- fix for fsl_qspi read timeout (Thomas)
- spi-mem read data size fix (Ye Li)
- SiFive SPI driver, mmc_spi flags (Bhargav, Anup)
- Micron spi-nor parts (Ashish)
- MT7629 spi-mem driver(Weijie)
This commit is contained in:
Tom Rini 2019-07-27 09:34:07 -04:00
commit 222701e157
11 changed files with 725 additions and 384 deletions

View File

@ -205,7 +205,7 @@ F: drivers/mmc/mtk-sd.c
F: drivers/pinctrl/mediatek/
F: drivers/power/domain/mtk-power-domain.c
F: drivers/ram/mediatek/
F: drivers/spi/mtk_qspi.c
F: drivers/spi/mtk_snfi_spi.c
F: drivers/timer/mtk_timer.c
F: drivers/watchdog/mtk_wdt.c
F: drivers/net/mtk_eth.c

View File

@ -64,7 +64,7 @@ CONFIG_DM_SERIAL=y
CONFIG_MTK_SERIAL=y
CONFIG_SPI=y
CONFIG_DM_SPI=y
CONFIG_MTK_QSPI=y
CONFIG_MTK_SNFI_SPI=y
CONFIG_SYSRESET=y
CONFIG_SPL_SYSRESET=y
CONFIG_SYSRESET_WATCHDOG=y

View File

@ -84,7 +84,7 @@ static int mmc_spi_sendcmd(struct udevice *dev,
cmdo[4] = cmdarg >> 8;
cmdo[5] = cmdarg;
cmdo[6] = (crc7(0, &cmdo[1], 5) << 1) | 0x01;
ret = dm_spi_xfer(dev, sizeof(cmdo) * 8, cmdo, NULL, 0);
ret = dm_spi_xfer(dev, sizeof(cmdo) * 8, cmdo, NULL, SPI_XFER_BEGIN);
if (ret)
return ret;
@ -360,6 +360,8 @@ static int dm_mmc_spi_request(struct udevice *dev, struct mmc_cmd *cmd,
}
done:
dm_spi_xfer(dev, 0, NULL, NULL, SPI_XFER_END);
dm_spi_release_bus(dev);
return ret;

View File

@ -163,11 +163,15 @@ const struct flash_info spi_nor_ids[] = {
{ INFO("n25q128a13", 0x20ba18, 0, 64 * 1024, 256, SECT_4K | SPI_NOR_QUAD_READ) },
{ INFO("n25q256a", 0x20ba19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ INFO("n25q256ax1", 0x20bb19, 0, 64 * 1024, 512, SECT_4K | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ INFO6("mt25qu512a", 0x20bb20, 0x104400, 64 * 1024, 1024,
SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ INFO("n25q512a", 0x20bb20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ INFO("n25q512ax3", 0x20ba20, 0, 64 * 1024, 1024, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | SPI_NOR_4B_OPCODES) },
{ INFO("n25q00", 0x20ba21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
{ INFO("n25q00a", 0x20bb21, 0, 64 * 1024, 2048, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
{ INFO("mt25qu02g", 0x20bb22, 0, 64 * 1024, 4096, SECT_4K | USE_FSR | SPI_NOR_QUAD_READ | NO_CHIP_ERASE) },
{ INFO("mt35xu512aba", 0x2c5b1a, 0, 128 * 1024, 512, USE_FSR | SPI_NOR_4B_OPCODES) },
{ INFO("mt35xu02g", 0x2c5b1c, 0, 128 * 1024, 2048, USE_FSR | SPI_NOR_4B_OPCODES) },
#endif
#ifdef CONFIG_SPI_FLASH_SPANSION /* SPANSION */
/* Spansion/Cypress -- single (large) sector size only, at least

View File

@ -158,13 +158,14 @@ config MT7621_SPI
the SPI NOR flash on platforms embedding this Ralink / MediaTek
SPI core, like MT7621/7628/7688.
config MTK_QSPI
bool "Mediatek QSPI driver"
imply SPI_FLASH_BAR
config MTK_SNFI_SPI
bool "Mediatek SPI memory controller driver"
depends on SPI_MEM
help
Enable the Mediatek QSPI driver. This driver can be
used to access the SPI NOR flash on platforms embedding this
Mediatek QSPI IP core.
Enable the Mediatek SPI memory controller driver. This driver is
originally based on the MediaTek SNFI IP core. It can only be
used to access SPI memory devices like SPI-NOR or SPI-NAND on
platforms embedding this IP core, like MT7622/M7629.
config MVEBU_A3700_SPI
bool "Marvell Armada 3700 SPI driver"
@ -232,6 +233,14 @@ config SANDBOX_SPI
};
};
config SPI_SIFIVE
bool "SiFive SPI driver"
help
This driver supports the SiFive SPI IP. If unsure say N.
Enable the SiFive SPI controller driver.
The SiFive SPI controller driver is found on various SiFive SoCs.
config SPI_SUNXI
bool "Allwinner SoC SPI controllers"
help

View File

@ -37,7 +37,7 @@ obj-$(CONFIG_LPC32XX_SSP) += lpc32xx_ssp.o
obj-$(CONFIG_MESON_SPIFC) += meson_spifc.o
obj-$(CONFIG_MPC8XX_SPI) += mpc8xx_spi.o
obj-$(CONFIG_MPC8XXX_SPI) += mpc8xxx_spi.o
obj-$(CONFIG_MTK_QSPI) += mtk_qspi.o
obj-$(CONFIG_MTK_SNFI_SPI) += mtk_snfi_spi.o
obj-$(CONFIG_MT7621_SPI) += mt7621_spi.o
obj-$(CONFIG_MSCC_BB_SPI) += mscc_bb_spi.o
obj-$(CONFIG_MVEBU_A3700_SPI) += mvebu_a3700_spi.o
@ -50,6 +50,7 @@ obj-$(CONFIG_PL022_SPI) += pl022_spi.o
obj-$(CONFIG_RENESAS_RPC_SPI) += renesas_rpc_spi.o
obj-$(CONFIG_ROCKCHIP_SPI) += rk_spi.o
obj-$(CONFIG_SANDBOX_SPI) += sandbox_spi.o
obj-$(CONFIG_SPI_SIFIVE) += spi-sifive.o
obj-$(CONFIG_SPI_SUNXI) += spi-sunxi.o
obj-$(CONFIG_SH_SPI) += sh_spi.o
obj-$(CONFIG_SH_QSPI) += sh_qspi.o

View File

@ -10,6 +10,7 @@
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <linux/iopoll.h>
#include <dm.h>
#include <errno.h>
#include <watchdog.h>
@ -150,20 +151,13 @@ static void qspi_write32(u32 flags, u32 *addr, u32 val)
static inline int is_controller_busy(const struct fsl_qspi_priv *priv)
{
u32 val;
const u32 mask = QSPI_SR_BUSY_MASK | QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK;
unsigned int retry = 5;
u32 mask = QSPI_SR_BUSY_MASK | QSPI_SR_AHB_ACC_MASK |
QSPI_SR_IP_ACC_MASK;
do {
val = qspi_read32(priv->flags, &priv->regs->sr);
if (priv->flags & QSPI_FLAG_REGMAP_ENDIAN_BIG)
mask = (u32)cpu_to_be32(mask);
if ((~val & mask) == mask)
return 0;
udelay(1);
} while (--retry);
return -ETIMEDOUT;
return readl_poll_timeout(&priv->regs->sr, val, !(val & mask), 1000);
}
/* QSPI support swapping the flash read/write data

View File

@ -1,359 +0,0 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 MediaTek, Inc.
* Author : Guochun.Mao@mediatek.com
*/
#include <common.h>
#include <dm.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
/* Register Offset */
struct mtk_qspi_regs {
u32 cmd;
u32 cnt;
u32 rdsr;
u32 rdata;
u32 radr[3];
u32 wdata;
u32 prgdata[6];
u32 shreg[10];
u32 cfg[2];
u32 shreg10;
u32 mode_mon;
u32 status[4];
u32 flash_time;
u32 flash_cfg;
u32 reserved_0[3];
u32 sf_time;
u32 pp_dw_data;
u32 reserved_1;
u32 delsel_0[2];
u32 intrstus;
u32 intren;
u32 reserved_2;
u32 cfg3;
u32 reserved_3;
u32 chksum;
u32 aaicmd;
u32 wrprot;
u32 radr3;
u32 dual;
u32 delsel_1[3];
};
struct mtk_qspi_platdata {
fdt_addr_t reg_base;
fdt_addr_t mem_base;
};
struct mtk_qspi_priv {
struct mtk_qspi_regs *regs;
unsigned long *mem_base;
u8 op;
u8 tx[3]; /* only record max 3 bytes paras, when it's address. */
u32 txlen; /* dout buffer length - op code length */
u8 *rx;
u32 rxlen;
};
#define MTK_QSPI_CMD_POLLINGREG_US 500000
#define MTK_QSPI_WRBUF_SIZE 256
#define MTK_QSPI_COMMAND_ENABLE 0x30
/* NOR flash controller commands */
#define MTK_QSPI_RD_TRIGGER BIT(0)
#define MTK_QSPI_READSTATUS BIT(1)
#define MTK_QSPI_PRG_CMD BIT(2)
#define MTK_QSPI_WR_TRIGGER BIT(4)
#define MTK_QSPI_WRITESTATUS BIT(5)
#define MTK_QSPI_AUTOINC BIT(7)
#define MTK_QSPI_MAX_RX_TX_SHIFT 0x6
#define MTK_QSPI_MAX_SHIFT 0x8
#define MTK_QSPI_WR_BUF_ENABLE 0x1
#define MTK_QSPI_WR_BUF_DISABLE 0x0
static int mtk_qspi_execute_cmd(struct mtk_qspi_priv *priv, u8 cmd)
{
u8 tmp;
u8 val = cmd & ~MTK_QSPI_AUTOINC;
writeb(cmd, &priv->regs->cmd);
return readb_poll_timeout(&priv->regs->cmd, tmp, !(val & tmp),
MTK_QSPI_CMD_POLLINGREG_US);
}
static int mtk_qspi_tx_rx(struct mtk_qspi_priv *priv)
{
int len = 1 + priv->txlen + priv->rxlen;
int i, ret, idx;
if (len > MTK_QSPI_MAX_SHIFT)
return -ERR_INVAL;
writeb(len * 8, &priv->regs->cnt);
/* start at PRGDATA5, go down to PRGDATA0 */
idx = MTK_QSPI_MAX_RX_TX_SHIFT - 1;
/* opcode */
writeb(priv->op, &priv->regs->prgdata[idx]);
idx--;
/* program TX data */
for (i = 0; i < priv->txlen; i++, idx--)
writeb(priv->tx[i], &priv->regs->prgdata[idx]);
/* clear out rest of TX registers */
while (idx >= 0) {
writeb(0, &priv->regs->prgdata[idx]);
idx--;
}
ret = mtk_qspi_execute_cmd(priv, MTK_QSPI_PRG_CMD);
if (ret)
return ret;
/* restart at first RX byte */
idx = priv->rxlen - 1;
/* read out RX data */
for (i = 0; i < priv->rxlen; i++, idx--)
priv->rx[i] = readb(&priv->regs->shreg[idx]);
return 0;
}
static int mtk_qspi_read(struct mtk_qspi_priv *priv,
u32 addr, u8 *buf, u32 len)
{
memcpy(buf, (u8 *)priv->mem_base + addr, len);
return 0;
}
static void mtk_qspi_set_addr(struct mtk_qspi_priv *priv, u32 addr)
{
int i;
for (i = 0; i < 3; i++) {
writeb(addr & 0xff, &priv->regs->radr[i]);
addr >>= 8;
}
}
static int mtk_qspi_write_single_byte(struct mtk_qspi_priv *priv,
u32 addr, u32 length, const u8 *data)
{
int i, ret;
mtk_qspi_set_addr(priv, addr);
for (i = 0; i < length; i++) {
writeb(*data++, &priv->regs->wdata);
ret = mtk_qspi_execute_cmd(priv, MTK_QSPI_WR_TRIGGER);
if (ret < 0)
return ret;
}
return 0;
}
static int mtk_qspi_write_buffer(struct mtk_qspi_priv *priv, u32 addr,
const u8 *buf)
{
int i, data;
mtk_qspi_set_addr(priv, addr);
for (i = 0; i < MTK_QSPI_WRBUF_SIZE; i += 4) {
data = buf[i + 3] << 24 | buf[i + 2] << 16 |
buf[i + 1] << 8 | buf[i];
writel(data, &priv->regs->pp_dw_data);
}
return mtk_qspi_execute_cmd(priv, MTK_QSPI_WR_TRIGGER);
}
static int mtk_qspi_write(struct mtk_qspi_priv *priv,
u32 addr, const u8 *buf, u32 len)
{
int ret;
/* setting pre-fetch buffer for page program */
writel(MTK_QSPI_WR_BUF_ENABLE, &priv->regs->cfg[1]);
while (len >= MTK_QSPI_WRBUF_SIZE) {
ret = mtk_qspi_write_buffer(priv, addr, buf);
if (ret < 0)
return ret;
len -= MTK_QSPI_WRBUF_SIZE;
addr += MTK_QSPI_WRBUF_SIZE;
buf += MTK_QSPI_WRBUF_SIZE;
}
/* disable pre-fetch buffer for page program */
writel(MTK_QSPI_WR_BUF_DISABLE, &priv->regs->cfg[1]);
if (len)
return mtk_qspi_write_single_byte(priv, addr, len, buf);
return 0;
}
static int mtk_qspi_claim_bus(struct udevice *dev)
{
/* nothing to do */
return 0;
}
static int mtk_qspi_release_bus(struct udevice *dev)
{
/* nothing to do */
return 0;
}
static int mtk_qspi_transfer(struct mtk_qspi_priv *priv, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
u32 bytes = DIV_ROUND_UP(bitlen, 8);
u32 addr;
if (!bytes)
return -ERR_INVAL;
if (dout) {
if (flags & SPI_XFER_BEGIN) {
/* parse op code and potential paras first */
priv->op = *(u8 *)dout;
if (bytes > 1)
memcpy(priv->tx, (u8 *)dout + 1,
bytes <= 4 ? bytes - 1 : 3);
priv->txlen = bytes - 1;
}
if (flags == SPI_XFER_ONCE) {
/* operations without receiving or sending data.
* for example: erase, write flash register or write
* enable...
*/
priv->rx = NULL;
priv->rxlen = 0;
return mtk_qspi_tx_rx(priv);
}
if (flags & SPI_XFER_END) {
/* here, dout should be data to be written.
* and priv->tx should be filled 3Bytes address.
*/
addr = priv->tx[0] << 16 | priv->tx[1] << 8 |
priv->tx[2];
return mtk_qspi_write(priv, addr, (u8 *)dout, bytes);
}
}
if (din) {
if (priv->txlen >= 3) {
/* if run to here, priv->tx[] should be the address
* where read data from,
* and, din is the buf to receive data.
*/
addr = priv->tx[0] << 16 | priv->tx[1] << 8 |
priv->tx[2];
return mtk_qspi_read(priv, addr, (u8 *)din, bytes);
}
/* should be reading flash's register */
priv->rx = (u8 *)din;
priv->rxlen = bytes;
return mtk_qspi_tx_rx(priv);
}
return 0;
}
static int mtk_qspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct mtk_qspi_priv *priv = dev_get_priv(bus);
return mtk_qspi_transfer(priv, bitlen, dout, din, flags);
}
static int mtk_qspi_set_speed(struct udevice *bus, uint speed)
{
/* nothing to do */
return 0;
}
static int mtk_qspi_set_mode(struct udevice *bus, uint mode)
{
/* nothing to do */
return 0;
}
static int mtk_qspi_ofdata_to_platdata(struct udevice *bus)
{
struct resource res_reg, res_mem;
struct mtk_qspi_platdata *plat = bus->platdata;
int ret;
ret = dev_read_resource_byname(bus, "reg_base", &res_reg);
if (ret) {
debug("can't get reg_base resource(ret = %d)\n", ret);
return -ENOMEM;
}
ret = dev_read_resource_byname(bus, "mem_base", &res_mem);
if (ret) {
debug("can't get map_base resource(ret = %d)\n", ret);
return -ENOMEM;
}
plat->mem_base = res_mem.start;
plat->reg_base = res_reg.start;
return 0;
}
static int mtk_qspi_probe(struct udevice *bus)
{
struct mtk_qspi_platdata *plat = dev_get_platdata(bus);
struct mtk_qspi_priv *priv = dev_get_priv(bus);
priv->regs = (struct mtk_qspi_regs *)plat->reg_base;
priv->mem_base = (unsigned long *)plat->mem_base;
writel(MTK_QSPI_COMMAND_ENABLE, &priv->regs->wrprot);
return 0;
}
static const struct dm_spi_ops mtk_qspi_ops = {
.claim_bus = mtk_qspi_claim_bus,
.release_bus = mtk_qspi_release_bus,
.xfer = mtk_qspi_xfer,
.set_speed = mtk_qspi_set_speed,
.set_mode = mtk_qspi_set_mode,
};
static const struct udevice_id mtk_qspi_ids[] = {
{ .compatible = "mediatek,mt7629-qspi" },
{ }
};
U_BOOT_DRIVER(mtk_qspi) = {
.name = "mtk_qspi",
.id = UCLASS_SPI,
.of_match = mtk_qspi_ids,
.ops = &mtk_qspi_ops,
.ofdata_to_platdata = mtk_qspi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct mtk_qspi_platdata),
.priv_auto_alloc_size = sizeof(struct mtk_qspi_priv),
.probe = mtk_qspi_probe,
};

318
drivers/spi/mtk_snfi_spi.c Normal file
View File

@ -0,0 +1,318 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2019 MediaTek Inc. All Rights Reserved.
*
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <spi.h>
#include <spi-mem.h>
#include <stdbool.h>
#include <watchdog.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#define SNFI_MAC_CTL 0x500
#define MAC_XIO_SEL BIT(4)
#define SF_MAC_EN BIT(3)
#define SF_TRIG BIT(2)
#define WIP_READY BIT(1)
#define WIP BIT(0)
#define SNFI_MAC_OUTL 0x504
#define SNFI_MAC_INL 0x508
#define SNFI_MISC_CTL 0x538
#define SW_RST BIT(28)
#define FIFO_RD_LTC_SHIFT 25
#define FIFO_RD_LTC GENMASK(26, 25)
#define LATCH_LAT_SHIFT 8
#define LATCH_LAT GENMASK(9, 8)
#define CS_DESELECT_CYC_SHIFT 0
#define CS_DESELECT_CYC GENMASK(4, 0)
#define SNF_STA_CTL1 0x550
#define SPI_STATE GENMASK(3, 0)
#define SNFI_GPRAM_OFFSET 0x800
#define SNFI_GPRAM_SIZE 0x80
#define SNFI_POLL_INTERVAL 500000
#define SNFI_RST_POLL_INTERVAL 1000000
struct mtk_snfi_priv {
void __iomem *base;
struct clk nfi_clk;
struct clk pad_clk;
};
static int mtk_snfi_adjust_op_size(struct spi_slave *slave,
struct spi_mem_op *op)
{
u32 nbytes;
/*
* When there is input data, it will be appended after the output
* data in the GPRAM. So the total size of either pure output data
* or the output+input data must not exceed the GPRAM size.
*/
nbytes = sizeof(op->cmd.opcode) + op->addr.nbytes +
op->dummy.nbytes;
if (nbytes + op->data.nbytes <= SNFI_GPRAM_SIZE)
return 0;
if (nbytes >= SNFI_GPRAM_SIZE)
return -ENOTSUPP;
op->data.nbytes = SNFI_GPRAM_SIZE - nbytes;
return 0;
}
static bool mtk_snfi_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
if (op->cmd.buswidth > 1 || op->addr.buswidth > 1 ||
op->dummy.buswidth > 1 || op->data.buswidth > 1)
return false;
return true;
}
static int mtk_snfi_mac_trigger(struct mtk_snfi_priv *priv,
struct udevice *bus, u32 outlen, u32 inlen)
{
int ret;
u32 val;
#ifdef CONFIG_PINCTRL
pinctrl_select_state(bus, "snfi");
#endif
writel(SF_MAC_EN, priv->base + SNFI_MAC_CTL);
writel(outlen, priv->base + SNFI_MAC_OUTL);
writel(inlen, priv->base + SNFI_MAC_INL);
writel(SF_MAC_EN | SF_TRIG, priv->base + SNFI_MAC_CTL);
ret = readl_poll_timeout(priv->base + SNFI_MAC_CTL, val,
val & WIP_READY, SNFI_POLL_INTERVAL);
if (ret) {
printf("%s: timed out waiting for WIP_READY\n", __func__);
goto cleanup;
}
ret = readl_poll_timeout(priv->base + SNFI_MAC_CTL, val,
!(val & WIP), SNFI_POLL_INTERVAL);
if (ret)
printf("%s: timed out waiting for WIP cleared\n", __func__);
writel(0, priv->base + SNFI_MAC_CTL);
cleanup:
#ifdef CONFIG_PINCTRL
pinctrl_select_state(bus, "default");
#endif
return ret;
}
static int mtk_snfi_mac_reset(struct mtk_snfi_priv *priv)
{
int ret;
u32 val;
setbits_32(priv->base + SNFI_MISC_CTL, SW_RST);
ret = readl_poll_timeout(priv->base + SNF_STA_CTL1, val,
!(val & SPI_STATE), SNFI_POLL_INTERVAL);
if (ret)
printf("%s: failed to reset snfi mac\n", __func__);
writel((2 << FIFO_RD_LTC_SHIFT) |
(10 << CS_DESELECT_CYC_SHIFT),
priv->base + SNFI_MISC_CTL);
return ret;
}
static void mtk_snfi_copy_to_gpram(struct mtk_snfi_priv *priv,
const void *data, size_t len)
{
void __iomem *gpram = priv->base + SNFI_GPRAM_OFFSET;
size_t i, n = (len + sizeof(u32) - 1) / sizeof(u32);
const u32 *buff = data;
/*
* The output data will always be copied to the beginning of
* the GPRAM. Uses word write for better performace.
*
* Trailing bytes in the last word are not cared.
*/
for (i = 0; i < n; i++)
writel(buff[i], gpram + i * sizeof(u32));
}
static void mtk_snfi_copy_from_gpram(struct mtk_snfi_priv *priv, u8 *cache,
void *data, size_t pos, size_t len)
{
void __iomem *gpram = priv->base + SNFI_GPRAM_OFFSET;
u32 *buff = (u32 *)cache;
size_t i, off, end;
/* Start position in the buffer */
off = pos & (sizeof(u32) - 1);
/* End position for copy */
end = (len + pos + sizeof(u32) - 1) & (~(sizeof(u32) - 1));
/* Start position for copy */
pos &= ~(sizeof(u32) - 1);
/*
* Read aligned data from GPRAM to buffer first.
* Uses word read for better performace.
*/
i = 0;
while (pos < end) {
buff[i++] = readl(gpram + pos);
pos += sizeof(u32);
}
/* Copy rx data */
memcpy(data, cache + off, len);
}
static int mtk_snfi_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct udevice *bus = dev_get_parent(slave->dev);
struct mtk_snfi_priv *priv = dev_get_priv(bus);
u8 gpram_cache[SNFI_GPRAM_SIZE];
u32 i, len = 0, inlen = 0;
int addr_sh;
int ret;
WATCHDOG_RESET();
ret = mtk_snfi_mac_reset(priv);
if (ret)
return ret;
/* Put opcode */
gpram_cache[len++] = op->cmd.opcode;
/* Put address */
addr_sh = (op->addr.nbytes - 1) * 8;
while (addr_sh >= 0) {
gpram_cache[len++] = (op->addr.val >> addr_sh) & 0xff;
addr_sh -= 8;
}
/* Put dummy bytes */
for (i = 0; i < op->dummy.nbytes; i++)
gpram_cache[len++] = 0;
/* Put output data */
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) {
memcpy(gpram_cache + len, op->data.buf.out, op->data.nbytes);
len += op->data.nbytes;
}
/* Copy final output data to GPRAM */
mtk_snfi_copy_to_gpram(priv, gpram_cache, len);
/* Start one SPI transaction */
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
inlen = op->data.nbytes;
ret = mtk_snfi_mac_trigger(priv, bus, len, inlen);
if (ret)
return ret;
/* Copy input data from GPRAM */
if (inlen)
mtk_snfi_copy_from_gpram(priv, gpram_cache, op->data.buf.in,
len, inlen);
return 0;
}
static int mtk_snfi_spi_probe(struct udevice *bus)
{
struct mtk_snfi_priv *priv = dev_get_priv(bus);
int ret;
priv->base = (void __iomem *)devfdt_get_addr(bus);
if (!priv->base)
return -EINVAL;
ret = clk_get_by_name(bus, "nfi_clk", &priv->nfi_clk);
if (ret < 0)
return ret;
ret = clk_get_by_name(bus, "pad_clk", &priv->pad_clk);
if (ret < 0)
return ret;
clk_enable(&priv->nfi_clk);
clk_enable(&priv->pad_clk);
return 0;
}
static int mtk_snfi_set_speed(struct udevice *bus, uint speed)
{
/*
* The SNFI does not have a bus clock divider.
* The bus clock is set in dts (pad_clk, UNIVPLL2_D8 = 50MHz).
*/
return 0;
}
static int mtk_snfi_set_mode(struct udevice *bus, uint mode)
{
/* The SNFI supports only mode 0 */
if (mode)
return -EINVAL;
return 0;
}
static const struct spi_controller_mem_ops mtk_snfi_mem_ops = {
.adjust_op_size = mtk_snfi_adjust_op_size,
.supports_op = mtk_snfi_supports_op,
.exec_op = mtk_snfi_exec_op,
};
static const struct dm_spi_ops mtk_snfi_spi_ops = {
.mem_ops = &mtk_snfi_mem_ops,
.set_speed = mtk_snfi_set_speed,
.set_mode = mtk_snfi_set_mode,
};
static const struct udevice_id mtk_snfi_spi_ids[] = {
{ .compatible = "mediatek,mtk-snfi-spi" },
{ }
};
U_BOOT_DRIVER(mtk_snfi_spi) = {
.name = "mtk_snfi_spi",
.id = UCLASS_SPI,
.of_match = mtk_snfi_spi_ids,
.ops = &mtk_snfi_spi_ops,
.priv_auto_alloc_size = sizeof(struct mtk_snfi_priv),
.probe = mtk_snfi_spi_probe,
};

View File

@ -430,12 +430,14 @@ int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
if (slave->max_write_size && len > slave->max_write_size)
return -EINVAL;
if (op->data.dir == SPI_MEM_DATA_IN && slave->max_read_size)
op->data.nbytes = min(op->data.nbytes,
if (op->data.dir == SPI_MEM_DATA_IN) {
if (slave->max_read_size)
op->data.nbytes = min(op->data.nbytes,
slave->max_read_size);
else if (slave->max_write_size)
} else if (slave->max_write_size) {
op->data.nbytes = min(op->data.nbytes,
slave->max_write_size - len);
}
if (!op->data.nbytes)
return -EINVAL;

370
drivers/spi/spi-sifive.c Normal file
View File

@ -0,0 +1,370 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright 2018 SiFive, Inc.
* Copyright 2019 Bhargav Shah <bhargavshah1988@gmail.com>
*
* SiFive SPI controller driver (master mode only)
*/
#include <common.h>
#include <dm.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/log2.h>
#include <clk.h>
#define SIFIVE_SPI_MAX_CS 32
#define SIFIVE_SPI_DEFAULT_DEPTH 8
#define SIFIVE_SPI_DEFAULT_BITS 8
/* register offsets */
#define SIFIVE_SPI_REG_SCKDIV 0x00 /* Serial clock divisor */
#define SIFIVE_SPI_REG_SCKMODE 0x04 /* Serial clock mode */
#define SIFIVE_SPI_REG_CSID 0x10 /* Chip select ID */
#define SIFIVE_SPI_REG_CSDEF 0x14 /* Chip select default */
#define SIFIVE_SPI_REG_CSMODE 0x18 /* Chip select mode */
#define SIFIVE_SPI_REG_DELAY0 0x28 /* Delay control 0 */
#define SIFIVE_SPI_REG_DELAY1 0x2c /* Delay control 1 */
#define SIFIVE_SPI_REG_FMT 0x40 /* Frame format */
#define SIFIVE_SPI_REG_TXDATA 0x48 /* Tx FIFO data */
#define SIFIVE_SPI_REG_RXDATA 0x4c /* Rx FIFO data */
#define SIFIVE_SPI_REG_TXMARK 0x50 /* Tx FIFO watermark */
#define SIFIVE_SPI_REG_RXMARK 0x54 /* Rx FIFO watermark */
#define SIFIVE_SPI_REG_FCTRL 0x60 /* SPI flash interface control */
#define SIFIVE_SPI_REG_FFMT 0x64 /* SPI flash instruction format */
#define SIFIVE_SPI_REG_IE 0x70 /* Interrupt Enable Register */
#define SIFIVE_SPI_REG_IP 0x74 /* Interrupt Pendings Register */
/* sckdiv bits */
#define SIFIVE_SPI_SCKDIV_DIV_MASK 0xfffU
/* sckmode bits */
#define SIFIVE_SPI_SCKMODE_PHA BIT(0)
#define SIFIVE_SPI_SCKMODE_POL BIT(1)
#define SIFIVE_SPI_SCKMODE_MODE_MASK (SIFIVE_SPI_SCKMODE_PHA | \
SIFIVE_SPI_SCKMODE_POL)
/* csmode bits */
#define SIFIVE_SPI_CSMODE_MODE_AUTO 0U
#define SIFIVE_SPI_CSMODE_MODE_HOLD 2U
#define SIFIVE_SPI_CSMODE_MODE_OFF 3U
/* delay0 bits */
#define SIFIVE_SPI_DELAY0_CSSCK(x) ((u32)(x))
#define SIFIVE_SPI_DELAY0_CSSCK_MASK 0xffU
#define SIFIVE_SPI_DELAY0_SCKCS(x) ((u32)(x) << 16)
#define SIFIVE_SPI_DELAY0_SCKCS_MASK (0xffU << 16)
/* delay1 bits */
#define SIFIVE_SPI_DELAY1_INTERCS(x) ((u32)(x))
#define SIFIVE_SPI_DELAY1_INTERCS_MASK 0xffU
#define SIFIVE_SPI_DELAY1_INTERXFR(x) ((u32)(x) << 16)
#define SIFIVE_SPI_DELAY1_INTERXFR_MASK (0xffU << 16)
/* fmt bits */
#define SIFIVE_SPI_FMT_PROTO_SINGLE 0U
#define SIFIVE_SPI_FMT_PROTO_DUAL 1U
#define SIFIVE_SPI_FMT_PROTO_QUAD 2U
#define SIFIVE_SPI_FMT_PROTO_MASK 3U
#define SIFIVE_SPI_FMT_ENDIAN BIT(2)
#define SIFIVE_SPI_FMT_DIR BIT(3)
#define SIFIVE_SPI_FMT_LEN(x) ((u32)(x) << 16)
#define SIFIVE_SPI_FMT_LEN_MASK (0xfU << 16)
/* txdata bits */
#define SIFIVE_SPI_TXDATA_DATA_MASK 0xffU
#define SIFIVE_SPI_TXDATA_FULL BIT(31)
/* rxdata bits */
#define SIFIVE_SPI_RXDATA_DATA_MASK 0xffU
#define SIFIVE_SPI_RXDATA_EMPTY BIT(31)
/* ie and ip bits */
#define SIFIVE_SPI_IP_TXWM BIT(0)
#define SIFIVE_SPI_IP_RXWM BIT(1)
struct sifive_spi {
void *regs; /* base address of the registers */
u32 fifo_depth;
u32 bits_per_word;
u32 cs_inactive; /* Level of the CS pins when inactive*/
u32 freq;
u32 num_cs;
};
static void sifive_spi_prep_device(struct sifive_spi *spi,
struct dm_spi_slave_platdata *slave)
{
/* Update the chip select polarity */
if (slave->mode & SPI_CS_HIGH)
spi->cs_inactive &= ~BIT(slave->cs);
else
spi->cs_inactive |= BIT(slave->cs);
writel(spi->cs_inactive, spi->regs + SIFIVE_SPI_REG_CSDEF);
/* Select the correct device */
writel(slave->cs, spi->regs + SIFIVE_SPI_REG_CSID);
}
static int sifive_spi_set_cs(struct sifive_spi *spi,
struct dm_spi_slave_platdata *slave)
{
u32 cs_mode = SIFIVE_SPI_CSMODE_MODE_HOLD;
if (slave->mode & SPI_CS_HIGH)
cs_mode = SIFIVE_SPI_CSMODE_MODE_AUTO;
writel(cs_mode, spi->regs + SIFIVE_SPI_REG_CSMODE);
return 0;
}
static void sifive_spi_clear_cs(struct sifive_spi *spi)
{
writel(SIFIVE_SPI_CSMODE_MODE_AUTO, spi->regs + SIFIVE_SPI_REG_CSMODE);
}
static void sifive_spi_prep_transfer(struct sifive_spi *spi,
bool is_rx_xfer,
struct dm_spi_slave_platdata *slave)
{
u32 cr;
/* Modify the SPI protocol mode */
cr = readl(spi->regs + SIFIVE_SPI_REG_FMT);
/* Bits per word ? */
cr &= ~SIFIVE_SPI_FMT_LEN_MASK;
cr |= SIFIVE_SPI_FMT_LEN(spi->bits_per_word);
/* LSB first? */
cr &= ~SIFIVE_SPI_FMT_ENDIAN;
if (slave->mode & SPI_LSB_FIRST)
cr |= SIFIVE_SPI_FMT_ENDIAN;
/* Number of wires ? */
cr &= ~SIFIVE_SPI_FMT_PROTO_MASK;
if ((slave->mode & SPI_TX_QUAD) || (slave->mode & SPI_RX_QUAD))
cr |= SIFIVE_SPI_FMT_PROTO_QUAD;
else if ((slave->mode & SPI_TX_DUAL) || (slave->mode & SPI_RX_DUAL))
cr |= SIFIVE_SPI_FMT_PROTO_DUAL;
else
cr |= SIFIVE_SPI_FMT_PROTO_SINGLE;
/* SPI direction in/out ? */
cr &= ~SIFIVE_SPI_FMT_DIR;
if (!is_rx_xfer)
cr |= SIFIVE_SPI_FMT_DIR;
writel(cr, spi->regs + SIFIVE_SPI_REG_FMT);
}
static void sifive_spi_rx(struct sifive_spi *spi, u8 *rx_ptr)
{
u32 data;
do {
data = readl(spi->regs + SIFIVE_SPI_REG_RXDATA);
} while (data & SIFIVE_SPI_RXDATA_EMPTY);
if (rx_ptr)
*rx_ptr = data & SIFIVE_SPI_RXDATA_DATA_MASK;
}
static void sifive_spi_tx(struct sifive_spi *spi, const u8 *tx_ptr)
{
u32 data;
u8 tx_data = (tx_ptr) ? *tx_ptr & SIFIVE_SPI_TXDATA_DATA_MASK :
SIFIVE_SPI_TXDATA_DATA_MASK;
do {
data = readl(spi->regs + SIFIVE_SPI_REG_TXDATA);
} while (data & SIFIVE_SPI_TXDATA_FULL);
writel(tx_data, spi->regs + SIFIVE_SPI_REG_TXDATA);
}
static int sifive_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev->parent;
struct sifive_spi *spi = dev_get_priv(bus);
struct dm_spi_slave_platdata *slave = dev_get_parent_platdata(dev);
const unsigned char *tx_ptr = dout;
u8 *rx_ptr = din;
u32 remaining_len;
int ret;
if (flags & SPI_XFER_BEGIN) {
sifive_spi_prep_device(spi, slave);
ret = sifive_spi_set_cs(spi, slave);
if (ret)
return ret;
}
sifive_spi_prep_transfer(spi, true, slave);
remaining_len = bitlen / 8;
while (remaining_len) {
int n_words, tx_words, rx_words;
n_words = min(remaining_len, spi->fifo_depth);
/* Enqueue n_words for transmission */
if (tx_ptr) {
for (tx_words = 0; tx_words < n_words; ++tx_words) {
sifive_spi_tx(spi, tx_ptr);
sifive_spi_rx(spi, NULL);
tx_ptr++;
}
}
/* Read out all the data from the RX FIFO */
if (rx_ptr) {
for (rx_words = 0; rx_words < n_words; ++rx_words) {
sifive_spi_tx(spi, NULL);
sifive_spi_rx(spi, rx_ptr);
rx_ptr++;
}
}
remaining_len -= n_words;
}
if (flags & SPI_XFER_END)
sifive_spi_clear_cs(spi);
return 0;
}
static int sifive_spi_set_speed(struct udevice *bus, uint speed)
{
struct sifive_spi *spi = dev_get_priv(bus);
u32 scale;
if (speed > spi->freq)
speed = spi->freq;
/* Cofigure max speed */
scale = (DIV_ROUND_UP(spi->freq >> 1, speed) - 1)
& SIFIVE_SPI_SCKDIV_DIV_MASK;
writel(scale, spi->regs + SIFIVE_SPI_REG_SCKDIV);
return 0;
}
static int sifive_spi_set_mode(struct udevice *bus, uint mode)
{
struct sifive_spi *spi = dev_get_priv(bus);
u32 cr;
/* Switch clock mode bits */
cr = readl(spi->regs + SIFIVE_SPI_REG_SCKMODE) &
~SIFIVE_SPI_SCKMODE_MODE_MASK;
if (mode & SPI_CPHA)
cr |= SIFIVE_SPI_SCKMODE_PHA;
if (mode & SPI_CPOL)
cr |= SIFIVE_SPI_SCKMODE_POL;
writel(cr, spi->regs + SIFIVE_SPI_REG_SCKMODE);
return 0;
}
static int sifive_spi_cs_info(struct udevice *bus, uint cs,
struct spi_cs_info *info)
{
struct sifive_spi *spi = dev_get_priv(bus);
if (cs >= spi->num_cs)
return -EINVAL;
return 0;
}
static void sifive_spi_init_hw(struct sifive_spi *spi)
{
u32 cs_bits;
/* probe the number of CS lines */
spi->cs_inactive = readl(spi->regs + SIFIVE_SPI_REG_CSDEF);
writel(0xffffffffU, spi->regs + SIFIVE_SPI_REG_CSDEF);
cs_bits = readl(spi->regs + SIFIVE_SPI_REG_CSDEF);
writel(spi->cs_inactive, spi->regs + SIFIVE_SPI_REG_CSDEF);
if (!cs_bits) {
printf("Could not auto probe CS lines\n");
return;
}
spi->num_cs = ilog2(cs_bits) + 1;
if (spi->num_cs > SIFIVE_SPI_MAX_CS) {
printf("Invalid number of spi slaves\n");
return;
}
/* Watermark interrupts are disabled by default */
writel(0, spi->regs + SIFIVE_SPI_REG_IE);
/* Set CS/SCK Delays and Inactive Time to defaults */
writel(SIFIVE_SPI_DELAY0_CSSCK(1) | SIFIVE_SPI_DELAY0_SCKCS(1),
spi->regs + SIFIVE_SPI_REG_DELAY0);
writel(SIFIVE_SPI_DELAY1_INTERCS(1) | SIFIVE_SPI_DELAY1_INTERXFR(0),
spi->regs + SIFIVE_SPI_REG_DELAY1);
/* Exit specialized memory-mapped SPI flash mode */
writel(0, spi->regs + SIFIVE_SPI_REG_FCTRL);
}
static int sifive_spi_probe(struct udevice *bus)
{
struct sifive_spi *spi = dev_get_priv(bus);
struct clk clkdev;
int ret;
spi->regs = (void *)(ulong)dev_remap_addr(bus);
if (!spi->regs)
return -ENODEV;
spi->fifo_depth = dev_read_u32_default(bus,
"sifive,fifo-depth",
SIFIVE_SPI_DEFAULT_DEPTH);
spi->bits_per_word = dev_read_u32_default(bus,
"sifive,max-bits-per-word",
SIFIVE_SPI_DEFAULT_BITS);
ret = clk_get_by_index(bus, 0, &clkdev);
if (ret)
return ret;
spi->freq = clk_get_rate(&clkdev);
/* init the sifive spi hw */
sifive_spi_init_hw(spi);
return 0;
}
static const struct dm_spi_ops sifive_spi_ops = {
.xfer = sifive_spi_xfer,
.set_speed = sifive_spi_set_speed,
.set_mode = sifive_spi_set_mode,
.cs_info = sifive_spi_cs_info,
};
static const struct udevice_id sifive_spi_ids[] = {
{ .compatible = "sifive,spi0" },
{ }
};
U_BOOT_DRIVER(sifive_spi) = {
.name = "sifive_spi",
.id = UCLASS_SPI,
.of_match = sifive_spi_ids,
.ops = &sifive_spi_ops,
.priv_auto_alloc_size = sizeof(struct sifive_spi),
.probe = sifive_spi_probe,
};