
@ -595,9 +1054,9 @@ static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
void __iomem *p;
if (col < mtd->writesize) {
p = host->regs->main_area0 + (col & ~3);
p = host->regs->main_area[0] + (col & ~3);
} else {
p = host->regs->spare_area0 -
p = host->regs->spare_area[0] -
mtd->writesize + (col & ~3);
}
@ -683,7 +1142,7 @@ static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
* Used by the upper layer to write command to NAND Flash for
* different operations to be carried out on NAND Flash
*/
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
struct nand_chip *nand_chip = mtd->priv;
@ -705,6 +1164,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
break;
case NAND_CMD_READ0:
host->page_addr = page_addr;
host->col_addr = column;
host->spare_only = false;
break;
@ -750,7 +1210,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
case NAND_CMD_PAGEPROG:
send_prog_page(host, 0, host->spare_only);
if (host->pagesize_2k) {
if (host->pagesize_2k && !is_mxc_nfc_11()) {
/* data in 4 areas datas */
send_prog_page(host, 1, host->spare_only);
send_prog_page(host, 2, host->spare_only);
@ -780,30 +1240,12 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
/* Write out page address, if necessary */
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
send_addr(host, (page_addr & 0xff));
if (host->pagesize_2k) {
send_addr(host, (page_addr >> 8) & 0xFF);
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
send_addr(host, (page_addr >> 16) & 0xff);
} else {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
}
} else {
/* One more address cycle for higher density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
send_addr(host, (page_addr >> 16) & 0xff);
} else {
/* paddr_8 - paddr_15 */
send_addr(host, (page_addr >> 8) & 0xff);
}
}
u32 page_mask = nand_chip->pagemask;
do {
send_addr(host, page_addr & 0xFF);
page_addr >>= 8;
page_mask >>= 8;
} while (page_mask);
}
/* Command post-processing step */
@ -819,9 +1261,11 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
send_cmd(host, NAND_CMD_READSTART);
/* read for each AREA */
send_read_page(host, 0, host->spare_only);
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only);
send_read_page(host, 3, host->spare_only);
if (!is_mxc_nfc_11()) {
send_read_page(host, 1, host->spare_only);
send_read_page(host, 2, host->spare_only);
send_read_page(host, 3, host->spare_only);
}
} else {
send_read_page(host, 0, host->spare_only);
}
@ -843,6 +1287,24 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
}
}
#ifdef MXC_NFC_V1_1
static void mxc_setup_config1(void)
{
uint16_t tmp;
tmp = readw(&host->regs->nfc_config1);
tmp |= NFC_ONE_CYCLE;
tmp |= NFC_4_8N_ECC;
writew(tmp, &host->regs->nfc_config1);
if (host->pagesize_2k)
writew(64/2, &host->regs->nfc_spare_area_size);
else
writew(16/2, &host->regs->nfc_spare_area_size);
}
#else
#define mxc_setup_config1()
#endif
int board_nand_init(struct nand_chip *this)
{
struct mtd_info *mtd;
@ -874,10 +1336,23 @@ int board_nand_init(struct nand_chip *this)
this->ecc.calculate = mxc_nand_calculate_ecc;
this->ecc.hwctl = mxc_nand_enable_hwecc;
this->ecc.correct = mxc_nand_correct_data;
this->ecc.mode = NAND_ECC_HW;
if (is_mxc_nfc_11()) {
this->ecc.mode = NAND_ECC_HW_SYNDROME;
this->ecc.read_page = mxc_nand_read_page_syndrome;
this->ecc.read_page_raw = mxc_nand_read_page_raw_syndrome;
this->ecc.read_oob = mxc_nand_read_oob_syndrome;
this->ecc.write_page = mxc_nand_write_page_syndrome;
this->ecc.write_page_raw = mxc_nand_write_page_raw_syndrome;
this->ecc.write_oob = mxc_nand_write_oob_syndrome;
this->ecc.bytes = 9;
this->ecc.prepad = 7;
} else {
this->ecc.mode = NAND_ECC_HW;
}
host->pagesize_2k = 0;
this->ecc.size = 512;
this->ecc.bytes = 3;
this->ecc.layout = &nand_hw_eccoob;
tmp = readw(&host->regs->nfc_config1);
tmp |= NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
@ -888,7 +1363,6 @@ int board_nand_init(struct nand_chip *this)
tmp &= ~NFC_ECC_EN;
writew(tmp, &host->regs->nfc_config1);
#endif
/* Reset NAND */
this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
@ -911,10 +1385,11 @@ int board_nand_init(struct nand_chip *this)
#ifdef CONFIG_SYS_NAND_LARGEPAGE
host->pagesize_2k = 1;
this->ecc.layout = &nand_hw_eccoob_largepage;
this->ecc.layout = &nand_hw_eccoob2k;
#else
host->pagesize_2k = 0;
this->ecc.layout = &nand_hw_eccoob;
#endif
mxc_setup_config1();
return err;
}