arm: add mach-nexell (all files except header files)

Changes in relation to FriendlyARM's U-Boot nanopi2-v2016.01:
- SPL not supported yet --> no spl-directory in arch/arm/mach-nexell.
  Appropriate line in Makefile removed.
- clock.c: 'section(".data")' added to declaration of clk_periphs[] and
  core_hz.
- Kconfig: Changes to have a structure like in mach-bcm283x/Kconfig,
  e.g. "config ..." entries moved from other Kconfig.
- timer.c: 'section(".data")' added to declaration of timestamp and
  lastdec.
- arch/arm/mach-nexell/serial.c removed because this is for the UARTs
  of the S5P6818 SoC which is not supported yet. S5P4418 UARTs are
  different, here the (existing) PL011-code is used.
- '#ifdef CONFIG...' changed to 'if (IS_ENABLED(CONFIG...))' where
  possible (and similar).

Signed-off-by: Stefan Bosch <stefan_b@posteo.net>
This commit is contained in:
Stefan Bosch 2020-07-10 19:07:26 +02:00 committed by Tom Rini
parent a1ce9ed063
commit 95e9a8e2cb
13 changed files with 1999 additions and 0 deletions

View File

@ -916,6 +916,11 @@ config ARCH_MX5
select CPU_V7A
imply MXC_GPIO
config ARCH_NEXELL
bool "Nexell S5P4418/S5P6818 SoC"
select ENABLE_ARM_SOC_BOOT0_HOOK
select DM
config ARCH_OWL
bool "Actions Semi OWL SoCs"
select DM
@ -1892,6 +1897,8 @@ source "arch/arm/cpu/armv8/Kconfig"
source "arch/arm/mach-imx/Kconfig"
source "arch/arm/mach-nexell/Kconfig"
source "board/bosch/shc/Kconfig"
source "board/bosch/guardian/Kconfig"
source "board/CarMediaLab/flea3/Kconfig"

View File

@ -66,6 +66,7 @@ machine-$(CONFIG_ARCH_LPC32XX) += lpc32xx
machine-$(CONFIG_ARCH_MEDIATEK) += mediatek
machine-$(CONFIG_ARCH_MESON) += meson
machine-$(CONFIG_ARCH_MVEBU) += mvebu
machine-$(CONFIG_ARCH_NEXELL) += nexell
machine-$(CONFIG_ARCH_OMAP2PLUS) += omap2
machine-$(CONFIG_ARCH_ORION5X) += orion5x
machine-$(CONFIG_ARCH_OWL) += owl

View File

@ -0,0 +1,58 @@
if ARCH_NEXELL
config ARCH_S5P4418
bool "Nexell S5P4418 SoC"
select CPU_V7A
select OF_CONTROL
select OF_SEPARATE
select NX_GPIO
select PL011_SERIAL
select PL011_SERIAL_FLUSH_ON_INIT
help
Enable support for Nexell S5P4418 SoC.
config ARCH_S5P6818
bool "Nexell S5P6818 SoC"
select ARM64
select ARMV8_MULTIENTRY
help
Enable support for Nexell S5P6818 SoC.
menu "Nexell S5P4418/S5P6818"
depends on ARCH_NEXELL
choice
prompt "Nexell S5P4418/S5P6818 board select"
optional
config TARGET_NANOPI2
bool "FriendlyARM NanoPi2 / NanoPC-T2 Board"
select ARCH_S5P4418
help
Enable support for FriendlyARM NanoPi2 and NanoPC-T2 Boards.
endchoice
config SYS_BOARD
default "nanopi2"
config SYS_VENDOR
default "friendlyarm"
config SYS_SOC
default "nexell"
config SYS_CONFIG_NAME
default "s5p4418_nanopi2"
endmenu
config SYS_PLLFIN
int
config TIMER_SYS_TICK_CH
int
source "board/friendlyarm/Kconfig"
endif

View File

@ -0,0 +1,13 @@
# SPDX-License-Identifier: GPL-2.0+
#
# (C) Copyright 2016 Nexell
# Hyunseok, Jung <hsjung@nexell.co.kr>
obj-y += clock.o
obj-y += timer.o
obj-y += reset.o
obj-y += nx_gpio.o
obj-y += tieoff.o
obj-$(CONFIG_ARCH_S5P4418) += reg-call.o
obj-$(CONFIG_ARCH_S5P4418) += nx_sec_reg.o
obj-$(CONFIG_CMD_BOOTL) += cmd_boot_linux.o

View File

@ -0,0 +1,869 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Nexell
* Hyunseok, Jung <hsjung@nexell.co.kr>
*/
#include <common.h>
#include <command.h>
#include <linux/err.h>
#include <asm/io.h>
#include <asm/arch/nexell.h>
#include <asm/arch/clk.h>
/*
* clock generator macros
*/
#define I_PLL0_BIT (0)
#define I_PLL1_BIT (1)
#define I_PLL2_BIT (2)
#define I_PLL3_BIT (3)
#define I_EXT1_BIT (4)
#define I_EXT2_BIT (5)
#define I_CLKn_BIT (7)
#define I_EXT1_BIT_FORCE (8)
#define I_EXT2_BIT_FORCE (9)
#define I_CLOCK_NUM 6 /* PLL0, PLL1, PLL2, PLL3, EXT1, EXT2 */
#define I_EXECEPT_CLK (0)
#define I_CLOCK_MASK (((1 << I_CLOCK_NUM) - 1) & ~I_EXECEPT_CLK)
#define I_PLL0 (1 << I_PLL0_BIT)
#define I_PLL1 (1 << I_PLL1_BIT)
#define I_PLL2 (1 << I_PLL2_BIT)
#define I_PLL3 (1 << I_PLL3_BIT)
#define I_EXTCLK1 (1 << I_EXT1_BIT)
#define I_EXTCLK2 (1 << I_EXT2_BIT)
#define I_EXTCLK1_FORCE (1 << I_EXT1_BIT_FORCE)
#define I_EXTCLK2_FORCE (1 << I_EXT2_BIT_FORCE)
#define I_PLL_0_1 (I_PLL0 | I_PLL1)
#define I_PLL_0_2 (I_PLL_0_1 | I_PLL2)
#define I_PLL_0_3 (I_PLL_0_2 | I_PLL3)
#define I_CLKnOUT (0)
#define I_PCLK (1 << 16)
#define I_BCLK (1 << 17)
#define I_GATE_PCLK (1 << 20)
#define I_GATE_BCLK (1 << 21)
#define I_PCLK_MASK (I_GATE_PCLK | I_PCLK)
#define I_BCLK_MASK (I_GATE_BCLK | I_BCLK)
struct clk_dev_peri {
const char *dev_name;
void __iomem *base;
int dev_id;
int periph_id;
int clk_step;
u32 in_mask;
u32 in_mask1;
int div_src_0;
int div_val_0;
int invert_0;
int div_src_1;
int div_val_1;
int invert_1;
int in_extclk_1;
int in_extclk_2;
};
struct clk_dev {
struct clk clk;
struct clk *link;
const char *name;
struct clk_dev_peri *peri;
};
struct clk_dev_map {
unsigned int con_enb;
unsigned int con_gen[4];
};
#define CLK_PERI_1S(name, devid, id, addr, mk)[id] = \
{ .dev_name = name, .dev_id = devid, .periph_id = id, .clk_step = 1, \
.base = (void *)addr, .in_mask = mk, }
#define CLK_PERI_2S(name, devid, id, addr, mk, mk2)[id] = \
{ .dev_name = name, .dev_id = devid, .periph_id = id, .clk_step = 2, \
.base = (void *)addr, .in_mask = mk, .in_mask1 = mk2, }
static const char * const clk_core[] = {
CORECLK_NAME_PLL0, CORECLK_NAME_PLL1, CORECLK_NAME_PLL2,
CORECLK_NAME_PLL3, CORECLK_NAME_FCLK, CORECLK_NAME_MCLK,
CORECLK_NAME_BCLK, CORECLK_NAME_PCLK, CORECLK_NAME_HCLK,
};
/*
* Section ".data" must be used because BSS is not available before relocation,
* in board_init_f(), respectively! I.e. global variables can not be used!
*/
static struct clk_dev_peri clk_periphs[]
__attribute__((section(".data"))) = {
CLK_PERI_1S(DEV_NAME_TIMER, 0, CLK_ID_TIMER_0,
PHY_BASEADDR_CLKGEN14, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_TIMER, 1, CLK_ID_TIMER_1,
PHY_BASEADDR_CLKGEN0, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_TIMER, 2, CLK_ID_TIMER_2,
PHY_BASEADDR_CLKGEN1, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_TIMER, 3, CLK_ID_TIMER_3,
PHY_BASEADDR_CLKGEN2, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_UART, 0, CLK_ID_UART_0,
PHY_BASEADDR_CLKGEN22, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_UART, 1, CLK_ID_UART_1,
PHY_BASEADDR_CLKGEN24, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_UART, 2, CLK_ID_UART_2,
PHY_BASEADDR_CLKGEN23, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_UART, 3, CLK_ID_UART_3,
PHY_BASEADDR_CLKGEN25, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_UART, 4, CLK_ID_UART_4,
PHY_BASEADDR_CLKGEN26, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_UART, 5, CLK_ID_UART_5,
PHY_BASEADDR_CLKGEN27, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_PWM, 0, CLK_ID_PWM_0,
PHY_BASEADDR_CLKGEN13, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_PWM, 1, CLK_ID_PWM_1,
PHY_BASEADDR_CLKGEN3, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_PWM, 2, CLK_ID_PWM_2,
PHY_BASEADDR_CLKGEN4, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_PWM, 3, CLK_ID_PWM_3,
PHY_BASEADDR_CLKGEN5, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_I2C, 0, CLK_ID_I2C_0,
PHY_BASEADDR_CLKGEN6, (I_GATE_PCLK)),
CLK_PERI_1S(DEV_NAME_I2C, 1, CLK_ID_I2C_1,
PHY_BASEADDR_CLKGEN7, (I_GATE_PCLK)),
CLK_PERI_1S(DEV_NAME_I2C, 2, CLK_ID_I2C_2,
PHY_BASEADDR_CLKGEN8, (I_GATE_PCLK)),
CLK_PERI_2S(DEV_NAME_GMAC, 0, CLK_ID_GMAC,
PHY_BASEADDR_CLKGEN10,
(I_PLL_0_3 | I_EXTCLK1 | I_EXTCLK1_FORCE),
(I_CLKnOUT)),
CLK_PERI_2S(DEV_NAME_I2S, 0, CLK_ID_I2S_0,
PHY_BASEADDR_CLKGEN15, (I_PLL_0_3 | I_EXTCLK1),
(I_CLKnOUT)),
CLK_PERI_2S(DEV_NAME_I2S, 1, CLK_ID_I2S_1,
PHY_BASEADDR_CLKGEN16, (I_PLL_0_3 | I_EXTCLK1),
(I_CLKnOUT)),
CLK_PERI_2S(DEV_NAME_I2S, 2, CLK_ID_I2S_2,
PHY_BASEADDR_CLKGEN17, (I_PLL_0_3 | I_EXTCLK1),
(I_CLKnOUT)),
CLK_PERI_1S(DEV_NAME_SDHC, 0, CLK_ID_SDHC_0,
PHY_BASEADDR_CLKGEN18, (I_PLL_0_2 | I_GATE_PCLK)),
CLK_PERI_1S(DEV_NAME_SDHC, 1, CLK_ID_SDHC_1,
PHY_BASEADDR_CLKGEN19, (I_PLL_0_2 | I_GATE_PCLK)),
CLK_PERI_1S(DEV_NAME_SDHC, 2, CLK_ID_SDHC_2,
PHY_BASEADDR_CLKGEN20, (I_PLL_0_2 | I_GATE_PCLK)),
CLK_PERI_1S(DEV_NAME_SPI, 0, CLK_ID_SPI_0,
PHY_BASEADDR_CLKGEN37, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_SPI, 1, CLK_ID_SPI_1,
PHY_BASEADDR_CLKGEN38, (I_PLL_0_2)),
CLK_PERI_1S(DEV_NAME_SPI, 2, CLK_ID_SPI_2,
PHY_BASEADDR_CLKGEN39, (I_PLL_0_2)),
};
#define CLK_PERI_NUM ((int)ARRAY_SIZE(clk_periphs))
#define CLK_CORE_NUM ((int)ARRAY_SIZE(clk_core))
#define CLK_DEVS_NUM (CLK_CORE_NUM + CLK_PERI_NUM)
#define MAX_DIVIDER ((1 << 8) - 1) /* 256, align 2 */
static struct clk_dev st_clk_devs[CLK_DEVS_NUM]
__attribute__((section(".data")));
#define clk_dev_get(n) ((struct clk_dev *)&st_clk_devs[n])
#define clk_container(p) (container_of(p, struct clk_dev, clk))
/*
* Core frequencys
*/
struct _core_hz_ {
unsigned long pll[4]; /* PLL */
unsigned long cpu_fclk, cpu_bclk; /* cpu */
unsigned long mem_fclk, mem_dclk, mem_bclk, mem_pclk; /* ddr */
unsigned long bus_bclk, bus_pclk; /* bus */
#if defined(CONFIG_ARCH_S5P6818)
unsigned long cci4_bclk, cci4_pclk; /* cci */
#endif
/* ip */
unsigned long g3d_bclk;
unsigned long coda_bclk, coda_pclk;
#if defined(CONFIG_ARCH_S5P6818)
unsigned long disp_bclk, disp_pclk;
unsigned long hdmi_pclk;
#endif
};
/*
* Section ".data" must be used because BSS is not available before relocation,
* in board_init_f(), respectively! I.e. global variables can not be used!
*/
/* core clock */
static struct _core_hz_ core_hz __attribute__((section(".data")));
#define CORE_HZ_SIZE (sizeof(core_hz) / 4)
/*
* CLKGEN HW
*/
static inline void clk_dev_bclk(void *base, int on)
{
struct clk_dev_map *reg = base;
unsigned int val = readl(&reg->con_enb) & ~(0x3);
val |= (on ? 3 : 0) & 0x3; /* always BCLK */
writel(val, &reg->con_enb);
}
static inline void clk_dev_pclk(void *base, int on)
{
struct clk_dev_map *reg = base;
unsigned int val = 0;
if (!on)
return;
val = readl(&reg->con_enb) & ~(1 << 3);
val |= (1 << 3);
writel(val, &reg->con_enb);
}
static inline void clk_dev_rate(void *base, int step, int src, int div)
{
struct clk_dev_map *reg = base;
unsigned int val = 0;
val = readl(&reg->con_gen[step << 1]);
val &= ~(0x07 << 2);
val |= (src << 2); /* source */
val &= ~(0xFF << 5);
val |= (div - 1) << 5; /* divider */
writel(val, &reg->con_gen[step << 1]);
}
static inline void clk_dev_inv(void *base, int step, int inv)
{
struct clk_dev_map *reg = base;
unsigned int val = readl(&reg->con_gen[step << 1]) & ~(1 << 1);
val |= (inv << 1);
writel(val, &reg->con_gen[step << 1]);
}
static inline void clk_dev_enb(void *base, int on)
{
struct clk_dev_map *reg = base;
unsigned int val = readl(&reg->con_enb) & ~(1 << 2);
val |= ((on ? 1 : 0) << 2);
writel(val, &reg->con_enb);
}
/*
* CORE FREQUENCY
*
* PLL0 [P,M,S] ------- | | ----- [DIV0] --- CPU-G0
* |M| ----- [DIV1] --- BCLK/PCLK
* PLL1 [P,M,S] ------- | | ----- [DIV2] --- DDR
* |U| ----- [DIV3] --- 3D
* PLL2 [P,M,S,K]-------| | ----- [DIV4] --- CODA
* |X| ----- [DIV5] --- DISPLAY
* PLL3 [P,M,S,K]-------| | ----- [DIV6] --- HDMI
* | | ----- [DIV7] --- CPU-G1
* | | ----- [DIV8] --- CCI-400(FASTBUS)
*
*/
struct nx_clkpwr_registerset {
u32 clkmodereg0; /* 0x000 : Clock Mode Register0 */
u32 __reserved0; /* 0x004 */
u32 pllsetreg[4]; /* 0x008 ~ 0x014 : PLL Setting Register */
u32 __reserved1[2]; /* 0x018 ~ 0x01C */
u32 dvoreg[9]; /* 0x020 ~ 0x040 : Divider Setting Register */
u32 __Reserved2; /* 0x044 */
u32 pllsetreg_sscg[6]; /* 0x048 ~ 0x05C */
u32 __reserved3[8]; /* 0x060 ~ 0x07C */
u8 __reserved4[0x200 - 0x80]; /* padding (0x80 ~ 0x1FF) */
u32 gpiowakeupriseenb; /* 0x200 : GPIO Rising Edge Detect En. Reg. */
u32 gpiowakeupfallenb; /* 0x204 : GPIO Falling Edge Detect En. Reg. */
u32 gpiorstenb; /* 0x208 : GPIO Reset Enable Register */
u32 gpiowakeupenb; /* 0x20C : GPIO Wakeup Source Enable */
u32 gpiointenb; /* 0x210 : Interrupt Enable Register */
u32 gpiointpend; /* 0x214 : Interrupt Pend Register */
u32 resetstatus; /* 0x218 : Reset Status Register */
u32 intenable; /* 0x21C : Interrupt Enable Register */
u32 intpend; /* 0x220 : Interrupt Pend Register */
u32 pwrcont; /* 0x224 : Power Control Register */
u32 pwrmode; /* 0x228 : Power Mode Register */
u32 __reserved5; /* 0x22C : Reserved Region */
u32 scratch[3]; /* 0x230 ~ 0x238 : Scratch Register */
u32 sysrstconfig; /* 0x23C : System Reset Configuration Reg. */
u8 __reserved6[0x2A0 - 0x240]; /* padding (0x240 ~ 0x29F) */
u32 cpupowerdownreq; /* 0x2A0 : CPU Power Down Request Register */
u32 cpupoweronreq; /* 0x2A4 : CPU Power On Request Register */
u32 cpuresetmode; /* 0x2A8 : CPU Reset Mode Register */
u32 cpuwarmresetreq; /* 0x2AC : CPU Warm Reset Request Register */
u32 __reserved7; /* 0x2B0 */
u32 cpustatus; /* 0x2B4 : CPU Status Register */
u8 __reserved8[0x400 - 0x2B8]; /* padding (0x2B8 ~ 0x33F) */
};
static struct nx_clkpwr_registerset * const clkpwr =
(struct nx_clkpwr_registerset *)PHY_BASEADDR_CLKPWR;
#define getquotient(v, d) ((v) / (d))
#define DIV_CPUG0 0
#define DIV_BUS 1
#define DIV_MEM 2
#define DIV_G3D 3
#define DIV_CODA 4
#if defined(CONFIG_ARCH_S5P6818)
#define DIV_DISP 5
#define DIV_HDMI 6
#define DIV_CPUG1 7
#define DIV_CCI4 8
#endif
#define DVO0 3
#define DVO1 9
#define DVO2 15
#define DVO3 21
static unsigned int pll_rate(unsigned int plln, unsigned int xtal)
{
unsigned int val, val1, nP, nM, nS, nK;
unsigned int temp = 0;
val = clkpwr->pllsetreg[plln];
val1 = clkpwr->pllsetreg_sscg[plln];
xtal /= 1000; /* Unit Khz */
nP = (val >> 18) & 0x03F;
nM = (val >> 8) & 0x3FF;
nS = (val >> 0) & 0x0FF;
nK = (val1 >> 16) & 0xFFFF;
if (plln > 1 && nK) {
temp = (unsigned int)(getquotient((getquotient((nK * 1000),
65536) * xtal), nP) >> nS);
}
temp = (unsigned int)((getquotient((nM * xtal), nP) >> nS) * 1000)
+ temp;
return temp;
}
static unsigned int pll_dvo(int dvo)
{
unsigned int val;
val = (clkpwr->dvoreg[dvo] & 0x7);
return val;
}
static unsigned int pll_div(int dvo)
{
unsigned int val = clkpwr->dvoreg[dvo];
return ((((val >> DVO3) & 0x3F) + 1) << 24) |
((((val >> DVO2) & 0x3F) + 1) << 16) |
((((val >> DVO1) & 0x3F) + 1) << 8) |
((((val >> DVO0) & 0x3F) + 1) << 0);
}
#define PLLN_RATE(n) (pll_rate(n, CONFIG_SYS_PLLFIN)) /* 0~ 3 */
#define CPU_FCLK_RATE(n) (pll_rate(pll_dvo(n), CONFIG_SYS_PLLFIN) / \
((pll_div(n) >> 0) & 0x3F))
#define CPU_BCLK_RATE(n) (pll_rate(pll_dvo(n), CONFIG_SYS_PLLFIN) / \
((pll_div(n) >> 0) & 0x3F) / \
((pll_div(n) >> 8) & 0x3F))
#define MEM_FCLK_RATE() (pll_rate(pll_dvo(DIV_MEM), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_MEM) >> 0) & 0x3F) / \
((pll_div(DIV_MEM) >> 8) & 0x3F))
#define MEM_DCLK_RATE() (pll_rate(pll_dvo(DIV_MEM), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_MEM) >> 0) & 0x3F))
#define MEM_BCLK_RATE() (pll_rate(pll_dvo(DIV_MEM), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_MEM) >> 0) & 0x3F) / \
((pll_div(DIV_MEM) >> 8) & 0x3F) / \
((pll_div(DIV_MEM) >> 16) & 0x3F))
#define MEM_PCLK_RATE() (pll_rate(pll_dvo(DIV_MEM), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_MEM) >> 0) & 0x3F) / \
((pll_div(DIV_MEM) >> 8) & 0x3F) / \
((pll_div(DIV_MEM) >> 16) & 0x3F) / \
((pll_div(DIV_MEM) >> 24) & 0x3F))
#define BUS_BCLK_RATE() (pll_rate(pll_dvo(DIV_BUS), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_BUS) >> 0) & 0x3F))
#define BUS_PCLK_RATE() (pll_rate(pll_dvo(DIV_BUS), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_BUS) >> 0) & 0x3F) / \
((pll_div(DIV_BUS) >> 8) & 0x3F))
#define G3D_BCLK_RATE() (pll_rate(pll_dvo(DIV_G3D), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_G3D) >> 0) & 0x3F))
#define MPG_BCLK_RATE() (pll_rate(pll_dvo(DIV_CODA), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_CODA) >> 0) & 0x3F))
#define MPG_PCLK_RATE() (pll_rate(pll_dvo(DIV_CODA), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_CODA) >> 0) & 0x3F) / \
((pll_div(DIV_CODA) >> 8) & 0x3F))
#if defined(CONFIG_ARCH_S5P6818)
#define DISP_BCLK_RATE() (pll_rate(pll_dvo(DIV_DISP), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_DISP) >> 0) & 0x3F))
#define DISP_PCLK_RATE() (pll_rate(pll_dvo(DIV_DISP), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_DISP) >> 0) & 0x3F) / \
((pll_div(DIV_DISP) >> 8) & 0x3F))
#define HDMI_PCLK_RATE() (pll_rate(pll_dvo(DIV_HDMI), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_HDMI) >> 0) & 0x3F))
#define CCI4_BCLK_RATE() (pll_rate(pll_dvo(DIV_CCI4), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_CCI4) >> 0) & 0x3F))
#define CCI4_PCLK_RATE() (pll_rate(pll_dvo(DIV_CCI4), CONFIG_SYS_PLLFIN) / \
((pll_div(DIV_CCI4) >> 0) & 0x3F) / \
((pll_div(DIV_CCI4) >> 8) & 0x3F))
#endif
static void core_update_rate(int type)
{
switch (type) {
case 0:
core_hz.pll[0] = PLLN_RATE(0); break;
case 1:
core_hz.pll[1] = PLLN_RATE(1); break;
case 2:
core_hz.pll[2] = PLLN_RATE(2); break;
case 3:
core_hz.pll[3] = PLLN_RATE(3); break;
case 4:
core_hz.cpu_fclk = CPU_FCLK_RATE(DIV_CPUG0); break;
case 5:
core_hz.mem_fclk = MEM_FCLK_RATE(); break;
case 6:
core_hz.bus_bclk = BUS_BCLK_RATE(); break;
case 7:
core_hz.bus_pclk = BUS_PCLK_RATE(); break;
case 8:
core_hz.cpu_bclk = CPU_BCLK_RATE(DIV_CPUG0); break;
case 9:
core_hz.mem_dclk = MEM_DCLK_RATE(); break;
case 10:
core_hz.mem_bclk = MEM_BCLK_RATE(); break;
case 11:
core_hz.mem_pclk = MEM_PCLK_RATE(); break;
case 12:
core_hz.g3d_bclk = G3D_BCLK_RATE(); break;
case 13:
core_hz.coda_bclk = MPG_BCLK_RATE(); break;
case 14:
core_hz.coda_pclk = MPG_PCLK_RATE(); break;
#if defined(CONFIG_ARCH_S5P6818)
case 15:
core_hz.disp_bclk = DISP_BCLK_RATE(); break;
case 16:
core_hz.disp_pclk = DISP_PCLK_RATE(); break;
case 17:
core_hz.hdmi_pclk = HDMI_PCLK_RATE(); break;
case 18:
core_hz.cci4_bclk = CCI4_BCLK_RATE(); break;
case 19:
core_hz.cci4_pclk = CCI4_PCLK_RATE(); break;
#endif
};
}
static unsigned long core_get_rate(int type)
{
unsigned long rate = 0;
switch (type) {
case 0:
rate = core_hz.pll[0]; break;
case 1:
rate = core_hz.pll[1]; break;
case 2:
rate = core_hz.pll[2]; break;
case 3:
rate = core_hz.pll[3]; break;
case 4:
rate = core_hz.cpu_fclk; break;
case 5:
rate = core_hz.mem_fclk; break;
case 6:
rate = core_hz.bus_bclk; break;
case 7:
rate = core_hz.bus_pclk; break;
case 8:
rate = core_hz.cpu_bclk; break;
case 9:
rate = core_hz.mem_dclk; break;
case 10:
rate = core_hz.mem_bclk; break;
case 11:
rate = core_hz.mem_pclk; break;
case 12:
rate = core_hz.g3d_bclk; break;
case 13:
rate = core_hz.coda_bclk; break;
case 14:
rate = core_hz.coda_pclk; break;
#if defined(CONFIG_ARCH_S5P6818)
case 15:
rate = core_hz.disp_bclk; break;
case 16:
rate = core_hz.disp_pclk; break;
case 17:
rate = core_hz.hdmi_pclk; break;
case 18:
rate = core_hz.cci4_bclk; break;
case 19:
rate = core_hz.cci4_pclk; break;
#endif
default:
printf("unknown core clock type %d ...\n", type);
break;
};
return rate;
}
static long core_set_rate(struct clk *clk, long rate)
{
return clk->rate;
}
static void core_rate_init(void)
{
int i;
for (i = 0; i < CORE_HZ_SIZE; i++)
core_update_rate(i);
}
/*
* Clock Interfaces
*/
static inline long clk_divide(long rate, long request,
int align, int *divide)
{
int div = (rate / request);
int max = MAX_DIVIDER & ~(align - 1);
int adv = (div & ~(align - 1)) + align;
long ret;
if (!div) {
if (divide)
*divide = 1;
return rate;
}
if (div != 1)
div &= ~(align - 1);
if (div != adv && abs(request - rate / div) > abs(request - rate / adv))
div = adv;
div = (div > max ? max : div);
if (divide)
*divide = div;
ret = rate / div;
return ret;
}
void clk_put(struct clk *clk)
{
}
struct clk *clk_get(const char *id)
{
struct clk_dev *cdev = clk_dev_get(0);
struct clk *clk = NULL;
const char *str = NULL, *c = NULL;
int i, devid;
if (id)
str = id;
for (i = 0; i < CLK_DEVS_NUM; i++, cdev++) {
if (!cdev->name)
continue;
if (!strncmp(cdev->name, str, strlen(cdev->name))) {
c = strrchr((const char *)str, (int)'.');
if (!c || !cdev->peri)
break;
devid = simple_strtoul(++c, NULL, 10);
if (cdev->peri->dev_id == devid)
break;
}
}
if (i < CLK_DEVS_NUM)
clk = &cdev->clk;
else
clk = &(clk_dev_get(7))->clk; /* pclk */
return clk ? clk : ERR_PTR(-ENOENT);
}
long clk_round_rate(struct clk *clk, unsigned long rate)
{
struct clk_dev *pll = NULL, *cdev = clk_container(clk);
struct clk_dev_peri *peri = cdev->peri;
unsigned long request = rate, rate_hz = 0;
unsigned int mask;
int step, div[2] = { 0, };
int i, n, clk2 = 0;
int start_src = 0, max_src = I_CLOCK_NUM;
short s1 = 0, s2 = 0, d1 = 0, d2 = 0;
if (!peri)
return core_set_rate(clk, rate);
step = peri->clk_step;
mask = peri->in_mask;
debug("clk: %s.%d request = %ld [input=0x%x]\n", peri->dev_name,
peri->dev_id, rate, mask);
if (!(I_CLOCK_MASK & mask)) {
if (I_PCLK_MASK & mask)
return core_get_rate(CORECLK_ID_PCLK);
else if (I_BCLK_MASK & mask)
return core_get_rate(CORECLK_ID_BCLK);
else
return clk->rate;
}
next:
if (peri->in_mask & I_EXTCLK1_FORCE) {
start_src = 4; max_src = 5;
}
for (n = start_src ; max_src > n; n++) {
if (!(((mask & I_CLOCK_MASK) >> n) & 0x1))
continue;
if (n == I_EXT1_BIT) {
rate = peri->in_extclk_1;
} else if (n == I_EXT2_BIT) {
rate = peri->in_extclk_2;
} else {
pll = clk_dev_get(n);
rate = pll->clk.rate;
}
if (!rate)
continue;
for (i = 0; step > i ; i++)
rate = clk_divide(rate, request, 2, &div[i]);
if (rate_hz && (abs(rate - request) > abs(rate_hz - request)))
continue;
debug("clk: %s.%d, pll.%d[%lu] request[%ld] calc[%ld]\n",
peri->dev_name, peri->dev_id, n, pll->clk.rate,
request, rate);
if (clk2) {
s1 = -1, d1 = -1; /* not use */
s2 = n, d2 = div[0];
} else {
s1 = n, d1 = div[0];
s2 = I_CLKn_BIT, d2 = div[1];
}
rate_hz = rate;
}
/* search 2th clock from input */
if (!clk2 && abs(rate_hz - request) &&
peri->in_mask1 & ((1 << I_CLOCK_NUM) - 1)) {
clk2 = 1;
mask = peri->in_mask1;
step = 1;
goto next;
}
if (peri->in_mask & I_EXTCLK1_FORCE) {
if (s1 == 0) {
s1 = 4; s2 = 7;
d1 = 1; d2 = 1;
}
}
peri->div_src_0 = s1, peri->div_val_0 = d1;
peri->div_src_1 = s2, peri->div_val_1 = d2;
clk->rate = rate_hz;
debug("clk: %s.%d, step[%d] src[%d,%d] %ld", peri->dev_name,
peri->dev_id, peri->clk_step, peri->div_src_0, peri->div_src_1,
rate);
debug("/(div0: %d * div1: %d) = %ld, %ld diff (%ld)\n",
peri->div_val_0, peri->div_val_1, rate_hz, request,
abs(rate_hz - request));
return clk->rate;
}
unsigned long clk_get_rate(struct clk *clk)
{
struct clk_dev *cdev = clk_container(clk);
if (cdev->link)
clk = cdev->link;
return clk->rate;
}
int clk_set_rate(struct clk *clk, unsigned long rate)
{
struct clk_dev *cdev = clk_container(clk);
struct clk_dev_peri *peri = cdev->peri;
int i;
if (!peri)
return core_set_rate(clk, rate);
clk_round_rate(clk, rate);
for (i = 0; peri->clk_step > i ; i++) {
int s = (i == 0 ? peri->div_src_0 : peri->div_src_1);
int d = (i == 0 ? peri->div_val_0 : peri->div_val_1);
if (-1 == s)
continue;
clk_dev_rate(peri->base, i, s, d);
debug("clk: %s.%d (%p) set_rate [%d] src[%d] div[%d]\n",
peri->dev_name, peri->dev_id, peri->base, i, s, d);
}
return clk->rate;
}
int clk_enable(struct clk *clk)
{
struct clk_dev *cdev = clk_container(clk);
struct clk_dev_peri *peri = cdev->peri;
int i = 0, inv = 0;
if (!peri)
return 0;
debug("clk: %s.%d enable (BCLK=%s, PCLK=%s)\n", peri->dev_name,
peri->dev_id, I_GATE_BCLK & peri->in_mask ? "ON" : "PASS",
I_GATE_PCLK & peri->in_mask ? "ON" : "PASS");
if (!(I_CLOCK_MASK & peri->in_mask)) {
/* Gated BCLK/PCLK enable */
if (I_GATE_BCLK & peri->in_mask)
clk_dev_bclk(peri->base, 1);
if (I_GATE_PCLK & peri->in_mask)
clk_dev_pclk(peri->base, 1);
return 0;
}
/* invert */
inv = peri->invert_0;
for (; peri->clk_step > i; i++, inv = peri->invert_1)
clk_dev_inv(peri->base, i, inv);
/* Gated BCLK/PCLK enable */
if (I_GATE_BCLK & peri->in_mask)
clk_dev_bclk(peri->base, 1);
if (I_GATE_PCLK & peri->in_mask)
clk_dev_pclk(peri->base, 1);
/* restore clock rate */
for (i = 0; peri->clk_step > i ; i++) {
int s = (i == 0 ? peri->div_src_0 : peri->div_src_1);
int d = (i == 0 ? peri->div_val_0 : peri->div_val_1);
if (s == -1)
continue;
clk_dev_rate(peri->base, i, s, d);
}
clk_dev_enb(peri->base, 1);
return 0;
}
void clk_disable(struct clk *clk)
{
struct clk_dev *cdev = clk_container(clk);
struct clk_dev_peri *peri = cdev->peri;
if (!peri)
return;
debug("clk: %s.%d disable\n", peri->dev_name, peri->dev_id);
if (!(I_CLOCK_MASK & peri->in_mask)) {
/* Gated BCLK/PCLK disable */
if (I_GATE_BCLK & peri->in_mask)
clk_dev_bclk(peri->base, 0);
if (I_GATE_PCLK & peri->in_mask)
clk_dev_pclk(peri->base, 0);
return;
}
clk_dev_rate(peri->base, 0, 7, 256); /* for power save */
clk_dev_enb(peri->base, 0);
/* Gated BCLK/PCLK disable */
if (I_GATE_BCLK & peri->in_mask)
clk_dev_bclk(peri->base, 0);
if (I_GATE_PCLK & peri->in_mask)
clk_dev_pclk(peri->base, 0);
}
/*
* Core clocks APIs
*/
void __init clk_init(void)
{
struct clk_dev *cdev = st_clk_devs;
struct clk_dev_peri *peri = clk_periphs;
struct clk *clk = NULL;
int i = 0;
memset(cdev, 0, sizeof(st_clk_devs));
core_rate_init();
for (i = 0; (CLK_CORE_NUM + CLK_PERI_NUM) > i; i++, cdev++) {
if (i < CLK_CORE_NUM) {
cdev->name = clk_core[i];
clk = &cdev->clk;
clk->rate = core_get_rate(i);
continue;
}
peri = &clk_periphs[i - CLK_CORE_NUM];
peri->base = (void *)peri->base;
cdev->peri = peri;
cdev->name = peri->dev_name;
if (!(I_CLOCK_MASK & peri->in_mask)) {
if (I_BCLK_MASK & peri->in_mask)
cdev->clk.rate = core_get_rate(CORECLK_ID_BCLK);
if (I_PCLK_MASK & peri->in_mask)
cdev->clk.rate = core_get_rate(CORECLK_ID_PCLK);
}
/* prevent uart clock disable for low step debug message */
#ifndef CONFIG_DEBUG_NX_UART
if (peri->dev_name) {
#ifdef CONFIG_BACKLIGHT_PWM
if (!strcmp(peri->dev_name, DEV_NAME_PWM))
continue;
#endif
}
#endif
}
debug("CPU : Clock Generator= %d EA, ", CLK_DEVS_NUM);
}

View File

@ -0,0 +1,144 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 nexell
* jhkim <jhkim@nexell.co.kr>
*/
#include <common.h>
#include <bootm.h>
#include <command.h>
#include <environment.h>
#include <errno.h>
#include <image.h>
#include <fdt_support.h>
#if !defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_CLI_FRAMEWORK)
DECLARE_GLOBAL_DATA_PTR;
static bootm_headers_t linux_images;
static void boot_go_set_os(cmd_tbl_t *cmdtp, int flag, int argc,
char * const argv[],
bootm_headers_t *images)
{
char * const img_addr = argv[0];
images->os.type = IH_TYPE_KERNEL;
images->os.comp = IH_COMP_NONE;
images->os.os = IH_OS_LINUX;
images->os.load = simple_strtoul(img_addr, NULL, 16);
images->ep = images->os.load;
#if defined(CONFIG_ARM)
images->os.arch = IH_ARCH_ARM;
#elif defined(CONFIG_ARM64)
images->os.arch = IH_ARCH_ARM64;
#else
#error "Not support architecture ..."
#endif
if (!IS_ENABLED(CONFIG_OF_LIBFDT) && !IS_ENABLED(CONFIG_SPL_BUILD)) {
/* set DTB address for linux kernel */
if (argc > 2) {
unsigned long ft_addr;
ft_addr = simple_strtol(argv[2], NULL, 16);
images->ft_addr = (char *)ft_addr;
/*
* if not defined IMAGE_ENABLE_OF_LIBFDT,
* must be set to fdt address
*/
if (!IMAGE_ENABLE_OF_LIBFDT)
gd->bd->bi_boot_params = ft_addr;
debug("## set ft:%08lx and boot params:%08lx [control of:%s]"
"...\n", ft_addr, gd->bd->bi_boot_params,
IMAGE_ENABLE_OF_LIBFDT ? "on" : "off");
}
}
}
#if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_LMB)
static void boot_start_lmb(bootm_headers_t *images)
{
ulong mem_start;
phys_size_t mem_size;
lmb_init(&images->lmb);
mem_start = getenv_bootm_low();
mem_size = getenv_bootm_size();
lmb_add(&images->lmb, (phys_addr_t)mem_start, mem_size);
arch_lmb_reserve(&images->lmb);
board_lmb_reserve(&images->lmb);
}
#else
#define lmb_reserve(lmb, base, size)
static inline void boot_start_lmb(bootm_headers_t *images) { }
#endif
int do_boot_linux(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
boot_os_fn *boot_fn;
bootm_headers_t *images = &linux_images;
int flags;
int ret;
boot_start_lmb(images);
flags = BOOTM_STATE_START;
argc--; argv++;
boot_go_set_os(cmdtp, flag, argc, argv, images);
if (IS_ENABLED(CONFIG_OF_LIBFDT)) {
/* find flattened device tree */
ret = boot_get_fdt(flag, argc, argv, IH_ARCH_DEFAULT, images,
&images->ft_addr, &images->ft_len);
if (ret) {
puts("Could not find a valid device tree\n");
return 1;
}
set_working_fdt_addr((ulong)images->ft_addr);
}
if (!IS_ENABLED(CONFIG_OF_LIBFDT))
flags |= BOOTM_STATE_OS_GO;
boot_fn = do_bootm_linux;
ret = boot_fn(flags, argc, argv, images);
if (ret == BOOTM_ERR_UNIMPLEMENTED)
show_boot_progress(BOOTSTAGE_ID_DECOMP_UNIMPL);
else if (ret == BOOTM_ERR_RESET)
do_reset(cmdtp, flag, argc, argv);
return ret;
}
U_BOOT_CMD(bootl, CONFIG_SYS_MAXARGS, 1, do_boot_linux,
"boot linux image from memory",
"[addr [arg ...]]\n - boot linux image stored in memory\n"
"\tuse a '-' for the DTB address\n"
);
#endif
#if defined(CONFIG_CMD_BOOTD) && !defined(CONFIG_CMD_BOOTM)
int do_bootd(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
return run_command(env_get("bootcmd"), flag);
}
U_BOOT_CMD(boot, 1, 1, do_bootd,
"boot default, i.e., run 'bootcmd'",
""
);
/* keep old command name "bootd" for backward compatibility */
U_BOOT_CMD(bootd, 1, 1, do_bootd,
"boot default, i.e., run 'bootcmd'",
""
);
#endif

View File

@ -0,0 +1,11 @@
#
# (C) Copyright 2016 Nexell
# junghyun kim<jhkim@nexell.co.kr>
#
# SPDX-License-Identifier: GPL-2.0+
#
SOCDIR=CPUDIR/$(VENDOR)
MACHDIR=$(patsubst %,arch/arm/mach-%,$(machine-y))
LDPPFLAGS += -DMACHDIR=$(MACHDIR) -DSOCDIR=$(SOCDIR)

View File

@ -0,0 +1,352 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Nexell
* Youngbok, Park <ybpark@nexell.co.kr>
*/
/*
* FIXME : will be remove after support pinctrl
*/
#include <linux/types.h>
#include <asm/io.h>
#include <asm/arch/nexell.h>
#include "asm/arch/nx_gpio.h"
#define NUMBER_OF_GPIO_MODULE 5
u32 __g_nx_gpio_valid_bit[NUMBER_OF_GPIO_MODULE] = {
0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF};
static struct {
struct nx_gpio_register_set *pregister;
} __g_module_variables[NUMBER_OF_GPIO_MODULE] = {
{ (struct nx_gpio_register_set *)PHY_BASEADDR_GPIOA },
{ (struct nx_gpio_register_set *)PHY_BASEADDR_GPIOB },
{ (struct nx_gpio_register_set *)PHY_BASEADDR_GPIOC },
{ (struct nx_gpio_register_set *)PHY_BASEADDR_GPIOD },
{ (struct nx_gpio_register_set *)PHY_BASEADDR_GPIOE },
};
enum { nx_gpio_max_bit = 32 };
void nx_gpio_set_bit(u32 *value, u32 bit, int enable)
{
register u32 newvalue;
newvalue = *value;
newvalue &= ~(1ul << bit);
newvalue |= (u32)enable << bit;
writel(newvalue, value);
}
int nx_gpio_get_bit(u32 value, u32 bit)
{
return (int)((value >> bit) & (1ul));
}
void nx_gpio_set_bit2(u32 *value, u32 bit, u32 bit_value)
{
register u32 newvalue = *value;
newvalue = (u32)(newvalue & ~(3ul << (bit * 2)));
newvalue = (u32)(newvalue | (bit_value << (bit * 2)));
writel(newvalue, value);
}
u32 nx_gpio_get_bit2(u32 value, u32 bit)
{
return (u32)((u32)(value >> (bit * 2)) & 3ul);
}
int nx_gpio_initialize(void)
{
static int binit;
u32 i;
binit = 0;
if (binit == 0) {
for (i = 0; i < NUMBER_OF_GPIO_MODULE; i++)
__g_module_variables[i].pregister = NULL;
binit = true;
}
for (i = 0; i < NUMBER_OF_GPIO_MODULE; i++) {
__g_nx_gpio_valid_bit[i] = 0xFFFFFFFF;
};
return true;
}
u32 nx_gpio_get_number_of_module(void)
{
return NUMBER_OF_GPIO_MODULE;
}
u32 nx_gpio_get_size_of_register_set(void)
{
return sizeof(struct nx_gpio_register_set);
}
void nx_gpio_set_base_address(u32 module_index, void *base_address)
{
__g_module_variables[module_index].pregister =
(struct nx_gpio_register_set *)base_address;
}
void *nx_gpio_get_base_address(u32 module_index)
{
return (void *)__g_module_variables[module_index].pregister;
}
int nx_gpio_open_module(u32 module_index)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
writel(0xFFFFFFFF, &pregister->gpiox_slew_disable_default);
writel(0xFFFFFFFF, &pregister->gpiox_drv1_disable_default);
writel(0xFFFFFFFF, &pregister->gpiox_drv0_disable_default);
writel(0xFFFFFFFF, &pregister->gpiox_pullsel_disable_default);
writel(0xFFFFFFFF, &pregister->gpiox_pullenb_disable_default);
return true;
}
int nx_gpio_close_module(u32 module_index) { return true; }
int nx_gpio_check_busy(u32 module_index) { return false; }
void nx_gpio_set_pad_function(u32 module_index, u32 bit_number,
u32 padfunc)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit2(&pregister->gpioxaltfn[bit_number / 16],
bit_number % 16, padfunc);
}
void nx_gpio_set_pad_function32(u32 module_index, u32 msbvalue, u32 lsbvalue)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
writel(lsbvalue, &pregister->gpioxaltfn[0]);
writel(msbvalue, &pregister->gpioxaltfn[1]);
}
int nx_gpio_get_pad_function(u32 module_index, u32 bit_number)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return (int)nx_gpio_get_bit2
(readl(&pregister->gpioxaltfn[bit_number / 16]),
bit_number % 16);
}
void nx_gpio_set_output_enable(u32 module_index, u32 bit_number,
int output_enb)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit(&pregister->gpioxoutenb, bit_number, output_enb);
}
int nx_gpio_get_detect_enable(u32 module_index, u32 bit_number)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return nx_gpio_get_bit(readl(&pregister->gpioxdetenb), bit_number);
}
u32 nx_gpio_get_detect_enable32(u32 module_index)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return readl(&pregister->gpioxdetenb);
}
void nx_gpio_set_detect_enable(u32 module_index, u32 bit_number,
int detect_enb)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit(&pregister->gpioxdetenb, bit_number, detect_enb);
}
void nx_gpio_set_detect_enable32(u32 module_index, u32 enable_flag)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
writel(enable_flag, &pregister->gpioxdetenb);
}
int nx_gpio_get_output_enable(u32 module_index, u32 bit_number)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return nx_gpio_get_bit(readl(&pregister->gpioxoutenb), bit_number);
}
void nx_gpio_set_output_enable32(u32 module_index, int output_enb)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
if (output_enb)
writel(0xFFFFFFFF, &pregister->gpioxoutenb);
else
writel(0x0, &pregister->gpioxoutenb);
}
u32 nx_gpio_get_output_enable32(u32 module_index)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return readl(&pregister->gpioxoutenb);
}
void nx_gpio_set_output_value(u32 module_index, u32 bit_number, int value)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit(&pregister->gpioxout, bit_number, value);
}
int nx_gpio_get_output_value(u32 module_index, u32 bit_number)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return nx_gpio_get_bit(readl(&pregister->gpioxout), bit_number);
}
void nx_gpio_set_output_value32(u32 module_index, u32 value)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
writel(value, &pregister->gpioxout);
}
u32 nx_gpio_get_output_value32(u32 module_index)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return readl(&pregister->gpioxout);
}
int nx_gpio_get_input_value(u32 module_index, u32 bit_number)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
return nx_gpio_get_bit(readl(&pregister->gpioxpad), bit_number);
}
void nx_gpio_set_pull_select(u32 module_index, u32 bit_number, int enable)
{
nx_gpio_set_bit(&__g_module_variables[module_index]
.pregister->gpiox_pullsel_disable_default,
bit_number, true);
nx_gpio_set_bit
(&__g_module_variables[module_index].pregister->gpiox_pullsel,
bit_number, enable);
}
void nx_gpio_set_pull_select32(u32 module_index, u32 value)
{
writel(value,
&__g_module_variables[module_index].pregister->gpiox_pullsel);
}
int nx_gpio_get_pull_select(u32 module_index, u32 bit_number)
{
return nx_gpio_get_bit
(__g_module_variables[module_index].pregister->gpiox_pullsel,
bit_number);
}
u32 nx_gpio_get_pull_select32(u32 module_index)
{
return __g_module_variables[module_index].pregister->gpiox_pullsel;
}
void nx_gpio_set_pull_mode(u32 module_index, u32 bit_number, u32 mode)
{
nx_gpio_set_bit(&__g_module_variables[module_index]
.pregister->gpiox_pullsel_disable_default,
bit_number, true);
nx_gpio_set_bit(&__g_module_variables[module_index]
.pregister->gpiox_pullenb_disable_default,
bit_number, true);
if (mode == nx_gpio_pull_off) {
nx_gpio_set_bit
(&__g_module_variables[module_index].pregister->gpiox_pullenb,
bit_number, false);
nx_gpio_set_bit
(&__g_module_variables[module_index].pregister->gpiox_pullsel,
bit_number, false);
} else {
nx_gpio_set_bit
(&__g_module_variables[module_index].pregister->gpiox_pullsel,
bit_number, (mode & 1 ? true : false));
nx_gpio_set_bit
(&__g_module_variables[module_index].pregister->gpiox_pullenb,
bit_number, true);
}
}
void nx_gpio_set_fast_slew(u32 module_index, u32 bit_number,
int enable)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit(&pregister->gpiox_slew, bit_number,
(int)(!enable));
}
void nx_gpio_set_drive_strength(u32 module_index, u32 bit_number,
u32 drvstrength)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit(&pregister->gpiox_drv1, bit_number,
(int)(((u32)drvstrength >> 0) & 0x1));
nx_gpio_set_bit(&pregister->gpiox_drv0, bit_number,
(int)(((u32)drvstrength >> 1) & 0x1));
}
void nx_gpio_set_drive_strength_disable_default(u32 module_index,
u32 bit_number, int enable)
{
register struct nx_gpio_register_set *pregister;
pregister = __g_module_variables[module_index].pregister;
nx_gpio_set_bit(&pregister->gpiox_drv1_disable_default, bit_number,
(int)(enable));
nx_gpio_set_bit(&pregister->gpiox_drv0_disable_default, bit_number,
(int)(enable));
}
u32 nx_gpio_get_drive_strength(u32 module_index, u32 bit_number)
{
register struct nx_gpio_register_set *pregister;
register u32 retvalue;
pregister = __g_module_variables[module_index].pregister;
retvalue =
nx_gpio_get_bit(readl(&pregister->gpiox_drv0), bit_number) << 1;
retvalue |=
nx_gpio_get_bit(readl(&pregister->gpiox_drv1), bit_number) << 0;
return retvalue;
}

View File

@ -0,0 +1,82 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Nexell
* Youngbok, Park <park@nexell.co.kr>
*/
#include <linux/types.h>
#include <asm/io.h>
#include <asm/arch/nexell.h>
#include <asm/arch/sec_reg.h>
#include <linux/linkage.h>
#define NEXELL_SMC_BASE 0x82000000
#define NEXELL_SMC_FN(n) (NEXELL_SMC_BASE + (n))
#define NEXELL_SMC_SEC_REG_WRITE NEXELL_SMC_FN(0x0)
#define NEXELL_SMC_SEC_REG_READ NEXELL_SMC_FN(0x1)
#define SECURE_ID_SHIFT 8
#define SEC_4K_OFFSET ((4 * 1024) - 1)
#define SEC_64K_OFFSET ((64 * 1024) - 1)
asmlinkage int __invoke_nexell_fn_smc(u32, u32, u32, u32);
int write_sec_reg_by_id(void __iomem *reg, int val, int id)
{
int ret = 0;
u32 off = 0;
switch (id) {
case NEXELL_L2C_SEC_ID:
case NEXELL_MIPI_SEC_ID:
case NEXELL_TOFF_SEC_ID:
off = (u32)reg & SEC_4K_OFFSET;
break;
case NEXELL_MALI_SEC_ID:
off = (u32)reg & SEC_64K_OFFSET;
break;
}
ret = __invoke_nexell_fn_smc(NEXELL_SMC_SEC_REG_WRITE |
((1 << SECURE_ID_SHIFT) + id), off, val, 0);
return ret;
}
int read_sec_reg_by_id(void __iomem *reg, int id)
{
int ret = 0;
u32 off = 0;
switch (id) {
case NEXELL_L2C_SEC_ID:
case NEXELL_MIPI_SEC_ID:
case NEXELL_TOFF_SEC_ID:
off = (u32)reg & SEC_4K_OFFSET;
break;
case NEXELL_MALI_SEC_ID:
off = (u32)reg & SEC_64K_OFFSET;
break;
}
ret = __invoke_nexell_fn_smc(NEXELL_SMC_SEC_REG_READ |
((1 << SECURE_ID_SHIFT) + id), off, 0, 0);
return ret;
}
int write_sec_reg(void __iomem *reg, int val)
{
int ret = 0;
ret = __invoke_nexell_fn_smc(NEXELL_SMC_SEC_REG_WRITE,
(u32)reg, val, 0);
return ret;
}
int read_sec_reg(void __iomem *reg)
{
int ret = 0;
ret = __invoke_nexell_fn_smc(NEXELL_SMC_SEC_REG_READ, (u32)reg, 0, 0);
return ret;
}

View File

@ -0,0 +1,23 @@
#include <asm-offsets.h>
#include <config.h>
#include <linux/linkage.h>
#define ___asm_opcode_identity32(x) ((x) & 0xFFFFFFFF)
#define __opcode_to_mem_arm(x) ___opcode_identity32(x)
#define ___asm_opcode_to_mem_arm(x) ___asm_opcode_identity32(x)
#define ___opcode_identity32(x) ((u32)(x))
#define ___inst_arm(x) .long x
#define __inst_arm(x) ___inst_arm(___asm_opcode_to_mem_arm(x))
#define __inst_arm_thumb32(arm_opcode, thumb_opcode) __inst_arm(arm_opcode)
#define __SMC(imm4) __inst_arm_thumb32( \
0xE1600070 | (((imm4) & 0xF) << 0), \
0xF7F08000 | (((imm4) & 0xF) << 16) \
)
ENTRY(__invoke_nexell_fn_smc)
__SMC(0)
bx lr
ENDPROC(__invoke_nexell_fn_smc)

View File

@ -0,0 +1,33 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Nexell
* Youngbok, Park <park@nexell.co.kr>
*/
/*
*FIXME : Not support device tree & reset control driver.
* will remove after support device tree & reset control driver.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/nexell.h>
#include <asm/arch/reset.h>
struct nx_rstcon_registerset {
u32 regrst[(NUMBER_OF_RESET_MODULE_PIN + 31) >> 5];
};
static struct nx_rstcon_registerset *nx_rstcon =
(struct nx_rstcon_registerset *)PHY_BASEADDR_RSTCON;
void nx_rstcon_setrst(u32 rstindex, enum rstcon status)
{
u32 regnum, bitpos, curstat;
regnum = rstindex >> 5;
curstat = (u32)readl(&nx_rstcon->regrst[regnum]);
bitpos = rstindex & 0x1f;
curstat &= ~(1UL << bitpos);
curstat |= (status & 0x01) << bitpos;
writel(curstat, &nx_rstcon->regrst[regnum]);
}

View File

@ -0,0 +1,107 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Nexell
* Youngbok, Park <park@nexell.co.kr>
*/
#include <common.h>
#include <asm/arch/nexell.h>
#include <asm/arch/clk.h>
#include <asm/arch/reset.h>
#include <asm/arch/nx_gpio.h>
#include <asm/arch/tieoff.h>
#include <asm/arch/sec_reg.h>
#define NX_PIN_FN_SIZE 4
#define TIEOFF_REG_NUM 33
struct nx_tieoff_registerset {
u32 tieoffreg[TIEOFF_REG_NUM];
};
static struct nx_tieoff_registerset *nx_tieoff = (void *)PHY_BASEADDR_TIEOFF;
static int tieoff_readl(void __iomem *reg)
{
if (IS_ENABLED(CONFIG_ARCH_S5P4418))
return read_sec_reg_by_id(reg, NEXELL_TOFF_SEC_ID);
else
return readl(reg);
}
static int tieoff_writetl(void __iomem *reg, int val)
{
if (IS_ENABLED(CONFIG_ARCH_S5P4418))
return write_sec_reg_by_id(reg, val, NEXELL_TOFF_SEC_ID);
else
return writel(val, reg);
}
void nx_tieoff_set(u32 tieoff_index, u32 tieoff_value)
{
u32 regindex, mask;
u32 lsb, msb;
u32 regval;
u32 position;
u32 bitwidth;
position = tieoff_index & 0xffff;
bitwidth = (tieoff_index >> 16) & 0xffff;
regindex = position >> 5;
lsb = position & 0x1F;
msb = lsb + bitwidth;
if (msb > 32) {
msb &= 0x1F;
mask = ~(0xffffffff << lsb);
regval = tieoff_readl(&nx_tieoff->tieoffreg[regindex]) & mask;
regval |= ((tieoff_value & ((1UL << bitwidth) - 1)) << lsb);
tieoff_writetl(&nx_tieoff->tieoffreg[regindex], regval);
mask = (0xffffffff << msb);
regval = tieoff_readl(&nx_tieoff->tieoffreg[regindex]) & mask;
regval |= ((tieoff_value & ((1UL << bitwidth) - 1)) >> msb);
tieoff_writetl(&nx_tieoff->tieoffreg[regindex + 1], regval);
} else {
mask = (0xffffffff << msb) | (~(0xffffffff << lsb));
regval = tieoff_readl(&nx_tieoff->tieoffreg[regindex]) & mask;
regval |= ((tieoff_value & ((1UL << bitwidth) - 1)) << lsb);
tieoff_writetl(&nx_tieoff->tieoffreg[regindex], regval);
}
}
u32 nx_tieoff_get(u32 tieoff_index)
{
u32 regindex, mask;
u32 lsb, msb;
u32 regval;
u32 position;
u32 bitwidth;
position = tieoff_index & 0xffff;
bitwidth = (tieoff_index >> 16) & 0xffff;
regindex = position / 32;
lsb = position % 32;
msb = lsb + bitwidth;
if (msb > 32) {
msb &= 0x1F;
mask = 0xffffffff << lsb;
regval = tieoff_readl(&nx_tieoff->tieoffreg[regindex]) & mask;
regval >>= lsb;
mask = ~(0xffffffff << msb);
regval |= ((tieoff_readl(&nx_tieoff->tieoffreg[regindex + 1])
& mask) << (32 - lsb));
} else {
mask = ~(0xffffffff << msb) & (0xffffffff << lsb);
regval = tieoff_readl(&nx_tieoff->tieoffreg[regindex]) & mask;
regval >>= lsb;
}
return regval;
}

View File

@ -0,0 +1,299 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016 Nexell
* Hyunseok, Jung <hsjung@nexell.co.kr>
*/
#include <common.h>
#include <log.h>
#include <asm/io.h>
#include <asm/arch/nexell.h>
#include <asm/arch/clk.h>
#if defined(CONFIG_ARCH_S5P4418)
#include <asm/arch/reset.h>
#endif
#if (CONFIG_TIMER_SYS_TICK_CH > 3)
#error Not support timer channel. Please use "0~3" channels.
#endif
/* global variables to save timer count
*
* Section ".data" must be used because BSS is not available before relocation,
* in board_init_f(), respectively! I.e. global variables can not be used!
*/
static unsigned long timestamp __attribute__ ((section(".data")));
static unsigned long lastdec __attribute__ ((section(".data")));
static int timerinit __attribute__ ((section(".data")));
/* macro to hw timer tick config */
static long TIMER_FREQ = 1000000;
static long TIMER_HZ = 1000000 / CONFIG_SYS_HZ;
static long TIMER_COUNT = 0xFFFFFFFF;
#define REG_TCFG0 (0x00)
#define REG_TCFG1 (0x04)
#define REG_TCON (0x08)
#define REG_TCNTB0 (0x0C)
#define REG_TCMPB0 (0x10)
#define REG_TCNT0 (0x14)
#define REG_CSTAT (0x44)
#define TCON_BIT_AUTO (1 << 3)
#define TCON_BIT_INVT (1 << 2)
#define TCON_BIT_UP (1 << 1)
#define TCON_BIT_RUN (1 << 0)
#define TCFG0_BIT_CH(ch) ((ch) == 0 || (ch) == 1 ? 0 : 8)
#define TCFG1_BIT_CH(ch) ((ch) * 4)
#define TCON_BIT_CH(ch) ((ch) ? (ch) * 4 + 4 : 0)
#define TINT_CH(ch) (ch)
#define TINT_CSTAT_BIT_CH(ch) ((ch) + 5)
#define TINT_CSTAT_MASK (0x1F)
#define TIMER_TCNT_OFFS (0xC)
void reset_timer_masked(void);
unsigned long get_timer_masked(void);
/*
* Timer HW
*/
static inline void timer_clock(void __iomem *base, int ch, int mux, int scl)
{
u32 val = readl(base + REG_TCFG0) & ~(0xFF << TCFG0_BIT_CH(ch));
writel(val | ((scl - 1) << TCFG0_BIT_CH(ch)), base + REG_TCFG0);
val = readl(base + REG_TCFG1) & ~(0xF << TCFG1_BIT_CH(ch));
writel(val | (mux << TCFG1_BIT_CH(ch)), base + REG_TCFG1);
}
static inline void timer_count(void __iomem *base, int ch, unsigned int cnt)
{
writel((cnt - 1), base + REG_TCNTB0 + (TIMER_TCNT_OFFS * ch));
writel((cnt - 1), base + REG_TCMPB0 + (TIMER_TCNT_OFFS * ch));
}
static inline void timer_start(void __iomem *base, int ch)
{
int on = 0;
u32 val = readl(base + REG_CSTAT) & ~(TINT_CSTAT_MASK << 5 | 0x1 << ch);
writel(val | (0x1 << TINT_CSTAT_BIT_CH(ch) | on << ch),
base + REG_CSTAT);
val = readl(base + REG_TCON) & ~(0xE << TCON_BIT_CH(ch));
writel(val | (TCON_BIT_UP << TCON_BIT_CH(ch)), base + REG_TCON);
val &= ~(TCON_BIT_UP << TCON_BIT_CH(ch));
val |= ((TCON_BIT_AUTO | TCON_BIT_RUN) << TCON_BIT_CH(ch));
writel(val, base + REG_TCON);
dmb();
}
static inline void timer_stop(void __iomem *base, int ch)
{
int on = 0;
u32 val = readl(base + REG_CSTAT) & ~(TINT_CSTAT_MASK << 5 | 0x1 << ch);
writel(val | (0x1 << TINT_CSTAT_BIT_CH(ch) | on << ch),
base + REG_CSTAT);
val = readl(base + REG_TCON) & ~(TCON_BIT_RUN << TCON_BIT_CH(ch));
writel(val, base + REG_TCON);
}
static inline unsigned long timer_read(void __iomem *base, int ch)
{
unsigned long ret;
ret = TIMER_COUNT - readl(base + REG_TCNT0 + (TIMER_TCNT_OFFS * ch));
return ret;
}
int timer_init(void)
{
struct clk *clk = NULL;
char name[16] = "pclk";
int ch = CONFIG_TIMER_SYS_TICK_CH;
unsigned long rate, tclk = 0;
unsigned long mout, thz, cmp = -1UL;
int tcnt, tscl = 0, tmux = 0;
int mux = 0, scl = 0;
void __iomem *base = (void __iomem *)PHY_BASEADDR_TIMER;
if (timerinit)
return 0;
/* get with PCLK */
clk = clk_get(name);
rate = clk_get_rate(clk);
for (mux = 0; mux < 5; mux++) {
mout = rate / (1 << mux), scl = mout / TIMER_FREQ,
thz = mout / scl;
if (!(mout % TIMER_FREQ) && 256 > scl) {
tclk = thz, tmux = mux, tscl = scl;
break;
}
if (scl > 256)
continue;
if (abs(thz - TIMER_FREQ) >= cmp)
continue;
tclk = thz, tmux = mux, tscl = scl;
cmp = abs(thz - TIMER_FREQ);
}
tcnt = tclk; /* Timer Count := 1 Mhz counting */
TIMER_FREQ = tcnt; /* Timer Count := 1 Mhz counting */
TIMER_HZ = TIMER_FREQ / CONFIG_SYS_HZ;
tcnt = TIMER_COUNT == 0xFFFFFFFF ? TIMER_COUNT + 1 : tcnt;
timer_stop(base, ch);
timer_clock(base, ch, tmux, tscl);
timer_count(base, ch, tcnt);
timer_start(base, ch);
reset_timer_masked();
timerinit = 1;
return 0;
}
void reset_timer(void)
{
reset_timer_masked();
}
unsigned long get_timer(unsigned long base)
{
long ret;
unsigned long time = get_timer_masked();
unsigned long hz = TIMER_HZ;
ret = time / hz - base;
return ret;
}
void set_timer(unsigned long t)
{
timestamp = (unsigned long)t;
}
void reset_timer_masked(void)
{
void __iomem *base = (void __iomem *)PHY_BASEADDR_TIMER;
int ch = CONFIG_TIMER_SYS_TICK_CH;
/* reset time */
/* capure current decrementer value time */
lastdec = timer_read(base, ch);
/* start "advancing" time stamp from 0 */
timestamp = 0;
}
unsigned long get_timer_masked(void)
{
void __iomem *base = (void __iomem *)PHY_BASEADDR_TIMER;
int ch = CONFIG_TIMER_SYS_TICK_CH;
unsigned long now = timer_read(base, ch); /* current tick value */
if (now >= lastdec) { /* normal mode (non roll) */
/* move stamp fordward with absolute diff ticks */
timestamp += now - lastdec;
} else {
/* we have overflow of the count down timer */
/* nts = ts + ld + (TLV - now)
* ts=old stamp, ld=time that passed before passing through -1
* (TLV-now) amount of time after passing though -1
* nts = new "advancing time stamp"...
* it could also roll and cause problems.
*/
timestamp += now + TIMER_COUNT - lastdec;
}
/* save last */
lastdec = now;
debug("now=%lu, last=%lu, timestamp=%lu\n", now, lastdec, timestamp);
return (unsigned long)timestamp;
}
void __udelay(unsigned long usec)
{
unsigned long tmo, tmp;
debug("+udelay=%ld\n", usec);
if (!timerinit)
timer_init();
/* if "big" number, spread normalization to seconds */
if (usec >= 1000) {
/* start to normalize for usec to ticks per sec */
tmo = usec / 1000;
/* find number of "ticks" to wait to achieve target */
tmo *= TIMER_FREQ;
/* finish normalize. */
tmo /= 1000;
/* else small number, don't kill it prior to HZ multiply */
} else {
tmo = usec * TIMER_FREQ;
tmo /= (1000 * 1000);
}
tmp = get_timer_masked(); /* get current timestamp */
debug("A. tmo=%ld, tmp=%ld\n", tmo, tmp);
/* if setting this fordward will roll time stamp */
if (tmp > (tmo + tmp + 1))
/* reset "advancing" timestamp to 0, set lastdec value */
reset_timer_masked();
else
/* set advancing stamp wake up time */
tmo += tmp;
debug("B. tmo=%ld, tmp=%ld\n", tmo, tmp);
/* loop till event */
do {
tmp = get_timer_masked();
} while (tmo > tmp);
debug("-udelay=%ld\n", usec);
}
void udelay_masked(unsigned long usec)
{
unsigned long tmo, endtime;
signed long diff;
/* if "big" number, spread normalization to seconds */
if (usec >= 1000) {
/* start to normalize for usec to ticks per sec */
tmo = usec / 1000;
/* find number of "ticks" to wait to achieve target */
tmo *= TIMER_FREQ;
/* finish normalize. */
tmo /= 1000;
} else { /* else small number, don't kill it prior to HZ multiply */
tmo = usec * TIMER_FREQ;
tmo /= (1000 * 1000);
}
endtime = get_timer_masked() + tmo;
do {
unsigned long now = get_timer_masked();
diff = endtime - now;
} while (diff >= 0);
}
unsigned long long get_ticks(void)
{
return get_timer_masked();
}
#if defined(CONFIG_ARCH_S5P4418)
ulong get_tbclk(void)
{
ulong tbclk = TIMER_FREQ;
return tbclk;
}
#endif