forked from Minki/linux
b70f4e85bf
Typo in down_spin() meant it only read the low 32 bits of the
"serve" value, instead of the full 64 bits. This results in the
system hanging when the values in ticket/serve get larger than
32-bits. A big enough system running the right test can hit this
in a just a few hours.
Broken since 883a3acf5b
[IA64] Re-implement spinaphores using ticket lock concepts
Reported via IRC by Bjorn Helgaas
Signed-off-by: Tony Luck <tony.luck@intel.com>
563 lines
13 KiB
C
563 lines
13 KiB
C
/*
|
|
* TLB support routines.
|
|
*
|
|
* Copyright (C) 1998-2001, 2003 Hewlett-Packard Co
|
|
* David Mosberger-Tang <davidm@hpl.hp.com>
|
|
*
|
|
* 08/02/00 A. Mallick <asit.k.mallick@intel.com>
|
|
* Modified RID allocation for SMP
|
|
* Goutham Rao <goutham.rao@intel.com>
|
|
* IPI based ptc implementation and A-step IPI implementation.
|
|
* Rohit Seth <rohit.seth@intel.com>
|
|
* Ken Chen <kenneth.w.chen@intel.com>
|
|
* Christophe de Dinechin <ddd@hp.com>: Avoid ptc.e on memory allocation
|
|
* Copyright (C) 2007 Intel Corp
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
* Add multiple ptc.g/ptc.ga instruction support in global tlb purge.
|
|
*/
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/delay.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pal.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/sal.h>
|
|
#include <asm/tlb.h>
|
|
|
|
static struct {
|
|
u64 mask; /* mask of supported purge page-sizes */
|
|
unsigned long max_bits; /* log2 of largest supported purge page-size */
|
|
} purge;
|
|
|
|
struct ia64_ctx ia64_ctx = {
|
|
.lock = __SPIN_LOCK_UNLOCKED(ia64_ctx.lock),
|
|
.next = 1,
|
|
.max_ctx = ~0U
|
|
};
|
|
|
|
DEFINE_PER_CPU(u8, ia64_need_tlb_flush);
|
|
DEFINE_PER_CPU(u8, ia64_tr_num); /*Number of TR slots in current processor*/
|
|
DEFINE_PER_CPU(u8, ia64_tr_used); /*Max Slot number used by kernel*/
|
|
|
|
struct ia64_tr_entry *ia64_idtrs[NR_CPUS];
|
|
|
|
/*
|
|
* Initializes the ia64_ctx.bitmap array based on max_ctx+1.
|
|
* Called after cpu_init() has setup ia64_ctx.max_ctx based on
|
|
* maximum RID that is supported by boot CPU.
|
|
*/
|
|
void __init
|
|
mmu_context_init (void)
|
|
{
|
|
ia64_ctx.bitmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
|
|
ia64_ctx.flushmap = alloc_bootmem((ia64_ctx.max_ctx+1)>>3);
|
|
}
|
|
|
|
/*
|
|
* Acquire the ia64_ctx.lock before calling this function!
|
|
*/
|
|
void
|
|
wrap_mmu_context (struct mm_struct *mm)
|
|
{
|
|
int i, cpu;
|
|
unsigned long flush_bit;
|
|
|
|
for (i=0; i <= ia64_ctx.max_ctx / BITS_PER_LONG; i++) {
|
|
flush_bit = xchg(&ia64_ctx.flushmap[i], 0);
|
|
ia64_ctx.bitmap[i] ^= flush_bit;
|
|
}
|
|
|
|
/* use offset at 300 to skip daemons */
|
|
ia64_ctx.next = find_next_zero_bit(ia64_ctx.bitmap,
|
|
ia64_ctx.max_ctx, 300);
|
|
ia64_ctx.limit = find_next_bit(ia64_ctx.bitmap,
|
|
ia64_ctx.max_ctx, ia64_ctx.next);
|
|
|
|
/*
|
|
* can't call flush_tlb_all() here because of race condition
|
|
* with O(1) scheduler [EF]
|
|
*/
|
|
cpu = get_cpu(); /* prevent preemption/migration */
|
|
for_each_online_cpu(i)
|
|
if (i != cpu)
|
|
per_cpu(ia64_need_tlb_flush, i) = 1;
|
|
put_cpu();
|
|
local_flush_tlb_all();
|
|
}
|
|
|
|
/*
|
|
* Implement "spinaphores" ... like counting semaphores, but they
|
|
* spin instead of sleeping. If there are ever any other users for
|
|
* this primitive it can be moved up to a spinaphore.h header.
|
|
*/
|
|
struct spinaphore {
|
|
unsigned long ticket;
|
|
unsigned long serve;
|
|
};
|
|
|
|
static inline void spinaphore_init(struct spinaphore *ss, int val)
|
|
{
|
|
ss->ticket = 0;
|
|
ss->serve = val;
|
|
}
|
|
|
|
static inline void down_spin(struct spinaphore *ss)
|
|
{
|
|
unsigned long t = ia64_fetchadd(1, &ss->ticket, acq), serve;
|
|
|
|
if (time_before(t, ss->serve))
|
|
return;
|
|
|
|
ia64_invala();
|
|
|
|
for (;;) {
|
|
asm volatile ("ld8.c.nc %0=[%1]" : "=r"(serve) : "r"(&ss->serve) : "memory");
|
|
if (time_before(t, serve))
|
|
return;
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static inline void up_spin(struct spinaphore *ss)
|
|
{
|
|
ia64_fetchadd(1, &ss->serve, rel);
|
|
}
|
|
|
|
static struct spinaphore ptcg_sem;
|
|
static u16 nptcg = 1;
|
|
static int need_ptcg_sem = 1;
|
|
static int toolatetochangeptcgsem = 0;
|
|
|
|
/*
|
|
* Kernel parameter "nptcg=" overrides max number of concurrent global TLB
|
|
* purges which is reported from either PAL or SAL PALO.
|
|
*
|
|
* We don't have sanity checking for nptcg value. It's the user's responsibility
|
|
* for valid nptcg value on the platform. Otherwise, kernel may hang in some
|
|
* cases.
|
|
*/
|
|
static int __init
|
|
set_nptcg(char *str)
|
|
{
|
|
int value = 0;
|
|
|
|
get_option(&str, &value);
|
|
setup_ptcg_sem(value, NPTCG_FROM_KERNEL_PARAMETER);
|
|
|
|
return 1;
|
|
}
|
|
|
|
__setup("nptcg=", set_nptcg);
|
|
|
|
/*
|
|
* Maximum number of simultaneous ptc.g purges in the system can
|
|
* be defined by PAL_VM_SUMMARY (in which case we should take
|
|
* the smallest value for any cpu in the system) or by the PAL
|
|
* override table (in which case we should ignore the value from
|
|
* PAL_VM_SUMMARY).
|
|
*
|
|
* Kernel parameter "nptcg=" overrides maximum number of simultanesous ptc.g
|
|
* purges defined in either PAL_VM_SUMMARY or PAL override table. In this case,
|
|
* we should ignore the value from either PAL_VM_SUMMARY or PAL override table.
|
|
*
|
|
* Complicating the logic here is the fact that num_possible_cpus()
|
|
* isn't fully setup until we start bringing cpus online.
|
|
*/
|
|
void
|
|
setup_ptcg_sem(int max_purges, int nptcg_from)
|
|
{
|
|
static int kp_override;
|
|
static int palo_override;
|
|
static int firstcpu = 1;
|
|
|
|
if (toolatetochangeptcgsem) {
|
|
if (nptcg_from == NPTCG_FROM_PAL && max_purges == 0)
|
|
BUG_ON(1 < nptcg);
|
|
else
|
|
BUG_ON(max_purges < nptcg);
|
|
return;
|
|
}
|
|
|
|
if (nptcg_from == NPTCG_FROM_KERNEL_PARAMETER) {
|
|
kp_override = 1;
|
|
nptcg = max_purges;
|
|
goto resetsema;
|
|
}
|
|
if (kp_override) {
|
|
need_ptcg_sem = num_possible_cpus() > nptcg;
|
|
return;
|
|
}
|
|
|
|
if (nptcg_from == NPTCG_FROM_PALO) {
|
|
palo_override = 1;
|
|
|
|
/* In PALO max_purges == 0 really means it! */
|
|
if (max_purges == 0)
|
|
panic("Whoa! Platform does not support global TLB purges.\n");
|
|
nptcg = max_purges;
|
|
if (nptcg == PALO_MAX_TLB_PURGES) {
|
|
need_ptcg_sem = 0;
|
|
return;
|
|
}
|
|
goto resetsema;
|
|
}
|
|
if (palo_override) {
|
|
if (nptcg != PALO_MAX_TLB_PURGES)
|
|
need_ptcg_sem = (num_possible_cpus() > nptcg);
|
|
return;
|
|
}
|
|
|
|
/* In PAL_VM_SUMMARY max_purges == 0 actually means 1 */
|
|
if (max_purges == 0) max_purges = 1;
|
|
|
|
if (firstcpu) {
|
|
nptcg = max_purges;
|
|
firstcpu = 0;
|
|
}
|
|
if (max_purges < nptcg)
|
|
nptcg = max_purges;
|
|
if (nptcg == PAL_MAX_PURGES) {
|
|
need_ptcg_sem = 0;
|
|
return;
|
|
} else
|
|
need_ptcg_sem = (num_possible_cpus() > nptcg);
|
|
|
|
resetsema:
|
|
spinaphore_init(&ptcg_sem, max_purges);
|
|
}
|
|
|
|
void
|
|
ia64_global_tlb_purge (struct mm_struct *mm, unsigned long start,
|
|
unsigned long end, unsigned long nbits)
|
|
{
|
|
struct mm_struct *active_mm = current->active_mm;
|
|
|
|
toolatetochangeptcgsem = 1;
|
|
|
|
if (mm != active_mm) {
|
|
/* Restore region IDs for mm */
|
|
if (mm && active_mm) {
|
|
activate_context(mm);
|
|
} else {
|
|
flush_tlb_all();
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (need_ptcg_sem)
|
|
down_spin(&ptcg_sem);
|
|
|
|
do {
|
|
/*
|
|
* Flush ALAT entries also.
|
|
*/
|
|
ia64_ptcga(start, (nbits << 2));
|
|
ia64_srlz_i();
|
|
start += (1UL << nbits);
|
|
} while (start < end);
|
|
|
|
if (need_ptcg_sem)
|
|
up_spin(&ptcg_sem);
|
|
|
|
if (mm != active_mm) {
|
|
activate_context(active_mm);
|
|
}
|
|
}
|
|
|
|
void
|
|
local_flush_tlb_all (void)
|
|
{
|
|
unsigned long i, j, flags, count0, count1, stride0, stride1, addr;
|
|
|
|
addr = local_cpu_data->ptce_base;
|
|
count0 = local_cpu_data->ptce_count[0];
|
|
count1 = local_cpu_data->ptce_count[1];
|
|
stride0 = local_cpu_data->ptce_stride[0];
|
|
stride1 = local_cpu_data->ptce_stride[1];
|
|
|
|
local_irq_save(flags);
|
|
for (i = 0; i < count0; ++i) {
|
|
for (j = 0; j < count1; ++j) {
|
|
ia64_ptce(addr);
|
|
addr += stride1;
|
|
}
|
|
addr += stride0;
|
|
}
|
|
local_irq_restore(flags);
|
|
ia64_srlz_i(); /* srlz.i implies srlz.d */
|
|
}
|
|
|
|
void
|
|
flush_tlb_range (struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long size = end - start;
|
|
unsigned long nbits;
|
|
|
|
#ifndef CONFIG_SMP
|
|
if (mm != current->active_mm) {
|
|
mm->context = 0;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
nbits = ia64_fls(size + 0xfff);
|
|
while (unlikely (((1UL << nbits) & purge.mask) == 0) &&
|
|
(nbits < purge.max_bits))
|
|
++nbits;
|
|
if (nbits > purge.max_bits)
|
|
nbits = purge.max_bits;
|
|
start &= ~((1UL << nbits) - 1);
|
|
|
|
preempt_disable();
|
|
#ifdef CONFIG_SMP
|
|
if (mm != current->active_mm || cpumask_weight(mm_cpumask(mm)) != 1) {
|
|
platform_global_tlb_purge(mm, start, end, nbits);
|
|
preempt_enable();
|
|
return;
|
|
}
|
|
#endif
|
|
do {
|
|
ia64_ptcl(start, (nbits<<2));
|
|
start += (1UL << nbits);
|
|
} while (start < end);
|
|
preempt_enable();
|
|
ia64_srlz_i(); /* srlz.i implies srlz.d */
|
|
}
|
|
EXPORT_SYMBOL(flush_tlb_range);
|
|
|
|
void __devinit
|
|
ia64_tlb_init (void)
|
|
{
|
|
ia64_ptce_info_t uninitialized_var(ptce_info); /* GCC be quiet */
|
|
u64 tr_pgbits;
|
|
long status;
|
|
pal_vm_info_1_u_t vm_info_1;
|
|
pal_vm_info_2_u_t vm_info_2;
|
|
int cpu = smp_processor_id();
|
|
|
|
if ((status = ia64_pal_vm_page_size(&tr_pgbits, &purge.mask)) != 0) {
|
|
printk(KERN_ERR "PAL_VM_PAGE_SIZE failed with status=%ld; "
|
|
"defaulting to architected purge page-sizes.\n", status);
|
|
purge.mask = 0x115557000UL;
|
|
}
|
|
purge.max_bits = ia64_fls(purge.mask);
|
|
|
|
ia64_get_ptce(&ptce_info);
|
|
local_cpu_data->ptce_base = ptce_info.base;
|
|
local_cpu_data->ptce_count[0] = ptce_info.count[0];
|
|
local_cpu_data->ptce_count[1] = ptce_info.count[1];
|
|
local_cpu_data->ptce_stride[0] = ptce_info.stride[0];
|
|
local_cpu_data->ptce_stride[1] = ptce_info.stride[1];
|
|
|
|
local_flush_tlb_all(); /* nuke left overs from bootstrapping... */
|
|
status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2);
|
|
|
|
if (status) {
|
|
printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status);
|
|
per_cpu(ia64_tr_num, cpu) = 8;
|
|
return;
|
|
}
|
|
per_cpu(ia64_tr_num, cpu) = vm_info_1.pal_vm_info_1_s.max_itr_entry+1;
|
|
if (per_cpu(ia64_tr_num, cpu) >
|
|
(vm_info_1.pal_vm_info_1_s.max_dtr_entry+1))
|
|
per_cpu(ia64_tr_num, cpu) =
|
|
vm_info_1.pal_vm_info_1_s.max_dtr_entry+1;
|
|
if (per_cpu(ia64_tr_num, cpu) > IA64_TR_ALLOC_MAX) {
|
|
static int justonce = 1;
|
|
per_cpu(ia64_tr_num, cpu) = IA64_TR_ALLOC_MAX;
|
|
if (justonce) {
|
|
justonce = 0;
|
|
printk(KERN_DEBUG "TR register number exceeds "
|
|
"IA64_TR_ALLOC_MAX!\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* is_tr_overlap
|
|
*
|
|
* Check overlap with inserted TRs.
|
|
*/
|
|
static int is_tr_overlap(struct ia64_tr_entry *p, u64 va, u64 log_size)
|
|
{
|
|
u64 tr_log_size;
|
|
u64 tr_end;
|
|
u64 va_rr = ia64_get_rr(va);
|
|
u64 va_rid = RR_TO_RID(va_rr);
|
|
u64 va_end = va + (1<<log_size) - 1;
|
|
|
|
if (va_rid != RR_TO_RID(p->rr))
|
|
return 0;
|
|
tr_log_size = (p->itir & 0xff) >> 2;
|
|
tr_end = p->ifa + (1<<tr_log_size) - 1;
|
|
|
|
if (va > tr_end || p->ifa > va_end)
|
|
return 0;
|
|
return 1;
|
|
|
|
}
|
|
|
|
/*
|
|
* ia64_insert_tr in virtual mode. Allocate a TR slot
|
|
*
|
|
* target_mask : 0x1 : itr, 0x2 : dtr, 0x3 : idtr
|
|
*
|
|
* va : virtual address.
|
|
* pte : pte entries inserted.
|
|
* log_size: range to be covered.
|
|
*
|
|
* Return value: <0 : error No.
|
|
*
|
|
* >=0 : slot number allocated for TR.
|
|
* Must be called with preemption disabled.
|
|
*/
|
|
int ia64_itr_entry(u64 target_mask, u64 va, u64 pte, u64 log_size)
|
|
{
|
|
int i, r;
|
|
unsigned long psr;
|
|
struct ia64_tr_entry *p;
|
|
int cpu = smp_processor_id();
|
|
|
|
if (!ia64_idtrs[cpu]) {
|
|
ia64_idtrs[cpu] = kmalloc(2 * IA64_TR_ALLOC_MAX *
|
|
sizeof (struct ia64_tr_entry), GFP_KERNEL);
|
|
if (!ia64_idtrs[cpu])
|
|
return -ENOMEM;
|
|
}
|
|
r = -EINVAL;
|
|
/*Check overlap with existing TR entries*/
|
|
if (target_mask & 0x1) {
|
|
p = ia64_idtrs[cpu];
|
|
for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
|
|
i++, p++) {
|
|
if (p->pte & 0x1)
|
|
if (is_tr_overlap(p, va, log_size)) {
|
|
printk(KERN_DEBUG "Overlapped Entry"
|
|
"Inserted for TR Reigster!!\n");
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (target_mask & 0x2) {
|
|
p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX;
|
|
for (i = IA64_TR_ALLOC_BASE; i <= per_cpu(ia64_tr_used, cpu);
|
|
i++, p++) {
|
|
if (p->pte & 0x1)
|
|
if (is_tr_overlap(p, va, log_size)) {
|
|
printk(KERN_DEBUG "Overlapped Entry"
|
|
"Inserted for TR Reigster!!\n");
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = IA64_TR_ALLOC_BASE; i < per_cpu(ia64_tr_num, cpu); i++) {
|
|
switch (target_mask & 0x3) {
|
|
case 1:
|
|
if (!((ia64_idtrs[cpu] + i)->pte & 0x1))
|
|
goto found;
|
|
continue;
|
|
case 2:
|
|
if (!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
|
|
goto found;
|
|
continue;
|
|
case 3:
|
|
if (!((ia64_idtrs[cpu] + i)->pte & 0x1) &&
|
|
!((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
|
|
goto found;
|
|
continue;
|
|
default:
|
|
r = -EINVAL;
|
|
goto out;
|
|
}
|
|
}
|
|
found:
|
|
if (i >= per_cpu(ia64_tr_num, cpu))
|
|
return -EBUSY;
|
|
|
|
/*Record tr info for mca hander use!*/
|
|
if (i > per_cpu(ia64_tr_used, cpu))
|
|
per_cpu(ia64_tr_used, cpu) = i;
|
|
|
|
psr = ia64_clear_ic();
|
|
if (target_mask & 0x1) {
|
|
ia64_itr(0x1, i, va, pte, log_size);
|
|
ia64_srlz_i();
|
|
p = ia64_idtrs[cpu] + i;
|
|
p->ifa = va;
|
|
p->pte = pte;
|
|
p->itir = log_size << 2;
|
|
p->rr = ia64_get_rr(va);
|
|
}
|
|
if (target_mask & 0x2) {
|
|
ia64_itr(0x2, i, va, pte, log_size);
|
|
ia64_srlz_i();
|
|
p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i;
|
|
p->ifa = va;
|
|
p->pte = pte;
|
|
p->itir = log_size << 2;
|
|
p->rr = ia64_get_rr(va);
|
|
}
|
|
ia64_set_psr(psr);
|
|
r = i;
|
|
out:
|
|
return r;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ia64_itr_entry);
|
|
|
|
/*
|
|
* ia64_purge_tr
|
|
*
|
|
* target_mask: 0x1: purge itr, 0x2 : purge dtr, 0x3 purge idtr.
|
|
* slot: slot number to be freed.
|
|
*
|
|
* Must be called with preemption disabled.
|
|
*/
|
|
void ia64_ptr_entry(u64 target_mask, int slot)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
int i;
|
|
struct ia64_tr_entry *p;
|
|
|
|
if (slot < IA64_TR_ALLOC_BASE || slot >= per_cpu(ia64_tr_num, cpu))
|
|
return;
|
|
|
|
if (target_mask & 0x1) {
|
|
p = ia64_idtrs[cpu] + slot;
|
|
if ((p->pte&0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
|
|
p->pte = 0;
|
|
ia64_ptr(0x1, p->ifa, p->itir>>2);
|
|
ia64_srlz_i();
|
|
}
|
|
}
|
|
|
|
if (target_mask & 0x2) {
|
|
p = ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + slot;
|
|
if ((p->pte & 0x1) && is_tr_overlap(p, p->ifa, p->itir>>2)) {
|
|
p->pte = 0;
|
|
ia64_ptr(0x2, p->ifa, p->itir>>2);
|
|
ia64_srlz_i();
|
|
}
|
|
}
|
|
|
|
for (i = per_cpu(ia64_tr_used, cpu); i >= IA64_TR_ALLOC_BASE; i--) {
|
|
if (((ia64_idtrs[cpu] + i)->pte & 0x1) ||
|
|
((ia64_idtrs[cpu] + IA64_TR_ALLOC_MAX + i)->pte & 0x1))
|
|
break;
|
|
}
|
|
per_cpu(ia64_tr_used, cpu) = i;
|
|
}
|
|
EXPORT_SYMBOL_GPL(ia64_ptr_entry);
|