108ecf0d90
EEPROM support, interrupt handling, statistics gathering, and write combining management for x86_64. A note regarding i2c: The Atmel EEPROM hardware we use looks like an i2c device electrically, but is not i2c compliant at all from a functional perspective. We tried using the kernel's i2c support to talk to it, but failed. Normal i2c devices have a single 7-bit or 10-bit i2c address that they respond to. Valid 7-bit addresses range from 0x03 to 0x77. Addresses 0x00 to 0x02 and 0x78 to 0x7F are special reserved addresses (e.g. 0x00 is the "general call" address.) The Atmel device, on the other hand, responds to ALL addresses. It's designed to be the only device on a given i2c bus. A given i2c device address corresponds to the memory address within the i2c device itself. At least one reason why the linux core i2c stuff won't work for this is that it prohibits access to reserved addresses like 0x00, which are really valid addresses on the Atmel devices. Signed-off-by: Bryan O'Sullivan <bos@pathscale.com> Signed-off-by: Roland Dreier <rolandd@cisco.com>
158 lines
4.9 KiB
C
158 lines
4.9 KiB
C
/*
|
|
* Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* This file is conditionally built on x86_64 only. Otherwise weak symbol
|
|
* versions of the functions exported from here are used.
|
|
*/
|
|
|
|
#include <linux/pci.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/processor.h>
|
|
|
|
#include "ipath_kernel.h"
|
|
|
|
/**
|
|
* ipath_enable_wc - enable write combining for MMIO writes to the device
|
|
* @dd: infinipath device
|
|
*
|
|
* This routine is x86_64-specific; it twiddles the CPU's MTRRs to enable
|
|
* write combining.
|
|
*/
|
|
int ipath_enable_wc(struct ipath_devdata *dd)
|
|
{
|
|
int ret = 0;
|
|
u64 pioaddr, piolen;
|
|
unsigned bits;
|
|
const unsigned long addr = pci_resource_start(dd->pcidev, 0);
|
|
const size_t len = pci_resource_len(dd->pcidev, 0);
|
|
|
|
/*
|
|
* Set the PIO buffers to be WCCOMB, so we get HT bursts to the
|
|
* chip. Linux (possibly the hardware) requires it to be on a power
|
|
* of 2 address matching the length (which has to be a power of 2).
|
|
* For rev1, that means the base address, for rev2, it will be just
|
|
* the PIO buffers themselves.
|
|
*/
|
|
pioaddr = addr + dd->ipath_piobufbase;
|
|
piolen = (dd->ipath_piobcnt2k +
|
|
dd->ipath_piobcnt4k) *
|
|
ALIGN(dd->ipath_piobcnt2k +
|
|
dd->ipath_piobcnt4k, dd->ipath_palign);
|
|
|
|
for (bits = 0; !(piolen & (1ULL << bits)); bits++)
|
|
/* do nothing */ ;
|
|
|
|
if (piolen != (1ULL << bits)) {
|
|
piolen >>= bits;
|
|
while (piolen >>= 1)
|
|
bits++;
|
|
piolen = 1ULL << (bits + 1);
|
|
}
|
|
if (pioaddr & (piolen - 1)) {
|
|
u64 atmp;
|
|
ipath_dbg("pioaddr %llx not on right boundary for size "
|
|
"%llx, fixing\n",
|
|
(unsigned long long) pioaddr,
|
|
(unsigned long long) piolen);
|
|
atmp = pioaddr & ~(piolen - 1);
|
|
if (atmp < addr || (atmp + piolen) > (addr + len)) {
|
|
ipath_dev_err(dd, "No way to align address/size "
|
|
"(%llx/%llx), no WC mtrr\n",
|
|
(unsigned long long) atmp,
|
|
(unsigned long long) piolen << 1);
|
|
ret = -ENODEV;
|
|
} else {
|
|
ipath_dbg("changing WC base from %llx to %llx, "
|
|
"len from %llx to %llx\n",
|
|
(unsigned long long) pioaddr,
|
|
(unsigned long long) atmp,
|
|
(unsigned long long) piolen,
|
|
(unsigned long long) piolen << 1);
|
|
pioaddr = atmp;
|
|
piolen <<= 1;
|
|
}
|
|
}
|
|
|
|
if (!ret) {
|
|
int cookie;
|
|
ipath_cdbg(VERBOSE, "Setting mtrr for chip to WC "
|
|
"(addr %llx, len=0x%llx)\n",
|
|
(unsigned long long) pioaddr,
|
|
(unsigned long long) piolen);
|
|
cookie = mtrr_add(pioaddr, piolen, MTRR_TYPE_WRCOMB, 0);
|
|
if (cookie < 0) {
|
|
{
|
|
dev_info(&dd->pcidev->dev,
|
|
"mtrr_add() WC for PIO bufs "
|
|
"failed (%d)\n",
|
|
cookie);
|
|
ret = -EINVAL;
|
|
}
|
|
} else {
|
|
ipath_cdbg(VERBOSE, "Set mtrr for chip to WC, "
|
|
"cookie is %d\n", cookie);
|
|
dd->ipath_wc_cookie = cookie;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* ipath_disable_wc - disable write combining for MMIO writes to the device
|
|
* @dd: infinipath device
|
|
*/
|
|
void ipath_disable_wc(struct ipath_devdata *dd)
|
|
{
|
|
if (dd->ipath_wc_cookie) {
|
|
ipath_cdbg(VERBOSE, "undoing WCCOMB on pio buffers\n");
|
|
mtrr_del(dd->ipath_wc_cookie, 0, 0);
|
|
dd->ipath_wc_cookie = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ipath_unordered_wc - indicate whether write combining is ordered
|
|
*
|
|
* Because our performance depends on our ability to do write combining mmio
|
|
* writes in the most efficient way, we need to know if we are on an Intel
|
|
* or AMD x86_64 processor. AMD x86_64 processors flush WC buffers out in
|
|
* the order completed, and so no special flushing is required to get
|
|
* correct ordering. Intel processors, however, will flush write buffers
|
|
* out in "random" orders, and so explicit ordering is needed at times.
|
|
*/
|
|
int ipath_unordered_wc(void)
|
|
{
|
|
return boot_cpu_data.x86_vendor != X86_VENDOR_AMD;
|
|
}
|