dm: core: Add operations on device tree references

Since U-Boot supports both a live tree and a flat tree, we need an easy
way to access the tree without worrying about which is currently active.
To support this, U-Boot has the concept of an ofnode, which can refer
either to a live tree node or a flat tree node.

For the live tree, the reference contains a pointer to the node (struct
device_node *) or NULL if the node is invalid. For the flat tree, the
reference contains the node offset or -1 if the node is invalid.

Add a basic set of operations using ofnodes. These are implemented by
using either libfdt functions (in the case of a flat DT reference) or
the live-tree of_...() functions.

Note that it is not possible to have both live and flat references active
at the same time. As soon as the live tree is available, everything in
U-Boot should switch to using that. This avoids confusion and allows us to
assume that the type of a reference is simply based on whether we have a
live tree yet, or not.

Signed-off-by: Simon Glass <sjg@chromium.org>
This commit is contained in:
Simon Glass 2017-05-18 20:08:58 -06:00
parent 911f3aef35
commit 9e51204527
3 changed files with 1017 additions and 3 deletions

View File

@ -12,3 +12,4 @@ obj-$(CONFIG_DM) += dump.o
obj-$(CONFIG_$(SPL_)REGMAP) += regmap.o obj-$(CONFIG_$(SPL_)REGMAP) += regmap.o
obj-$(CONFIG_$(SPL_)SYSCON) += syscon-uclass.o obj-$(CONFIG_$(SPL_)SYSCON) += syscon-uclass.o
obj-$(CONFIG_OF_LIVE) += of_access.o obj-$(CONFIG_OF_LIVE) += of_access.o
obj-$(CONFIG_OF_CONTROL) += ofnode.o

552
drivers/core/ofnode.c Normal file
View File

@ -0,0 +1,552 @@
/*
* Copyright (c) 2017 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <fdtdec.h>
#include <fdt_support.h>
#include <libfdt.h>
#include <dm/of_access.h>
#include <dm/ofnode.h>
#include <linux/err.h>
int ofnode_read_u32(ofnode node, const char *propname, u32 *outp)
{
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
return of_read_u32(ofnode_to_np(node), propname, outp);
} else {
const int *cell;
int len;
cell = fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, &len);
if (!cell || len < sizeof(int)) {
debug("(not found)\n");
return -EINVAL;
}
*outp = fdt32_to_cpu(cell[0]);
}
debug("%#x (%d)\n", *outp, *outp);
return 0;
}
int ofnode_read_u32_default(ofnode node, const char *propname, u32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32(node, propname, &def);
return def;
}
int ofnode_read_s32_default(ofnode node, const char *propname, s32 def)
{
assert(ofnode_valid(node));
ofnode_read_u32(node, propname, (u32 *)&def);
return def;
}
bool ofnode_read_bool(ofnode node, const char *propname)
{
bool val;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
val = !!of_find_property(ofnode_to_np(node), propname, NULL);
} else {
val = !!fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, NULL);
}
debug("%s\n", val ? "true" : "false");
return val;
}
const char *ofnode_read_string(ofnode node, const char *propname)
{
const char *str = NULL;
int len = -1;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
struct property *prop = of_find_property(
ofnode_to_np(node), propname, NULL);
if (prop) {
str = prop->value;
len = prop->length;
}
} else {
str = fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, &len);
}
if (!str) {
debug("<not found>\n");
return NULL;
}
if (strnlen(str, len) >= len) {
debug("<invalid>\n");
return NULL;
}
debug("%s\n", str);
return str;
}
ofnode ofnode_find_subnode(ofnode node, const char *subnode_name)
{
ofnode subnode;
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, subnode_name);
if (ofnode_is_np(node)) {
const struct device_node *np = ofnode_to_np(node);
for (np = np->child; np; np = np->sibling) {
if (!strcmp(subnode_name, np->name))
break;
}
subnode = np_to_ofnode(np);
} else {
int ooffset = fdt_subnode_offset(gd->fdt_blob,
ofnode_to_offset(node), subnode_name);
subnode = offset_to_ofnode(ooffset);
}
debug("%s\n", ofnode_valid(subnode) ?
ofnode_get_name(subnode) : "<none>");
return subnode;
}
int ofnode_read_u32_array(ofnode node, const char *propname,
u32 *out_values, size_t sz)
{
assert(ofnode_valid(node));
debug("%s: %s: ", __func__, propname);
if (ofnode_is_np(node)) {
return of_read_u32_array(ofnode_to_np(node), propname,
out_values, sz);
} else {
return fdtdec_get_int_array(gd->fdt_blob,
ofnode_to_offset(node), propname,
out_values, sz);
}
}
ofnode ofnode_first_subnode(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return np_to_ofnode(node.np->child);
return offset_to_ofnode(
fdt_first_subnode(gd->fdt_blob, ofnode_to_offset(node)));
}
ofnode ofnode_next_subnode(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return np_to_ofnode(node.np->sibling);
return offset_to_ofnode(
fdt_next_subnode(gd->fdt_blob, ofnode_to_offset(node)));
}
const char *ofnode_get_name(ofnode node)
{
assert(ofnode_valid(node));
if (ofnode_is_np(node))
return strrchr(node.np->full_name, '/') + 1;
return fdt_get_name(gd->fdt_blob, ofnode_to_offset(node), NULL);
}
int ofnode_read_size(ofnode node, const char *propname)
{
int len;
if (ofnode_is_np(node)) {
struct property *prop = of_find_property(
ofnode_to_np(node), propname, NULL);
if (prop)
return prop->length;
} else {
if (fdt_getprop(gd->fdt_blob, ofnode_to_offset(node), propname,
&len))
return len;
}
return -EINVAL;
}
int ofnode_stringlist_search(ofnode node, const char *property,
const char *string)
{
if (ofnode_is_np(node)) {
return of_property_match_string(ofnode_to_np(node),
property, string);
} else {
int ret;
ret = fdt_stringlist_search(gd->fdt_blob,
ofnode_to_offset(node), property,
string);
if (ret == -FDT_ERR_NOTFOUND)
return -ENODATA;
else if (ret < 0)
return -EINVAL;
return ret;
}
}
int ofnode_read_string_index(ofnode node, const char *property, int index,
const char **outp)
{
if (ofnode_is_np(node)) {
return of_property_read_string_index(ofnode_to_np(node),
property, index, outp);
} else {
int len;
*outp = fdt_stringlist_get(gd->fdt_blob, ofnode_to_offset(node),
property, index, &len);
if (len < 0)
return -EINVAL;
return 0;
}
}
static void ofnode_from_fdtdec_phandle_args(struct fdtdec_phandle_args *in,
struct ofnode_phandle_args *out)
{
assert(OF_MAX_PHANDLE_ARGS == MAX_PHANDLE_ARGS);
out->node = offset_to_ofnode(in->node);
out->args_count = in->args_count;
memcpy(out->args, in->args, sizeof(out->args));
}
static void ofnode_from_of_phandle_args(struct of_phandle_args *in,
struct ofnode_phandle_args *out)
{
assert(OF_MAX_PHANDLE_ARGS == MAX_PHANDLE_ARGS);
out->node = np_to_ofnode(in->np);
out->args_count = in->args_count;
memcpy(out->args, in->args, sizeof(out->args));
}
int ofnode_parse_phandle_with_args(ofnode node, const char *list_name,
const char *cells_name, int cell_count,
int index,
struct ofnode_phandle_args *out_args)
{
if (ofnode_is_np(node)) {
struct of_phandle_args args;
int ret;
ret = of_parse_phandle_with_args(ofnode_to_np(node),
list_name, cells_name, index, &args);
if (ret)
return ret;
ofnode_from_of_phandle_args(&args, out_args);
} else {
struct fdtdec_phandle_args args;
int ret;
ret = fdtdec_parse_phandle_with_args(gd->fdt_blob,
ofnode_to_offset(node), list_name, cells_name,
cell_count, index, &args);
if (ret)
return ret;
ofnode_from_fdtdec_phandle_args(&args, out_args);
}
return 0;
}
ofnode ofnode_path(const char *path)
{
if (of_live_active())
return np_to_ofnode(of_find_node_by_path(path));
else
return offset_to_ofnode(fdt_path_offset(gd->fdt_blob, path));
}
const char *ofnode_get_chosen_prop(const char *name)
{
ofnode chosen_node;
chosen_node = ofnode_path("/chosen");
return ofnode_read_string(chosen_node, name);
}
ofnode ofnode_get_chosen_node(const char *name)
{
const char *prop;
prop = ofnode_get_chosen_prop(name);
if (!prop)
return ofnode_null();
return ofnode_path(prop);
}
static int decode_timing_property(ofnode node, const char *name,
struct timing_entry *result)
{
int length, ret = 0;
length = ofnode_read_size(node, name);
if (length < 0) {
debug("%s: could not find property %s\n",
ofnode_get_name(node), name);
return length;
}
if (length == sizeof(u32)) {
result->typ = ofnode_read_u32_default(node, name, 0);
result->min = result->typ;
result->max = result->typ;
} else {
ret = ofnode_read_u32_array(node, name, &result->min, 3);
}
return ret;
}
int ofnode_decode_display_timing(ofnode parent, int index,
struct display_timing *dt)
{
int i;
ofnode timings, node;
u32 val = 0;
int ret = 0;
timings = ofnode_find_subnode(parent, "display-timings");
if (!ofnode_valid(timings))
return -EINVAL;
for (i = 0, node = ofnode_first_subnode(timings);
ofnode_valid(node) && i != index;
node = ofnode_first_subnode(node))
i++;
if (!ofnode_valid(node))
return -EINVAL;
memset(dt, 0, sizeof(*dt));
ret |= decode_timing_property(node, "hback-porch", &dt->hback_porch);
ret |= decode_timing_property(node, "hfront-porch", &dt->hfront_porch);
ret |= decode_timing_property(node, "hactive", &dt->hactive);
ret |= decode_timing_property(node, "hsync-len", &dt->hsync_len);
ret |= decode_timing_property(node, "vback-porch", &dt->vback_porch);
ret |= decode_timing_property(node, "vfront-porch", &dt->vfront_porch);
ret |= decode_timing_property(node, "vactive", &dt->vactive);
ret |= decode_timing_property(node, "vsync-len", &dt->vsync_len);
ret |= decode_timing_property(node, "clock-frequency", &dt->pixelclock);
dt->flags = 0;
val = ofnode_read_u32_default(node, "vsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
DISPLAY_FLAGS_VSYNC_LOW;
}
val = ofnode_read_u32_default(node, "hsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
DISPLAY_FLAGS_HSYNC_LOW;
}
val = ofnode_read_u32_default(node, "de-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
DISPLAY_FLAGS_DE_LOW;
}
val = ofnode_read_u32_default(node, "pixelclk-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
DISPLAY_FLAGS_PIXDATA_NEGEDGE;
}
if (ofnode_read_bool(node, "interlaced"))
dt->flags |= DISPLAY_FLAGS_INTERLACED;
if (ofnode_read_bool(node, "doublescan"))
dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
if (ofnode_read_bool(node, "doubleclk"))
dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
return ret;
}
const u32 *ofnode_read_prop(ofnode node, const char *propname, int *lenp)
{
if (ofnode_is_np(node)) {
struct property *prop;
prop = of_find_property(ofnode_to_np(node), propname, lenp);
if (!prop)
return NULL;
return prop->value;
} else {
return fdt_getprop(gd->fdt_blob, ofnode_to_offset(node),
propname, lenp);
}
}
bool ofnode_is_available(ofnode node)
{
if (ofnode_is_np(node))
return of_device_is_available(ofnode_to_np(node));
else
return fdtdec_get_is_enabled(gd->fdt_blob,
ofnode_to_offset(node));
}
fdt_addr_t ofnode_get_addr_size(ofnode node, const char *property,
fdt_size_t *sizep)
{
if (ofnode_is_np(node)) {
int na, ns;
int psize;
const struct device_node *np = ofnode_to_np(node);
const __be32 *prop = of_get_property(np, "reg", &psize);
na = of_n_addr_cells(np);
ns = of_n_addr_cells(np);
*sizep = of_read_number(prop + na, ns);
return of_read_number(prop, na);
} else {
return fdtdec_get_addr_size(gd->fdt_blob,
ofnode_to_offset(node), property,
sizep);
}
}
const uint8_t *ofnode_read_u8_array_ptr(ofnode node, const char *propname,
size_t sz)
{
if (ofnode_is_np(node)) {
const struct device_node *np = ofnode_to_np(node);
int psize;
const __be32 *prop = of_get_property(np, propname, &psize);
if (!prop || sz != psize)
return NULL;
return (uint8_t *)prop;
} else {
return fdtdec_locate_byte_array(gd->fdt_blob,
ofnode_to_offset(node), propname, sz);
}
}
int ofnode_read_pci_addr(ofnode node, enum fdt_pci_space type,
const char *propname, struct fdt_pci_addr *addr)
{
const u32 *cell;
int len;
int ret = -ENOENT;
debug("%s: %s: ", __func__, propname);
/*
* If we follow the pci bus bindings strictly, we should check
* the value of the node's parent node's #address-cells and
* #size-cells. They need to be 3 and 2 accordingly. However,
* for simplicity we skip the check here.
*/
cell = ofnode_read_prop(node, propname, &len);
if (!cell)
goto fail;
if ((len % FDT_PCI_REG_SIZE) == 0) {
int num = len / FDT_PCI_REG_SIZE;
int i;
for (i = 0; i < num; i++) {
debug("pci address #%d: %08lx %08lx %08lx\n", i,
(ulong)fdt32_to_cpu(cell[0]),
(ulong)fdt32_to_cpu(cell[1]),
(ulong)fdt32_to_cpu(cell[2]));
if ((fdt32_to_cpu(*cell) & type) == type) {
addr->phys_hi = fdt32_to_cpu(cell[0]);
addr->phys_mid = fdt32_to_cpu(cell[1]);
addr->phys_lo = fdt32_to_cpu(cell[1]);
break;
} else {
cell += (FDT_PCI_ADDR_CELLS +
FDT_PCI_SIZE_CELLS);
}
}
if (i == num) {
ret = -ENXIO;
goto fail;
}
return 0;
} else {
ret = -EINVAL;
}
fail:
debug("(not found)\n");
return ret;
}
int ofnode_read_addr_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_n_addr_cells(ofnode_to_np(node));
else
return fdt_address_cells(gd->fdt_blob, ofnode_to_offset(node));
}
int ofnode_read_size_cells(ofnode node)
{
if (ofnode_is_np(node))
return of_n_size_cells(ofnode_to_np(node));
else
return fdt_size_cells(gd->fdt_blob, ofnode_to_offset(node));
}
bool ofnode_pre_reloc(ofnode node)
{
if (ofnode_read_prop(node, "u-boot,dm-pre-reloc", NULL))
return true;
#ifdef CONFIG_TPL_BUILD
if (ofnode_read_prop(node, "u-boot,dm-tpl", NULL))
return true;
#elif defined(CONFIG_SPL_BUILD)
if (ofnode_read_prop(node, "u-boot,dm-spl", NULL))
return true;
#else
/*
* In regular builds individual spl and tpl handling both
* count as handled pre-relocation for later second init.
*/
if (ofnode_read_prop(node, "u-boot,dm-spl", NULL) ||
ofnode_read_prop(node, "u-boot,dm-tpl", NULL))
return true;
#endif
return false;
}

View File

@ -8,6 +8,13 @@
#ifndef _DM_OFNODE_H #ifndef _DM_OFNODE_H
#define _DM_OFNODE_H #define _DM_OFNODE_H
/* TODO(sjg@chromium.org): Drop fdtdec.h include */
#include <fdtdec.h>
#include <dm/of.h>
/* Enable checks to protect against invalid calls */
#undef OF_CHECKS
/** /**
* ofnode - reference to a device tree node * ofnode - reference to a device tree node
* *
@ -20,7 +27,7 @@
* ofnode and either an offset or a struct device_node *. * ofnode and either an offset or a struct device_node *.
* *
* The reference can also hold a null offset, in which case the pointer value * The reference can also hold a null offset, in which case the pointer value
* here is (void *)-1. This corresponds to a struct device_node * value of * here is NULL. This corresponds to a struct device_node * value of
* NULL, or an offset of -1. * NULL, or an offset of -1.
* *
* There is no ambiguity as to whether ofnode holds an offset or a node * There is no ambiguity as to whether ofnode holds an offset or a node
@ -44,6 +51,29 @@ typedef union ofnode_union {
long of_offset; long of_offset;
} ofnode; } ofnode;
struct ofnode_phandle_args {
ofnode node;
int args_count;
uint32_t args[OF_MAX_PHANDLE_ARGS];
};
/**
* _ofnode_to_np() - convert an ofnode to a live DT node pointer
*
* This cannot be called if the reference contains an offset.
*
* @node: Reference containing struct device_node * (possibly invalid)
* @return pointer to device node (can be NULL)
*/
static inline const struct device_node *ofnode_to_np(ofnode node)
{
#ifdef OF_CHECKS
if (!of_live_active())
return NULL;
#endif
return node.np;
}
/** /**
* ofnode_to_offset() - convert an ofnode to a flat DT offset * ofnode_to_offset() - convert an ofnode to a flat DT offset
* *
@ -54,6 +84,10 @@ typedef union ofnode_union {
*/ */
static inline int ofnode_to_offset(ofnode node) static inline int ofnode_to_offset(ofnode node)
{ {
#ifdef OF_CHECKS
if (of_live_active())
return -1;
#endif
return node.of_offset; return node.of_offset;
} }
@ -64,6 +98,9 @@ static inline int ofnode_to_offset(ofnode node)
*/ */
static inline bool ofnode_valid(ofnode node) static inline bool ofnode_valid(ofnode node)
{ {
if (of_live_active())
return node.np != NULL;
else
return node.of_offset != -1; return node.of_offset != -1;
} }
@ -77,11 +114,54 @@ static inline ofnode offset_to_ofnode(int of_offset)
{ {
ofnode node; ofnode node;
if (of_live_active())
node.np = NULL;
else
node.of_offset = of_offset; node.of_offset = of_offset;
return node; return node;
} }
/**
* np_to_ofnode() - convert a node pointer to an ofnode
*
* @np: Live node pointer (can be NULL)
* @return reference to the associated node pointer
*/
static inline ofnode np_to_ofnode(const struct device_node *np)
{
ofnode node;
node.np = np;
return node;
}
/**
* ofnode_is_np() - check if a reference is a node pointer
*
* This function associated that if there is a valid live tree then all
* references will use it. This is because using the flat DT when the live tree
* is valid is not permitted.
*
* @node: reference to check (possibly invalid)
* @return true if the reference is a live node pointer, false if it is a DT
* offset
*/
static inline bool ofnode_is_np(ofnode node)
{
#ifdef OF_CHECKS
/*
* Check our assumption that flat tree offsets are not used when a
* live tree is in use.
*/
assert(!ofnode_valid(node) ||
(of_live_active() ? _ofnode_to_np(node)
: _ofnode_to_np(node)));
#endif
return of_live_active() && ofnode_valid(node);
}
/** /**
* ofnode_equal() - check if two references are equal * ofnode_equal() - check if two references are equal
* *
@ -93,4 +173,385 @@ static inline bool ofnode_equal(ofnode ref1, ofnode ref2)
return ref1.of_offset == ref2.of_offset; return ref1.of_offset == ref2.of_offset;
} }
/**
* ofnode_null() - Obtain a null ofnode
*
* This returns an ofnode which points to no node. It works both with the flat
* tree and livetree.
*/
static inline ofnode ofnode_null(void)
{
ofnode node;
if (of_live_active())
node.np = NULL;
else
node.of_offset = -1;
return node;
}
/**
* ofnode_read_u32() - Read a 32-bit integer from a property
*
* @ref: valid node reference to read property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
int ofnode_read_u32(ofnode node, const char *propname, u32 *outp);
/**
* ofnode_read_s32() - Read a 32-bit integer from a property
*
* @ref: valid node reference to read property from
* @propname: name of the property to read from
* @outp: place to put value (if found)
* @return 0 if OK, -ve on error
*/
static inline int ofnode_read_s32(ofnode node, const char *propname,
s32 *out_value)
{
return ofnode_read_u32(node, propname, (u32 *)out_value);
}
/**
* ofnode_read_u32_default() - Read a 32-bit integer from a property
*
* @ref: valid node reference to read property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
int ofnode_read_u32_default(ofnode ref, const char *propname, u32 def);
/**
* ofnode_read_s32_default() - Read a 32-bit integer from a property
*
* @ref: valid node reference to read property from
* @propname: name of the property to read from
* @def: default value to return if the property has no value
* @return property value, or @def if not found
*/
int ofnode_read_s32_default(ofnode node, const char *propname, s32 def);
/**
* ofnode_read_string() - Read a string from a property
*
* @ref: valid node reference to read property from
* @propname: name of the property to read
* @return string from property value, or NULL if there is no such property
*/
const char *ofnode_read_string(ofnode node, const char *propname);
/**
* ofnode_read_u32_array - Find and read an array of 32 bit integers
*
* @node: valid node reference to read property from
* @propname: name of the property to read
* @out_values: pointer to return value, modified only if return value is 0
* @sz: number of array elements to read
*
* Search for a property in a device node and read 32-bit value(s) from
* it. Returns 0 on success, -EINVAL if the property does not exist,
* -ENODATA if property does not have a value, and -EOVERFLOW if the
* property data isn't large enough.
*
* The out_values is modified only if a valid u32 value can be decoded.
*/
int ofnode_read_u32_array(ofnode node, const char *propname,
u32 *out_values, size_t sz);
/**
* ofnode_read_bool() - read a boolean value from a property
*
* @node: valid node reference to read property from
* @propname: name of property to read
* @return true if property is present (meaning true), false if not present
*/
bool ofnode_read_bool(ofnode node, const char *propname);
/**
* ofnode_find_subnode() - find a named subnode of a parent node
*
* @node: valid reference to parent node
* @subnode_name: name of subnode to find
* @return reference to subnode (which can be invalid if there is no such
* subnode)
*/
ofnode ofnode_find_subnode(ofnode node, const char *subnode_name);
/**
* ofnode_first_subnode() - find the first subnode of a parent node
*
* @node: valid reference to a valid parent node
* @return reference to the first subnode (which can be invalid if the parent
* node has no subnodes)
*/
ofnode ofnode_first_subnode(ofnode node);
/**
* ofnode_next_subnode() - find the next sibling of a subnode
*
* @node: valid reference to previous node (sibling)
* @return reference to the next subnode (which can be invalid if the node
* has no more siblings)
*/
ofnode ofnode_next_subnode(ofnode node);
/**
* ofnode_get_name() - get the name of a node
*
* @node: valid node to look up
* @return name or node
*/
const char *ofnode_get_name(ofnode node);
/**
* ofnode_read_size() - read the size of a property
*
* @node: node to check
* @propname: property to check
* @return size of property if present, or -EINVAL if not
*/
int ofnode_read_size(ofnode node, const char *propname);
/**
* ofnode_stringlist_search() - find a string in a string list and return index
*
* Note that it is possible for this function to succeed on property values
* that are not NUL-terminated. That's because the function will stop after
* finding the first occurrence of @string. This can for example happen with
* small-valued cell properties, such as #address-cells, when searching for
* the empty string.
*
* @node: node to check
* @propname: name of the property containing the string list
* @string: string to look up in the string list
*
* @return:
* the index of the string in the list of strings
* -ENODATA if the property is not found
* -EINVAL on some other error
*/
int ofnode_stringlist_search(ofnode node, const char *propname,
const char *string);
/**
* fdt_stringlist_get() - obtain the string at a given index in a string list
*
* Note that this will successfully extract strings from properties with
* non-NUL-terminated values. For example on small-valued cell properties
* this function will return the empty string.
*
* If non-NULL, the length of the string (on success) or a negative error-code
* (on failure) will be stored in the integer pointer to by lenp.
*
* @node: node to check
* @propname: name of the property containing the string list
* @index: index of the string to return
* @lenp: return location for the string length or an error code on failure
*
* @return:
* length of string, if found or -ve error value if not found
*/
int ofnode_read_string_index(ofnode node, const char *propname, int index,
const char **outp);
/**
* ofnode_parse_phandle_with_args() - Find a node pointed by phandle in a list
*
* This function is useful to parse lists of phandles and their arguments.
* Returns 0 on success and fills out_args, on error returns appropriate
* errno value.
*
* Caller is responsible to call of_node_put() on the returned out_args->np
* pointer.
*
* Example:
*
* phandle1: node1 {
* #list-cells = <2>;
* }
*
* phandle2: node2 {
* #list-cells = <1>;
* }
*
* node3 {
* list = <&phandle1 1 2 &phandle2 3>;
* }
*
* To get a device_node of the `node2' node you may call this:
* ofnode_parse_phandle_with_args(node3, "list", "#list-cells", 0, 1, &args);
*
* @node: device tree node containing a list
* @list_name: property name that contains a list
* @cells_name: property name that specifies phandles' arguments count
* @cells_count: Cell count to use if @cells_name is NULL
* @index: index of a phandle to parse out
* @out_args: optional pointer to output arguments structure (will be filled)
* @return 0 on success (with @out_args filled out if not NULL), -ENOENT if
* @list_name does not exist, -EINVAL if a phandle was not found,
* @cells_name could not be found, the arguments were truncated or there
* were too many arguments.
*/
int ofnode_parse_phandle_with_args(ofnode node, const char *list_name,
const char *cells_name, int cell_count,
int index,
struct ofnode_phandle_args *out_args);
/**
* ofnode_path() - find a node by full path
*
* @path: Full path to node, e.g. "/bus/spi@1"
* @return reference to the node found. Use ofnode_valid() to check if it exists
*/
ofnode ofnode_path(const char *path);
/**
* ofnode_get_chosen_prop() - get the value of a chosen property
*
* This looks for a property within the /chosen node and returns its value
*
* @propname: Property name to look for
*/
const char *ofnode_get_chosen_prop(const char *propname);
/**
* ofnode_get_chosen_node() - get the chosen node
*
* @return the chosen node if present, else ofnode_null()
*/
ofnode ofnode_get_chosen_node(const char *name);
struct display_timing;
/**
* ofnode_decode_display_timing() - decode display timings
*
* Decode display timings from the supplied 'display-timings' node.
* See doc/device-tree-bindings/video/display-timing.txt for binding
* information.
*
* @node 'display-timing' node containing the timing subnodes
* @index Index number to read (0=first timing subnode)
* @config Place to put timings
* @return 0 if OK, -FDT_ERR_NOTFOUND if not found
*/
int ofnode_decode_display_timing(ofnode node, int index,
struct display_timing *config);
/**
* ofnode_read_prop()- - read a node property
*
* @node: node to read
* @propname: property to read
* @lenp: place to put length on success
* @return pointer to property, or NULL if not found
*/
const u32 *ofnode_read_prop(ofnode node, const char *propname, int *lenp);
/**
* ofnode_is_available() - check if a node is marked available
*
* @node: node to check
* @return true if node's 'status' property is "okay" (or is missing)
*/
bool ofnode_is_available(ofnode node);
/**
* ofnode_get_addr_size() - get address and size from a property
*
* This does no address translation. It simply reads an property that contains
* an address and a size value, one after the other.
*
* @node: node to read from
* @propname: property to read
* @sizep: place to put size value (on success)
* @return address value, or FDT_ADDR_T_NONE on error
*/
phys_addr_t ofnode_get_addr_size(ofnode node, const char *propname,
phys_size_t *sizep);
/**
* ofnode_read_u8_array_ptr() - find an 8-bit array
*
* Look up a property in a node and return a pointer to its contents as a
* byte array of given length. The property must have at least enough data
* for the array (count bytes). It may have more, but this will be ignored.
* The data is not copied.
*
* @node node to examine
* @propname name of property to find
* @sz number of array elements
* @return pointer to byte array if found, or NULL if the property is not
* found or there is not enough data
*/
const uint8_t *ofnode_read_u8_array_ptr(ofnode node, const char *propname,
size_t sz);
/**
* ofnode_read_pci_addr() - look up a PCI address
*
* Look at an address property in a node and return the PCI address which
* corresponds to the given type in the form of fdt_pci_addr.
* The property must hold one fdt_pci_addr with a lengh.
*
* @node node to examine
* @type pci address type (FDT_PCI_SPACE_xxx)
* @propname name of property to find
* @addr returns pci address in the form of fdt_pci_addr
* @return 0 if ok, -ENOENT if the property did not exist, -EINVAL if the
* format of the property was invalid, -ENXIO if the requested
* address type was not found
*/
int ofnode_read_pci_addr(ofnode node, enum fdt_pci_space type,
const char *propname, struct fdt_pci_addr *addr);
/**
* ofnode_read_addr_cells() - Get the number of address cells for a node
*
* This walks back up the tree to find the closest #address-cells property
* which controls the given node.
*
* @node: Node to check
* @return number of address cells this node uses
*/
int ofnode_read_addr_cells(ofnode node);
/**
* ofnode_read_size_cells() - Get the number of size cells for a node
*
* This walks back up the tree to find the closest #size-cells property
* which controls the given node.
*
* @node: Node to check
* @return number of size cells this node uses
*/
int ofnode_read_size_cells(ofnode node);
/**
* ofnode_pre_reloc() - check if a node should be bound before relocation
*
* Device tree nodes can be marked as needing-to-be-bound in the loader stages
* via special device tree properties.
*
* Before relocation this function can be used to check if nodes are required
* in either SPL or TPL stages.
*
* After relocation and jumping into the real U-Boot binary it is possible to
* determine if a node was bound in one of SPL/TPL stages.
*
* There are 3 settings currently in use
* -
* - u-boot,dm-pre-reloc: legacy and indicates any of TPL or SPL
* Existing platforms only use it to indicate nodes needed in
* SPL. Should probably be replaced by u-boot,dm-spl for
* new platforms.
*
* @node: node to check
* @eturns true if node is needed in SPL/TL, false otherwise
*/
bool ofnode_pre_reloc(ofnode node);
#endif #endif