spi: stm32: Add ofdata_to_platdata() callback

Parse DT in ofdata_to_platdata() callback instead of probe().

Signed-off-by: Patrice Chotard <patrice.chotard@foss.st.com>
Reviewed-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
This commit is contained in:
Patrice Chotard 2021-08-03 11:16:40 +02:00
parent b0e763b7b8
commit 81b2445af4

View File

@ -97,11 +97,14 @@
#define SPI_SIMPLEX_RX 2
#define SPI_HALF_DUPLEX 3
struct stm32_spi_priv {
struct stm32_spi_plat {
void __iomem *base;
struct clk clk;
struct reset_ctl rst_ctl;
struct gpio_desc cs_gpios[MAX_CS_COUNT];
};
struct stm32_spi_priv {
ulong bus_clk_rate;
unsigned int fifo_size;
unsigned int cur_bpw;
@ -115,28 +118,32 @@ struct stm32_spi_priv {
bool cs_high;
};
static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
static void stm32_spi_write_txfifo(struct udevice *bus)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
while ((priv->tx_len > 0) &&
(readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)) {
(readl(base + STM32_SPI_SR) & SPI_SR_TXP)) {
u32 offs = priv->cur_xferlen - priv->tx_len;
if (priv->tx_len >= sizeof(u32) &&
IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u32))) {
const u32 *tx_buf32 = (const u32 *)(priv->tx_buf + offs);
writel(*tx_buf32, priv->base + STM32_SPI_TXDR);
writel(*tx_buf32, base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u32);
} else if (priv->tx_len >= sizeof(u16) &&
IS_ALIGNED((uintptr_t)(priv->tx_buf + offs), sizeof(u16))) {
const u16 *tx_buf16 = (const u16 *)(priv->tx_buf + offs);
writew(*tx_buf16, priv->base + STM32_SPI_TXDR);
writew(*tx_buf16, base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u16);
} else {
const u8 *tx_buf8 = (const u8 *)(priv->tx_buf + offs);
writeb(*tx_buf8, priv->base + STM32_SPI_TXDR);
writeb(*tx_buf8, base + STM32_SPI_TXDR);
priv->tx_len -= sizeof(u8);
}
}
@ -144,9 +151,12 @@ static void stm32_spi_write_txfifo(struct stm32_spi_priv *priv)
log_debug("%d bytes left\n", priv->tx_len);
}
static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
static void stm32_spi_read_rxfifo(struct udevice *bus)
{
u32 sr = readl(priv->base + STM32_SPI_SR);
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
u32 sr = readl(base + STM32_SPI_SR);
u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
while ((priv->rx_len > 0) &&
@ -158,7 +168,7 @@ static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
(priv->rx_len >= sizeof(u32) || (sr & SPI_SR_RXWNE))) {
u32 *rx_buf32 = (u32 *)(priv->rx_buf + offs);
*rx_buf32 = readl(priv->base + STM32_SPI_RXDR);
*rx_buf32 = readl(base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u32);
} else if (IS_ALIGNED((uintptr_t)(priv->rx_buf + offs), sizeof(u16)) &&
(priv->rx_len >= sizeof(u16) ||
@ -166,38 +176,38 @@ static void stm32_spi_read_rxfifo(struct stm32_spi_priv *priv)
(rxplvl >= 2 || priv->cur_bpw > 8)))) {
u16 *rx_buf16 = (u16 *)(priv->rx_buf + offs);
*rx_buf16 = readw(priv->base + STM32_SPI_RXDR);
*rx_buf16 = readw(base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u16);
} else {
u8 *rx_buf8 = (u8 *)(priv->rx_buf + offs);
*rx_buf8 = readb(priv->base + STM32_SPI_RXDR);
*rx_buf8 = readb(base + STM32_SPI_RXDR);
priv->rx_len -= sizeof(u8);
}
sr = readl(priv->base + STM32_SPI_SR);
sr = readl(base + STM32_SPI_SR);
rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
}
log_debug("%d bytes left\n", priv->rx_len);
}
static int stm32_spi_enable(struct stm32_spi_priv *priv)
static int stm32_spi_enable(void __iomem *base)
{
log_debug("\n");
/* Enable the SPI hardware */
setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
setbits_le32(base + STM32_SPI_CR1, SPI_CR1_SPE);
return 0;
}
static int stm32_spi_disable(struct stm32_spi_priv *priv)
static int stm32_spi_disable(void __iomem *base)
{
log_debug("\n");
/* Disable the SPI hardware */
clrbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_SPE);
clrbits_le32(base + STM32_SPI_CR1, SPI_CR1_SPE);
return 0;
}
@ -205,45 +215,48 @@ static int stm32_spi_disable(struct stm32_spi_priv *priv)
static int stm32_spi_claim_bus(struct udevice *slave)
{
struct udevice *bus = dev_get_parent(slave);
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
dev_dbg(slave, "\n");
/* Enable the SPI hardware */
return stm32_spi_enable(priv);
return stm32_spi_enable(base);
}
static int stm32_spi_release_bus(struct udevice *slave)
{
struct udevice *bus = dev_get_parent(slave);
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
dev_dbg(slave, "\n");
/* Disable the SPI hardware */
return stm32_spi_disable(priv);
return stm32_spi_disable(base);
}
static void stm32_spi_stopxfer(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
struct stm32_spi_plat *plat = dev_get_plat(dev);
void __iomem *base = plat->base;
u32 cr1, sr;
int ret;
dev_dbg(dev, "\n");
cr1 = readl(priv->base + STM32_SPI_CR1);
cr1 = readl(base + STM32_SPI_CR1);
if (!(cr1 & SPI_CR1_SPE))
return;
/* Wait on EOT or suspend the flow */
ret = readl_poll_timeout(priv->base + STM32_SPI_SR, sr,
ret = readl_poll_timeout(base + STM32_SPI_SR, sr,
!(sr & SPI_SR_EOT), 100000);
if (ret < 0) {
if (cr1 & SPI_CR1_CSTART) {
writel(cr1 | SPI_CR1_CSUSP, priv->base + STM32_SPI_CR1);
if (readl_poll_timeout(priv->base + STM32_SPI_SR,
writel(cr1 | SPI_CR1_CSUSP, base + STM32_SPI_CR1);
if (readl_poll_timeout(base + STM32_SPI_SR,
sr, !(sr & SPI_SR_SUSP),
100000) < 0)
dev_err(dev, "Suspend request timeout\n");
@ -251,11 +264,12 @@ static void stm32_spi_stopxfer(struct udevice *dev)
}
/* clear status flags */
setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
setbits_le32(base + STM32_SPI_IFCR, SPI_IFCR_ALL);
}
static int stm32_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
{
struct stm32_spi_plat *plat = dev_get_plat(dev);
struct stm32_spi_priv *priv = dev_get_priv(dev);
dev_dbg(dev, "cs=%d enable=%d\n", cs, enable);
@ -263,18 +277,20 @@ static int stm32_spi_set_cs(struct udevice *dev, unsigned int cs, bool enable)
if (cs >= MAX_CS_COUNT)
return -ENODEV;
if (!dm_gpio_is_valid(&priv->cs_gpios[cs]))
if (!dm_gpio_is_valid(&plat->cs_gpios[cs]))
return -EINVAL;
if (priv->cs_high)
enable = !enable;
return dm_gpio_set_value(&priv->cs_gpios[cs], enable ? 1 : 0);
return dm_gpio_set_value(&plat->cs_gpios[cs], enable ? 1 : 0);
}
static int stm32_spi_set_mode(struct udevice *bus, uint mode)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
u32 cfg2_clrb = 0, cfg2_setb = 0;
dev_dbg(bus, "mode=%d\n", mode);
@ -295,7 +311,7 @@ static int stm32_spi_set_mode(struct udevice *bus, uint mode)
cfg2_clrb |= SPI_CFG2_LSBFRST;
if (cfg2_clrb || cfg2_setb)
clrsetbits_le32(priv->base + STM32_SPI_CFG2,
clrsetbits_le32(base + STM32_SPI_CFG2,
cfg2_clrb, cfg2_setb);
if (mode & SPI_CS_HIGH)
@ -308,6 +324,8 @@ static int stm32_spi_set_mode(struct udevice *bus, uint mode)
static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
struct stm32_spi_plat *plat = dev_get_plat(dev);
void __iomem *base = plat->base;
u32 fthlv, half_fifo;
/* data packet should not exceed 1/2 of fifo space */
@ -321,7 +339,7 @@ static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
if (!fthlv)
fthlv = 1;
clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
clrsetbits_le32(base + STM32_SPI_CFG1, SPI_CFG1_FTHLV,
(fthlv - 1) << SPI_CFG1_FTHLV_SHIFT);
return 0;
@ -330,6 +348,8 @@ static int stm32_spi_set_fthlv(struct udevice *dev, u32 xfer_len)
static int stm32_spi_set_speed(struct udevice *bus, uint hz)
{
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
u32 mbrdiv;
long div;
@ -353,7 +373,7 @@ static int stm32_spi_set_speed(struct udevice *bus, uint hz)
if (!mbrdiv)
return -EINVAL;
clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_MBR,
clrsetbits_le32(base + STM32_SPI_CFG1, SPI_CFG1_MBR,
(mbrdiv - 1) << SPI_CFG1_MBR_SHIFT);
priv->cur_hz = hz;
@ -367,6 +387,8 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
struct udevice *bus = dev_get_parent(slave);
struct dm_spi_slave_plat *slave_plat;
struct stm32_spi_priv *priv = dev_get_priv(bus);
struct stm32_spi_plat *plat = dev_get_plat(bus);
void __iomem *base = plat->base;
u32 sr;
u32 ifcr = 0;
u32 xferlen;
@ -376,7 +398,7 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
xferlen = bitlen / 8;
if (xferlen <= SPI_CR2_TSIZE)
writel(xferlen, priv->base + STM32_SPI_CR2);
writel(xferlen, base + STM32_SPI_CR2);
else
return -EMSGSIZE;
@ -396,15 +418,15 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
priv->cur_xferlen = xferlen;
/* Disable the SPI hardware to unlock CFG1/CFG2 registers */
stm32_spi_disable(priv);
stm32_spi_disable(base);
clrsetbits_le32(priv->base + STM32_SPI_CFG2, SPI_CFG2_COMM,
clrsetbits_le32(base + STM32_SPI_CFG2, SPI_CFG2_COMM,
mode << SPI_CFG2_COMM_SHIFT);
stm32_spi_set_fthlv(bus, xferlen);
/* Enable the SPI hardware */
stm32_spi_enable(priv);
stm32_spi_enable(base);
}
dev_dbg(bus, "priv->tx_len=%d priv->rx_len=%d\n",
@ -416,12 +438,12 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
/* Be sure to have data in fifo before starting data transfer */
if (priv->tx_buf)
stm32_spi_write_txfifo(priv);
stm32_spi_write_txfifo(bus);
setbits_le32(priv->base + STM32_SPI_CR1, SPI_CR1_CSTART);
setbits_le32(base + STM32_SPI_CR1, SPI_CR1_CSTART);
while (1) {
sr = readl(priv->base + STM32_SPI_SR);
sr = readl(base + STM32_SPI_SR);
if (sr & SPI_SR_OVR) {
dev_err(bus, "Overrun: RX data lost\n");
@ -433,7 +455,7 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
dev_warn(bus, "System too slow is limiting data throughput\n");
if (priv->rx_buf && priv->rx_len > 0)
stm32_spi_read_rxfifo(priv);
stm32_spi_read_rxfifo(bus);
ifcr |= SPI_SR_SUSP;
}
@ -443,23 +465,23 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
if (sr & SPI_SR_TXP)
if (priv->tx_buf && priv->tx_len > 0)
stm32_spi_write_txfifo(priv);
stm32_spi_write_txfifo(bus);
if (sr & SPI_SR_RXP)
if (priv->rx_buf && priv->rx_len > 0)
stm32_spi_read_rxfifo(priv);
stm32_spi_read_rxfifo(bus);
if (sr & SPI_SR_EOT) {
if (priv->rx_buf && priv->rx_len > 0)
stm32_spi_read_rxfifo(priv);
stm32_spi_read_rxfifo(bus);
break;
}
writel(ifcr, priv->base + STM32_SPI_IFCR);
writel(ifcr, base + STM32_SPI_IFCR);
}
/* clear status flags */
setbits_le32(priv->base + STM32_SPI_IFCR, SPI_IFCR_ALL);
setbits_le32(base + STM32_SPI_IFCR, SPI_IFCR_ALL);
stm32_spi_stopxfer(bus);
if (flags & SPI_XFER_END)
@ -470,42 +492,72 @@ static int stm32_spi_xfer(struct udevice *slave, unsigned int bitlen,
static int stm32_spi_get_fifo_size(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
struct stm32_spi_plat *plat = dev_get_plat(dev);
void __iomem *base = plat->base;
u32 count = 0;
stm32_spi_enable(priv);
stm32_spi_enable(base);
while (readl(priv->base + STM32_SPI_SR) & SPI_SR_TXP)
writeb(++count, priv->base + STM32_SPI_TXDR);
while (readl(base + STM32_SPI_SR) & SPI_SR_TXP)
writeb(++count, base + STM32_SPI_TXDR);
stm32_spi_disable(priv);
stm32_spi_disable(base);
dev_dbg(dev, "%d x 8-bit fifo size\n", count);
return count;
}
static int stm32_spi_of_to_plat(struct udevice *dev)
{
struct stm32_spi_plat *plat = dev_get_plat(dev);
int ret;
plat->base = dev_read_addr_ptr(dev);
if (!plat->base) {
dev_err(dev, "can't get registers base address\n");
return -ENOENT;
}
ret = clk_get_by_index(dev, 0, &plat->clk);
if (ret < 0)
return ret;
ret = reset_get_by_index(dev, 0, &plat->rst_ctl);
if (ret < 0)
goto clk_err;
ret = gpio_request_list_by_name(dev, "cs-gpios", plat->cs_gpios,
ARRAY_SIZE(plat->cs_gpios), 0);
if (ret < 0) {
dev_err(dev, "Can't get %s cs gpios: %d", dev->name, ret);
ret = -ENOENT;
goto clk_err;
}
return 0;
clk_err:
clk_free(&plat->clk);
return ret;
}
static int stm32_spi_probe(struct udevice *dev)
{
struct stm32_spi_plat *plat = dev_get_plat(dev);
struct stm32_spi_priv *priv = dev_get_priv(dev);
void __iomem *base = plat->base;
unsigned long clk_rate;
int ret;
unsigned int i;
priv->base = dev_remap_addr(dev);
if (!priv->base)
return -EINVAL;
/* enable clock */
ret = clk_get_by_index(dev, 0, &priv->clk);
ret = clk_enable(&plat->clk);
if (ret < 0)
return ret;
ret = clk_enable(&priv->clk);
if (ret < 0)
return ret;
clk_rate = clk_get_rate(&priv->clk);
clk_rate = clk_get_rate(&plat->clk);
if (!clk_rate) {
ret = -EINVAL;
goto clk_err;
@ -514,46 +566,34 @@ static int stm32_spi_probe(struct udevice *dev)
priv->bus_clk_rate = clk_rate;
/* perform reset */
ret = reset_get_by_index(dev, 0, &priv->rst_ctl);
if (ret < 0)
goto clk_err;
reset_assert(&priv->rst_ctl);
reset_assert(&plat->rst_ctl);
udelay(2);
reset_deassert(&priv->rst_ctl);
ret = gpio_request_list_by_name(dev, "cs-gpios", priv->cs_gpios,
ARRAY_SIZE(priv->cs_gpios), 0);
if (ret < 0) {
dev_err(dev, "Can't get cs gpios: %d", ret);
goto reset_err;
}
reset_deassert(&plat->rst_ctl);
priv->fifo_size = stm32_spi_get_fifo_size(dev);
priv->cur_mode = SPI_FULL_DUPLEX;
priv->cur_xferlen = 0;
priv->cur_bpw = SPI_DEFAULT_WORDLEN;
clrsetbits_le32(priv->base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
clrsetbits_le32(base + STM32_SPI_CFG1, SPI_CFG1_DSIZE,
priv->cur_bpw - 1);
for (i = 0; i < ARRAY_SIZE(priv->cs_gpios); i++) {
if (!dm_gpio_is_valid(&priv->cs_gpios[i]))
for (i = 0; i < ARRAY_SIZE(plat->cs_gpios); i++) {
if (!dm_gpio_is_valid(&plat->cs_gpios[i]))
continue;
dm_gpio_set_dir_flags(&priv->cs_gpios[i],
dm_gpio_set_dir_flags(&plat->cs_gpios[i],
GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
}
/* Ensure I2SMOD bit is kept cleared */
clrbits_le32(priv->base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
clrbits_le32(base + STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);
/*
* - SS input value high
* - transmitter half duplex direction
* - automatic communication suspend when RX-Fifo is full
*/
setbits_le32(priv->base + STM32_SPI_CR1,
setbits_le32(base + STM32_SPI_CR1,
SPI_CR1_SSI | SPI_CR1_HDDIR | SPI_CR1_MASRX);
/*
@ -562,40 +602,38 @@ static int stm32_spi_probe(struct udevice *dev)
* SS input value is determined by the SSI bit
* - keep control of all associated GPIOs
*/
setbits_le32(priv->base + STM32_SPI_CFG2,
setbits_le32(base + STM32_SPI_CFG2,
SPI_CFG2_MASTER | SPI_CFG2_SSM | SPI_CFG2_AFCNTR);
return 0;
reset_err:
reset_free(&priv->rst_ctl);
clk_err:
clk_disable(&priv->clk);
clk_free(&priv->clk);
clk_disable(&plat->clk);
clk_free(&plat->clk);
return ret;
};
static int stm32_spi_remove(struct udevice *dev)
{
struct stm32_spi_priv *priv = dev_get_priv(dev);
struct stm32_spi_plat *plat = dev_get_plat(dev);
void __iomem *base = plat->base;
int ret;
stm32_spi_stopxfer(dev);
stm32_spi_disable(priv);
stm32_spi_disable(base);
ret = reset_assert(&priv->rst_ctl);
ret = reset_assert(&plat->rst_ctl);
if (ret < 0)
return ret;
reset_free(&priv->rst_ctl);
reset_free(&plat->rst_ctl);
ret = clk_disable(&priv->clk);
ret = clk_disable(&plat->clk);
if (ret < 0)
return ret;
clk_free(&priv->clk);
clk_free(&plat->clk);
return ret;
};
@ -618,7 +656,9 @@ U_BOOT_DRIVER(stm32_spi) = {
.id = UCLASS_SPI,
.of_match = stm32_spi_ids,
.ops = &stm32_spi_ops,
.priv_auto = sizeof(struct stm32_spi_priv),
.of_to_plat = stm32_spi_of_to_plat,
.plat_auto = sizeof(struct stm32_spi_plat),
.priv_auto = sizeof(struct stm32_spi_priv),
.probe = stm32_spi_probe,
.remove = stm32_spi_remove,
};