forked from Minki/linux
3542976d85
Fractional clock dividers generate accurate average frequencies but with jitter, particularly when the integer divisor is small. Introduce a new metric of clock accuracy to penalise clocks with a good average but worse jitter compared to clocks with an average which is no better but with lower jitter. The metric is the ideal rate minus the worse deviation from that ideal using the nearest integer divisors. Use this metric for parent selection for clocks requiring low jitter (currently just PCM). Signed-off-by: Phil Elwell <phil@raspberrypi.org> Reviewed-by: Eric Anholt <eric@anholt.net> Acked-by: Stefan Wahren <stefan.wahren@i2se.com> Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
2240 lines
58 KiB
C
2240 lines
58 KiB
C
/*
|
|
* Copyright (C) 2010,2015 Broadcom
|
|
* Copyright (C) 2012 Stephen Warren
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
|
|
*
|
|
* The clock tree on the 2835 has several levels. There's a root
|
|
* oscillator running at 19.2Mhz. After the oscillator there are 5
|
|
* PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
|
|
* and "HDMI displays". Those 5 PLLs each can divide their output to
|
|
* produce up to 4 channels. Finally, there is the level of clocks to
|
|
* be consumed by other hardware components (like "H264" or "HDMI
|
|
* state machine"), which divide off of some subset of the PLL
|
|
* channels.
|
|
*
|
|
* All of the clocks in the tree are exposed in the DT, because the DT
|
|
* may want to make assignments of the final layer of clocks to the
|
|
* PLL channels, and some components of the hardware will actually
|
|
* skip layers of the tree (for example, the pixel clock comes
|
|
* directly from the PLLH PIX channel without using a CM_*CTL clock
|
|
* generator).
|
|
*/
|
|
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clkdev.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/clk/bcm2835.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/slab.h>
|
|
#include <dt-bindings/clock/bcm2835.h>
|
|
|
|
#define CM_PASSWORD 0x5a000000
|
|
|
|
#define CM_GNRICCTL 0x000
|
|
#define CM_GNRICDIV 0x004
|
|
# define CM_DIV_FRAC_BITS 12
|
|
# define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0)
|
|
|
|
#define CM_VPUCTL 0x008
|
|
#define CM_VPUDIV 0x00c
|
|
#define CM_SYSCTL 0x010
|
|
#define CM_SYSDIV 0x014
|
|
#define CM_PERIACTL 0x018
|
|
#define CM_PERIADIV 0x01c
|
|
#define CM_PERIICTL 0x020
|
|
#define CM_PERIIDIV 0x024
|
|
#define CM_H264CTL 0x028
|
|
#define CM_H264DIV 0x02c
|
|
#define CM_ISPCTL 0x030
|
|
#define CM_ISPDIV 0x034
|
|
#define CM_V3DCTL 0x038
|
|
#define CM_V3DDIV 0x03c
|
|
#define CM_CAM0CTL 0x040
|
|
#define CM_CAM0DIV 0x044
|
|
#define CM_CAM1CTL 0x048
|
|
#define CM_CAM1DIV 0x04c
|
|
#define CM_CCP2CTL 0x050
|
|
#define CM_CCP2DIV 0x054
|
|
#define CM_DSI0ECTL 0x058
|
|
#define CM_DSI0EDIV 0x05c
|
|
#define CM_DSI0PCTL 0x060
|
|
#define CM_DSI0PDIV 0x064
|
|
#define CM_DPICTL 0x068
|
|
#define CM_DPIDIV 0x06c
|
|
#define CM_GP0CTL 0x070
|
|
#define CM_GP0DIV 0x074
|
|
#define CM_GP1CTL 0x078
|
|
#define CM_GP1DIV 0x07c
|
|
#define CM_GP2CTL 0x080
|
|
#define CM_GP2DIV 0x084
|
|
#define CM_HSMCTL 0x088
|
|
#define CM_HSMDIV 0x08c
|
|
#define CM_OTPCTL 0x090
|
|
#define CM_OTPDIV 0x094
|
|
#define CM_PCMCTL 0x098
|
|
#define CM_PCMDIV 0x09c
|
|
#define CM_PWMCTL 0x0a0
|
|
#define CM_PWMDIV 0x0a4
|
|
#define CM_SLIMCTL 0x0a8
|
|
#define CM_SLIMDIV 0x0ac
|
|
#define CM_SMICTL 0x0b0
|
|
#define CM_SMIDIV 0x0b4
|
|
/* no definition for 0x0b8 and 0x0bc */
|
|
#define CM_TCNTCTL 0x0c0
|
|
# define CM_TCNT_SRC1_SHIFT 12
|
|
#define CM_TCNTCNT 0x0c4
|
|
#define CM_TECCTL 0x0c8
|
|
#define CM_TECDIV 0x0cc
|
|
#define CM_TD0CTL 0x0d0
|
|
#define CM_TD0DIV 0x0d4
|
|
#define CM_TD1CTL 0x0d8
|
|
#define CM_TD1DIV 0x0dc
|
|
#define CM_TSENSCTL 0x0e0
|
|
#define CM_TSENSDIV 0x0e4
|
|
#define CM_TIMERCTL 0x0e8
|
|
#define CM_TIMERDIV 0x0ec
|
|
#define CM_UARTCTL 0x0f0
|
|
#define CM_UARTDIV 0x0f4
|
|
#define CM_VECCTL 0x0f8
|
|
#define CM_VECDIV 0x0fc
|
|
#define CM_PULSECTL 0x190
|
|
#define CM_PULSEDIV 0x194
|
|
#define CM_SDCCTL 0x1a8
|
|
#define CM_SDCDIV 0x1ac
|
|
#define CM_ARMCTL 0x1b0
|
|
#define CM_AVEOCTL 0x1b8
|
|
#define CM_AVEODIV 0x1bc
|
|
#define CM_EMMCCTL 0x1c0
|
|
#define CM_EMMCDIV 0x1c4
|
|
|
|
/* General bits for the CM_*CTL regs */
|
|
# define CM_ENABLE BIT(4)
|
|
# define CM_KILL BIT(5)
|
|
# define CM_GATE_BIT 6
|
|
# define CM_GATE BIT(CM_GATE_BIT)
|
|
# define CM_BUSY BIT(7)
|
|
# define CM_BUSYD BIT(8)
|
|
# define CM_FRAC BIT(9)
|
|
# define CM_SRC_SHIFT 0
|
|
# define CM_SRC_BITS 4
|
|
# define CM_SRC_MASK 0xf
|
|
# define CM_SRC_GND 0
|
|
# define CM_SRC_OSC 1
|
|
# define CM_SRC_TESTDEBUG0 2
|
|
# define CM_SRC_TESTDEBUG1 3
|
|
# define CM_SRC_PLLA_CORE 4
|
|
# define CM_SRC_PLLA_PER 4
|
|
# define CM_SRC_PLLC_CORE0 5
|
|
# define CM_SRC_PLLC_PER 5
|
|
# define CM_SRC_PLLC_CORE1 8
|
|
# define CM_SRC_PLLD_CORE 6
|
|
# define CM_SRC_PLLD_PER 6
|
|
# define CM_SRC_PLLH_AUX 7
|
|
# define CM_SRC_PLLC_CORE1 8
|
|
# define CM_SRC_PLLC_CORE2 9
|
|
|
|
#define CM_OSCCOUNT 0x100
|
|
|
|
#define CM_PLLA 0x104
|
|
# define CM_PLL_ANARST BIT(8)
|
|
# define CM_PLLA_HOLDPER BIT(7)
|
|
# define CM_PLLA_LOADPER BIT(6)
|
|
# define CM_PLLA_HOLDCORE BIT(5)
|
|
# define CM_PLLA_LOADCORE BIT(4)
|
|
# define CM_PLLA_HOLDCCP2 BIT(3)
|
|
# define CM_PLLA_LOADCCP2 BIT(2)
|
|
# define CM_PLLA_HOLDDSI0 BIT(1)
|
|
# define CM_PLLA_LOADDSI0 BIT(0)
|
|
|
|
#define CM_PLLC 0x108
|
|
# define CM_PLLC_HOLDPER BIT(7)
|
|
# define CM_PLLC_LOADPER BIT(6)
|
|
# define CM_PLLC_HOLDCORE2 BIT(5)
|
|
# define CM_PLLC_LOADCORE2 BIT(4)
|
|
# define CM_PLLC_HOLDCORE1 BIT(3)
|
|
# define CM_PLLC_LOADCORE1 BIT(2)
|
|
# define CM_PLLC_HOLDCORE0 BIT(1)
|
|
# define CM_PLLC_LOADCORE0 BIT(0)
|
|
|
|
#define CM_PLLD 0x10c
|
|
# define CM_PLLD_HOLDPER BIT(7)
|
|
# define CM_PLLD_LOADPER BIT(6)
|
|
# define CM_PLLD_HOLDCORE BIT(5)
|
|
# define CM_PLLD_LOADCORE BIT(4)
|
|
# define CM_PLLD_HOLDDSI1 BIT(3)
|
|
# define CM_PLLD_LOADDSI1 BIT(2)
|
|
# define CM_PLLD_HOLDDSI0 BIT(1)
|
|
# define CM_PLLD_LOADDSI0 BIT(0)
|
|
|
|
#define CM_PLLH 0x110
|
|
# define CM_PLLH_LOADRCAL BIT(2)
|
|
# define CM_PLLH_LOADAUX BIT(1)
|
|
# define CM_PLLH_LOADPIX BIT(0)
|
|
|
|
#define CM_LOCK 0x114
|
|
# define CM_LOCK_FLOCKH BIT(12)
|
|
# define CM_LOCK_FLOCKD BIT(11)
|
|
# define CM_LOCK_FLOCKC BIT(10)
|
|
# define CM_LOCK_FLOCKB BIT(9)
|
|
# define CM_LOCK_FLOCKA BIT(8)
|
|
|
|
#define CM_EVENT 0x118
|
|
#define CM_DSI1ECTL 0x158
|
|
#define CM_DSI1EDIV 0x15c
|
|
#define CM_DSI1PCTL 0x160
|
|
#define CM_DSI1PDIV 0x164
|
|
#define CM_DFTCTL 0x168
|
|
#define CM_DFTDIV 0x16c
|
|
|
|
#define CM_PLLB 0x170
|
|
# define CM_PLLB_HOLDARM BIT(1)
|
|
# define CM_PLLB_LOADARM BIT(0)
|
|
|
|
#define A2W_PLLA_CTRL 0x1100
|
|
#define A2W_PLLC_CTRL 0x1120
|
|
#define A2W_PLLD_CTRL 0x1140
|
|
#define A2W_PLLH_CTRL 0x1160
|
|
#define A2W_PLLB_CTRL 0x11e0
|
|
# define A2W_PLL_CTRL_PRST_DISABLE BIT(17)
|
|
# define A2W_PLL_CTRL_PWRDN BIT(16)
|
|
# define A2W_PLL_CTRL_PDIV_MASK 0x000007000
|
|
# define A2W_PLL_CTRL_PDIV_SHIFT 12
|
|
# define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff
|
|
# define A2W_PLL_CTRL_NDIV_SHIFT 0
|
|
|
|
#define A2W_PLLA_ANA0 0x1010
|
|
#define A2W_PLLC_ANA0 0x1030
|
|
#define A2W_PLLD_ANA0 0x1050
|
|
#define A2W_PLLH_ANA0 0x1070
|
|
#define A2W_PLLB_ANA0 0x10f0
|
|
|
|
#define A2W_PLL_KA_SHIFT 7
|
|
#define A2W_PLL_KA_MASK GENMASK(9, 7)
|
|
#define A2W_PLL_KI_SHIFT 19
|
|
#define A2W_PLL_KI_MASK GENMASK(21, 19)
|
|
#define A2W_PLL_KP_SHIFT 15
|
|
#define A2W_PLL_KP_MASK GENMASK(18, 15)
|
|
|
|
#define A2W_PLLH_KA_SHIFT 19
|
|
#define A2W_PLLH_KA_MASK GENMASK(21, 19)
|
|
#define A2W_PLLH_KI_LOW_SHIFT 22
|
|
#define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22)
|
|
#define A2W_PLLH_KI_HIGH_SHIFT 0
|
|
#define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0)
|
|
#define A2W_PLLH_KP_SHIFT 1
|
|
#define A2W_PLLH_KP_MASK GENMASK(4, 1)
|
|
|
|
#define A2W_XOSC_CTRL 0x1190
|
|
# define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7)
|
|
# define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6)
|
|
# define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5)
|
|
# define A2W_XOSC_CTRL_DDR_ENABLE BIT(4)
|
|
# define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3)
|
|
# define A2W_XOSC_CTRL_USB_ENABLE BIT(2)
|
|
# define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1)
|
|
# define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0)
|
|
|
|
#define A2W_PLLA_FRAC 0x1200
|
|
#define A2W_PLLC_FRAC 0x1220
|
|
#define A2W_PLLD_FRAC 0x1240
|
|
#define A2W_PLLH_FRAC 0x1260
|
|
#define A2W_PLLB_FRAC 0x12e0
|
|
# define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1)
|
|
# define A2W_PLL_FRAC_BITS 20
|
|
|
|
#define A2W_PLL_CHANNEL_DISABLE BIT(8)
|
|
#define A2W_PLL_DIV_BITS 8
|
|
#define A2W_PLL_DIV_SHIFT 0
|
|
|
|
#define A2W_PLLA_DSI0 0x1300
|
|
#define A2W_PLLA_CORE 0x1400
|
|
#define A2W_PLLA_PER 0x1500
|
|
#define A2W_PLLA_CCP2 0x1600
|
|
|
|
#define A2W_PLLC_CORE2 0x1320
|
|
#define A2W_PLLC_CORE1 0x1420
|
|
#define A2W_PLLC_PER 0x1520
|
|
#define A2W_PLLC_CORE0 0x1620
|
|
|
|
#define A2W_PLLD_DSI0 0x1340
|
|
#define A2W_PLLD_CORE 0x1440
|
|
#define A2W_PLLD_PER 0x1540
|
|
#define A2W_PLLD_DSI1 0x1640
|
|
|
|
#define A2W_PLLH_AUX 0x1360
|
|
#define A2W_PLLH_RCAL 0x1460
|
|
#define A2W_PLLH_PIX 0x1560
|
|
#define A2W_PLLH_STS 0x1660
|
|
|
|
#define A2W_PLLH_CTRLR 0x1960
|
|
#define A2W_PLLH_FRACR 0x1a60
|
|
#define A2W_PLLH_AUXR 0x1b60
|
|
#define A2W_PLLH_RCALR 0x1c60
|
|
#define A2W_PLLH_PIXR 0x1d60
|
|
#define A2W_PLLH_STSR 0x1e60
|
|
|
|
#define A2W_PLLB_ARM 0x13e0
|
|
#define A2W_PLLB_SP0 0x14e0
|
|
#define A2W_PLLB_SP1 0x15e0
|
|
#define A2W_PLLB_SP2 0x16e0
|
|
|
|
#define LOCK_TIMEOUT_NS 100000000
|
|
#define BCM2835_MAX_FB_RATE 1750000000u
|
|
|
|
/*
|
|
* Names of clocks used within the driver that need to be replaced
|
|
* with an external parent's name. This array is in the order that
|
|
* the clocks node in the DT references external clocks.
|
|
*/
|
|
static const char *const cprman_parent_names[] = {
|
|
"xosc",
|
|
"dsi0_byte",
|
|
"dsi0_ddr2",
|
|
"dsi0_ddr",
|
|
"dsi1_byte",
|
|
"dsi1_ddr2",
|
|
"dsi1_ddr",
|
|
};
|
|
|
|
struct bcm2835_cprman {
|
|
struct device *dev;
|
|
void __iomem *regs;
|
|
spinlock_t regs_lock; /* spinlock for all clocks */
|
|
|
|
/*
|
|
* Real names of cprman clock parents looked up through
|
|
* of_clk_get_parent_name(), which will be used in the
|
|
* parent_names[] arrays for clock registration.
|
|
*/
|
|
const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
|
|
|
|
/* Must be last */
|
|
struct clk_hw_onecell_data onecell;
|
|
};
|
|
|
|
static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
|
|
{
|
|
writel(CM_PASSWORD | val, cprman->regs + reg);
|
|
}
|
|
|
|
static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
|
|
{
|
|
return readl(cprman->regs + reg);
|
|
}
|
|
|
|
/* Does a cycle of measuring a clock through the TCNT clock, which may
|
|
* source from many other clocks in the system.
|
|
*/
|
|
static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
|
|
u32 tcnt_mux)
|
|
{
|
|
u32 osccount = 19200; /* 1ms */
|
|
u32 count;
|
|
ktime_t timeout;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
|
|
cprman_write(cprman, CM_TCNTCTL, CM_KILL);
|
|
|
|
cprman_write(cprman, CM_TCNTCTL,
|
|
(tcnt_mux & CM_SRC_MASK) |
|
|
(tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
|
|
|
|
cprman_write(cprman, CM_OSCCOUNT, osccount);
|
|
|
|
/* do a kind delay at the start */
|
|
mdelay(1);
|
|
|
|
/* Finish off whatever is left of OSCCOUNT */
|
|
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
while (cprman_read(cprman, CM_OSCCOUNT)) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
/* Wait for BUSY to clear. */
|
|
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "timeout waiting for !BUSY\n");
|
|
count = 0;
|
|
goto out;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
|
|
count = cprman_read(cprman, CM_TCNTCNT);
|
|
|
|
cprman_write(cprman, CM_TCNTCTL, 0);
|
|
|
|
out:
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
return count * 1000;
|
|
}
|
|
|
|
static int bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
|
|
struct debugfs_reg32 *regs, size_t nregs,
|
|
struct dentry *dentry)
|
|
{
|
|
struct dentry *regdump;
|
|
struct debugfs_regset32 *regset;
|
|
|
|
regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
|
|
if (!regset)
|
|
return -ENOMEM;
|
|
|
|
regset->regs = regs;
|
|
regset->nregs = nregs;
|
|
regset->base = cprman->regs + base;
|
|
|
|
regdump = debugfs_create_regset32("regdump", S_IRUGO, dentry,
|
|
regset);
|
|
|
|
return regdump ? 0 : -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* These are fixed clocks. They're probably not all root clocks and it may
|
|
* be possible to turn them on and off but until this is mapped out better
|
|
* it's the only way they can be used.
|
|
*/
|
|
void __init bcm2835_init_clocks(void)
|
|
{
|
|
struct clk_hw *hw;
|
|
int ret;
|
|
|
|
hw = clk_hw_register_fixed_rate(NULL, "apb_pclk", NULL, 0, 126000000);
|
|
if (IS_ERR(hw))
|
|
pr_err("apb_pclk not registered\n");
|
|
|
|
hw = clk_hw_register_fixed_rate(NULL, "uart0_pclk", NULL, 0, 3000000);
|
|
if (IS_ERR(hw))
|
|
pr_err("uart0_pclk not registered\n");
|
|
ret = clk_hw_register_clkdev(hw, NULL, "20201000.uart");
|
|
if (ret)
|
|
pr_err("uart0_pclk alias not registered\n");
|
|
|
|
hw = clk_hw_register_fixed_rate(NULL, "uart1_pclk", NULL, 0, 125000000);
|
|
if (IS_ERR(hw))
|
|
pr_err("uart1_pclk not registered\n");
|
|
ret = clk_hw_register_clkdev(hw, NULL, "20215000.uart");
|
|
if (ret)
|
|
pr_err("uart1_pclk alias not registered\n");
|
|
}
|
|
|
|
struct bcm2835_pll_data {
|
|
const char *name;
|
|
u32 cm_ctrl_reg;
|
|
u32 a2w_ctrl_reg;
|
|
u32 frac_reg;
|
|
u32 ana_reg_base;
|
|
u32 reference_enable_mask;
|
|
/* Bit in CM_LOCK to indicate when the PLL has locked. */
|
|
u32 lock_mask;
|
|
|
|
const struct bcm2835_pll_ana_bits *ana;
|
|
|
|
unsigned long min_rate;
|
|
unsigned long max_rate;
|
|
/*
|
|
* Highest rate for the VCO before we have to use the
|
|
* pre-divide-by-2.
|
|
*/
|
|
unsigned long max_fb_rate;
|
|
};
|
|
|
|
struct bcm2835_pll_ana_bits {
|
|
u32 mask0;
|
|
u32 set0;
|
|
u32 mask1;
|
|
u32 set1;
|
|
u32 mask3;
|
|
u32 set3;
|
|
u32 fb_prediv_mask;
|
|
};
|
|
|
|
static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
|
|
.mask0 = 0,
|
|
.set0 = 0,
|
|
.mask1 = (u32)~(A2W_PLL_KI_MASK | A2W_PLL_KP_MASK),
|
|
.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
|
|
.mask3 = (u32)~A2W_PLL_KA_MASK,
|
|
.set3 = (2 << A2W_PLL_KA_SHIFT),
|
|
.fb_prediv_mask = BIT(14),
|
|
};
|
|
|
|
static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
|
|
.mask0 = (u32)~(A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK),
|
|
.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
|
|
.mask1 = (u32)~(A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK),
|
|
.set1 = (6 << A2W_PLLH_KP_SHIFT),
|
|
.mask3 = 0,
|
|
.set3 = 0,
|
|
.fb_prediv_mask = BIT(11),
|
|
};
|
|
|
|
struct bcm2835_pll_divider_data {
|
|
const char *name;
|
|
const char *source_pll;
|
|
|
|
u32 cm_reg;
|
|
u32 a2w_reg;
|
|
|
|
u32 load_mask;
|
|
u32 hold_mask;
|
|
u32 fixed_divider;
|
|
u32 flags;
|
|
};
|
|
|
|
struct bcm2835_clock_data {
|
|
const char *name;
|
|
|
|
const char *const *parents;
|
|
int num_mux_parents;
|
|
|
|
/* Bitmap encoding which parents accept rate change propagation. */
|
|
unsigned int set_rate_parent;
|
|
|
|
u32 ctl_reg;
|
|
u32 div_reg;
|
|
|
|
/* Number of integer bits in the divider */
|
|
u32 int_bits;
|
|
/* Number of fractional bits in the divider */
|
|
u32 frac_bits;
|
|
|
|
u32 flags;
|
|
|
|
bool is_vpu_clock;
|
|
bool is_mash_clock;
|
|
bool low_jitter;
|
|
|
|
u32 tcnt_mux;
|
|
};
|
|
|
|
struct bcm2835_gate_data {
|
|
const char *name;
|
|
const char *parent;
|
|
|
|
u32 ctl_reg;
|
|
};
|
|
|
|
struct bcm2835_pll {
|
|
struct clk_hw hw;
|
|
struct bcm2835_cprman *cprman;
|
|
const struct bcm2835_pll_data *data;
|
|
};
|
|
|
|
static int bcm2835_pll_is_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
|
|
return cprman_read(cprman, data->a2w_ctrl_reg) &
|
|
A2W_PLL_CTRL_PRST_DISABLE;
|
|
}
|
|
|
|
static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
|
|
unsigned long parent_rate,
|
|
u32 *ndiv, u32 *fdiv)
|
|
{
|
|
u64 div;
|
|
|
|
div = (u64)rate << A2W_PLL_FRAC_BITS;
|
|
do_div(div, parent_rate);
|
|
|
|
*ndiv = div >> A2W_PLL_FRAC_BITS;
|
|
*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
|
|
}
|
|
|
|
static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
|
|
u32 ndiv, u32 fdiv, u32 pdiv)
|
|
{
|
|
u64 rate;
|
|
|
|
if (pdiv == 0)
|
|
return 0;
|
|
|
|
rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
|
|
do_div(rate, pdiv);
|
|
return rate >> A2W_PLL_FRAC_BITS;
|
|
}
|
|
|
|
static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
u32 ndiv, fdiv;
|
|
|
|
rate = clamp(rate, data->min_rate, data->max_rate);
|
|
|
|
bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
|
|
|
|
return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
|
|
}
|
|
|
|
static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
|
|
u32 ndiv, pdiv, fdiv;
|
|
bool using_prediv;
|
|
|
|
if (parent_rate == 0)
|
|
return 0;
|
|
|
|
fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
|
|
ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
|
|
pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
|
|
using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
|
|
data->ana->fb_prediv_mask;
|
|
|
|
if (using_prediv) {
|
|
ndiv *= 2;
|
|
fdiv *= 2;
|
|
}
|
|
|
|
return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
|
|
}
|
|
|
|
static void bcm2835_pll_off(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->cm_ctrl_reg,
|
|
cprman_read(cprman, data->cm_ctrl_reg) |
|
|
CM_PLL_ANARST);
|
|
cprman_write(cprman, data->a2w_ctrl_reg,
|
|
cprman_read(cprman, data->a2w_ctrl_reg) |
|
|
A2W_PLL_CTRL_PWRDN);
|
|
spin_unlock(&cprman->regs_lock);
|
|
}
|
|
|
|
static int bcm2835_pll_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
ktime_t timeout;
|
|
|
|
cprman_write(cprman, data->a2w_ctrl_reg,
|
|
cprman_read(cprman, data->a2w_ctrl_reg) &
|
|
~A2W_PLL_CTRL_PWRDN);
|
|
|
|
/* Take the PLL out of reset. */
|
|
cprman_write(cprman, data->cm_ctrl_reg,
|
|
cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
|
|
|
|
/* Wait for the PLL to lock. */
|
|
timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
|
|
clk_hw_get_name(hw));
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
cpu_relax();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* ANA register setup is done as a series of writes to
|
|
* ANA3-ANA0, in that order. This lets us write all 4
|
|
* registers as a single cycle of the serdes interface (taking
|
|
* 100 xosc clocks), whereas if we were to update ana0, 1, and
|
|
* 3 individually through their partial-write registers, each
|
|
* would be their own serdes cycle.
|
|
*/
|
|
for (i = 3; i >= 0; i--)
|
|
cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
|
|
}
|
|
|
|
static int bcm2835_pll_set_rate(struct clk_hw *hw,
|
|
unsigned long rate, unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
|
|
u32 ndiv, fdiv, a2w_ctl;
|
|
u32 ana[4];
|
|
int i;
|
|
|
|
if (rate > data->max_fb_rate) {
|
|
use_fb_prediv = true;
|
|
rate /= 2;
|
|
} else {
|
|
use_fb_prediv = false;
|
|
}
|
|
|
|
bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
|
|
|
|
for (i = 3; i >= 0; i--)
|
|
ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
|
|
|
|
was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
|
|
|
|
ana[0] &= ~data->ana->mask0;
|
|
ana[0] |= data->ana->set0;
|
|
ana[1] &= ~data->ana->mask1;
|
|
ana[1] |= data->ana->set1;
|
|
ana[3] &= ~data->ana->mask3;
|
|
ana[3] |= data->ana->set3;
|
|
|
|
if (was_using_prediv && !use_fb_prediv) {
|
|
ana[1] &= ~data->ana->fb_prediv_mask;
|
|
do_ana_setup_first = true;
|
|
} else if (!was_using_prediv && use_fb_prediv) {
|
|
ana[1] |= data->ana->fb_prediv_mask;
|
|
do_ana_setup_first = false;
|
|
} else {
|
|
do_ana_setup_first = true;
|
|
}
|
|
|
|
/* Unmask the reference clock from the oscillator. */
|
|
cprman_write(cprman, A2W_XOSC_CTRL,
|
|
cprman_read(cprman, A2W_XOSC_CTRL) |
|
|
data->reference_enable_mask);
|
|
|
|
if (do_ana_setup_first)
|
|
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
|
|
|
|
/* Set the PLL multiplier from the oscillator. */
|
|
cprman_write(cprman, data->frac_reg, fdiv);
|
|
|
|
a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
|
|
a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
|
|
a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
|
|
a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
|
|
a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
|
|
cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
|
|
|
|
if (!do_ana_setup_first)
|
|
bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_pll_debug_init(struct clk_hw *hw,
|
|
struct dentry *dentry)
|
|
{
|
|
struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
|
|
struct bcm2835_cprman *cprman = pll->cprman;
|
|
const struct bcm2835_pll_data *data = pll->data;
|
|
struct debugfs_reg32 *regs;
|
|
|
|
regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
regs[0].name = "cm_ctrl";
|
|
regs[0].offset = data->cm_ctrl_reg;
|
|
regs[1].name = "a2w_ctrl";
|
|
regs[1].offset = data->a2w_ctrl_reg;
|
|
regs[2].name = "frac";
|
|
regs[2].offset = data->frac_reg;
|
|
regs[3].name = "ana0";
|
|
regs[3].offset = data->ana_reg_base + 0 * 4;
|
|
regs[4].name = "ana1";
|
|
regs[4].offset = data->ana_reg_base + 1 * 4;
|
|
regs[5].name = "ana2";
|
|
regs[5].offset = data->ana_reg_base + 2 * 4;
|
|
regs[6].name = "ana3";
|
|
regs[6].offset = data->ana_reg_base + 3 * 4;
|
|
|
|
return bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
|
|
}
|
|
|
|
static const struct clk_ops bcm2835_pll_clk_ops = {
|
|
.is_prepared = bcm2835_pll_is_on,
|
|
.prepare = bcm2835_pll_on,
|
|
.unprepare = bcm2835_pll_off,
|
|
.recalc_rate = bcm2835_pll_get_rate,
|
|
.set_rate = bcm2835_pll_set_rate,
|
|
.round_rate = bcm2835_pll_round_rate,
|
|
.debug_init = bcm2835_pll_debug_init,
|
|
};
|
|
|
|
struct bcm2835_pll_divider {
|
|
struct clk_divider div;
|
|
struct bcm2835_cprman *cprman;
|
|
const struct bcm2835_pll_divider_data *data;
|
|
};
|
|
|
|
static struct bcm2835_pll_divider *
|
|
bcm2835_pll_divider_from_hw(struct clk_hw *hw)
|
|
{
|
|
return container_of(hw, struct bcm2835_pll_divider, div.hw);
|
|
}
|
|
|
|
static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
|
|
return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
|
|
}
|
|
|
|
static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long *parent_rate)
|
|
{
|
|
return clk_divider_ops.round_rate(hw, rate, parent_rate);
|
|
}
|
|
|
|
static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
return clk_divider_ops.recalc_rate(hw, parent_rate);
|
|
}
|
|
|
|
static void bcm2835_pll_divider_off(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->cm_reg,
|
|
(cprman_read(cprman, data->cm_reg) &
|
|
~data->load_mask) | data->hold_mask);
|
|
cprman_write(cprman, data->a2w_reg,
|
|
cprman_read(cprman, data->a2w_reg) |
|
|
A2W_PLL_CHANNEL_DISABLE);
|
|
spin_unlock(&cprman->regs_lock);
|
|
}
|
|
|
|
static int bcm2835_pll_divider_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->a2w_reg,
|
|
cprman_read(cprman, data->a2w_reg) &
|
|
~A2W_PLL_CHANNEL_DISABLE);
|
|
|
|
cprman_write(cprman, data->cm_reg,
|
|
cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
|
|
|
|
div = DIV_ROUND_UP_ULL(parent_rate, rate);
|
|
|
|
div = min(div, max_div);
|
|
if (div == max_div)
|
|
div = 0;
|
|
|
|
cprman_write(cprman, data->a2w_reg, div);
|
|
cm = cprman_read(cprman, data->cm_reg);
|
|
cprman_write(cprman, data->cm_reg, cm | data->load_mask);
|
|
cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_pll_divider_debug_init(struct clk_hw *hw,
|
|
struct dentry *dentry)
|
|
{
|
|
struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = divider->cprman;
|
|
const struct bcm2835_pll_divider_data *data = divider->data;
|
|
struct debugfs_reg32 *regs;
|
|
|
|
regs = devm_kzalloc(cprman->dev, 7 * sizeof(*regs), GFP_KERNEL);
|
|
if (!regs)
|
|
return -ENOMEM;
|
|
|
|
regs[0].name = "cm";
|
|
regs[0].offset = data->cm_reg;
|
|
regs[1].name = "a2w";
|
|
regs[1].offset = data->a2w_reg;
|
|
|
|
return bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
|
|
}
|
|
|
|
static const struct clk_ops bcm2835_pll_divider_clk_ops = {
|
|
.is_prepared = bcm2835_pll_divider_is_on,
|
|
.prepare = bcm2835_pll_divider_on,
|
|
.unprepare = bcm2835_pll_divider_off,
|
|
.recalc_rate = bcm2835_pll_divider_get_rate,
|
|
.set_rate = bcm2835_pll_divider_set_rate,
|
|
.round_rate = bcm2835_pll_divider_round_rate,
|
|
.debug_init = bcm2835_pll_divider_debug_init,
|
|
};
|
|
|
|
/*
|
|
* The CM dividers do fixed-point division, so we can't use the
|
|
* generic integer divider code like the PLL dividers do (and we can't
|
|
* fake it by having some fixed shifts preceding it in the clock tree,
|
|
* because we'd run out of bits in a 32-bit unsigned long).
|
|
*/
|
|
struct bcm2835_clock {
|
|
struct clk_hw hw;
|
|
struct bcm2835_cprman *cprman;
|
|
const struct bcm2835_clock_data *data;
|
|
};
|
|
|
|
static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
|
|
{
|
|
return container_of(hw, struct bcm2835_clock, hw);
|
|
}
|
|
|
|
static int bcm2835_clock_is_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
|
|
}
|
|
|
|
static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
|
|
unsigned long rate,
|
|
unsigned long parent_rate,
|
|
bool round_up)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 unused_frac_mask =
|
|
GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
|
|
u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
|
|
u64 rem;
|
|
u32 div, mindiv, maxdiv;
|
|
|
|
rem = do_div(temp, rate);
|
|
div = temp;
|
|
|
|
/* Round up and mask off the unused bits */
|
|
if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
|
|
div += unused_frac_mask + 1;
|
|
div &= ~unused_frac_mask;
|
|
|
|
/* different clamping limits apply for a mash clock */
|
|
if (data->is_mash_clock) {
|
|
/* clamp to min divider of 2 */
|
|
mindiv = 2 << CM_DIV_FRAC_BITS;
|
|
/* clamp to the highest possible integer divider */
|
|
maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
|
|
} else {
|
|
/* clamp to min divider of 1 */
|
|
mindiv = 1 << CM_DIV_FRAC_BITS;
|
|
/* clamp to the highest possible fractional divider */
|
|
maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
|
|
CM_DIV_FRAC_BITS - data->frac_bits);
|
|
}
|
|
|
|
/* apply the clamping limits */
|
|
div = max_t(u32, div, mindiv);
|
|
div = min_t(u32, div, maxdiv);
|
|
|
|
return div;
|
|
}
|
|
|
|
static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
|
|
unsigned long parent_rate,
|
|
u32 div)
|
|
{
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u64 temp;
|
|
|
|
if (data->int_bits == 0 && data->frac_bits == 0)
|
|
return parent_rate;
|
|
|
|
/*
|
|
* The divisor is a 12.12 fixed point field, but only some of
|
|
* the bits are populated in any given clock.
|
|
*/
|
|
div >>= CM_DIV_FRAC_BITS - data->frac_bits;
|
|
div &= (1 << (data->int_bits + data->frac_bits)) - 1;
|
|
|
|
if (div == 0)
|
|
return 0;
|
|
|
|
temp = (u64)parent_rate << data->frac_bits;
|
|
|
|
do_div(temp, div);
|
|
|
|
return temp;
|
|
}
|
|
|
|
static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 div;
|
|
|
|
if (data->int_bits == 0 && data->frac_bits == 0)
|
|
return parent_rate;
|
|
|
|
div = cprman_read(cprman, data->div_reg);
|
|
|
|
return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
|
|
}
|
|
|
|
static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
|
|
{
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
|
|
|
|
while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
|
|
if (ktime_after(ktime_get(), timeout)) {
|
|
dev_err(cprman->dev, "%s: couldn't lock PLL\n",
|
|
clk_hw_get_name(&clock->hw));
|
|
return;
|
|
}
|
|
cpu_relax();
|
|
}
|
|
}
|
|
|
|
static void bcm2835_clock_off(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->ctl_reg,
|
|
cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
/* BUSY will remain high until the divider completes its cycle. */
|
|
bcm2835_clock_wait_busy(clock);
|
|
}
|
|
|
|
static int bcm2835_clock_on(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
cprman_write(cprman, data->ctl_reg,
|
|
cprman_read(cprman, data->ctl_reg) |
|
|
CM_ENABLE |
|
|
CM_GATE);
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
/* Debug code to measure the clock once it's turned on to see
|
|
* if it's ticking at the rate we expect.
|
|
*/
|
|
if (data->tcnt_mux && false) {
|
|
dev_info(cprman->dev,
|
|
"clk %s: rate %ld, measure %ld\n",
|
|
data->name,
|
|
clk_hw_get_rate(hw),
|
|
bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_clock_set_rate(struct clk_hw *hw,
|
|
unsigned long rate, unsigned long parent_rate)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
|
|
u32 ctl;
|
|
|
|
spin_lock(&cprman->regs_lock);
|
|
|
|
/*
|
|
* Setting up frac support
|
|
*
|
|
* In principle it is recommended to stop/start the clock first,
|
|
* but as we set CLK_SET_RATE_GATE during registration of the
|
|
* clock this requirement should be take care of by the
|
|
* clk-framework.
|
|
*/
|
|
ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
|
|
ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
|
|
cprman_write(cprman, data->ctl_reg, ctl);
|
|
|
|
cprman_write(cprman, data->div_reg, div);
|
|
|
|
spin_unlock(&cprman->regs_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
bcm2835_clk_is_pllc(struct clk_hw *hw)
|
|
{
|
|
if (!hw)
|
|
return false;
|
|
|
|
return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
|
|
}
|
|
|
|
static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
|
|
int parent_idx,
|
|
unsigned long rate,
|
|
u32 *div,
|
|
unsigned long *prate,
|
|
unsigned long *avgrate)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
unsigned long best_rate = 0;
|
|
u32 curdiv, mindiv, maxdiv;
|
|
struct clk_hw *parent;
|
|
|
|
parent = clk_hw_get_parent_by_index(hw, parent_idx);
|
|
|
|
if (!(BIT(parent_idx) & data->set_rate_parent)) {
|
|
*prate = clk_hw_get_rate(parent);
|
|
*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
|
|
|
|
*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
|
|
|
|
if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
|
|
unsigned long high, low;
|
|
u32 int_div = *div & ~CM_DIV_FRAC_MASK;
|
|
|
|
high = bcm2835_clock_rate_from_divisor(clock, *prate,
|
|
int_div);
|
|
int_div += CM_DIV_FRAC_MASK + 1;
|
|
low = bcm2835_clock_rate_from_divisor(clock, *prate,
|
|
int_div);
|
|
|
|
/*
|
|
* Return a value which is the maximum deviation
|
|
* below the ideal rate, for use as a metric.
|
|
*/
|
|
return *avgrate - max(*avgrate - low, high - *avgrate);
|
|
}
|
|
return *avgrate;
|
|
}
|
|
|
|
if (data->frac_bits)
|
|
dev_warn(cprman->dev,
|
|
"frac bits are not used when propagating rate change");
|
|
|
|
/* clamp to min divider of 2 if we're dealing with a mash clock */
|
|
mindiv = data->is_mash_clock ? 2 : 1;
|
|
maxdiv = BIT(data->int_bits) - 1;
|
|
|
|
/* TODO: Be smart, and only test a subset of the available divisors. */
|
|
for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
|
|
unsigned long tmp_rate;
|
|
|
|
tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
|
|
tmp_rate /= curdiv;
|
|
if (curdiv == mindiv ||
|
|
(tmp_rate > best_rate && tmp_rate <= rate))
|
|
best_rate = tmp_rate;
|
|
|
|
if (best_rate == rate)
|
|
break;
|
|
}
|
|
|
|
*div = curdiv << CM_DIV_FRAC_BITS;
|
|
*prate = curdiv * best_rate;
|
|
*avgrate = best_rate;
|
|
|
|
return best_rate;
|
|
}
|
|
|
|
static int bcm2835_clock_determine_rate(struct clk_hw *hw,
|
|
struct clk_rate_request *req)
|
|
{
|
|
struct clk_hw *parent, *best_parent = NULL;
|
|
bool current_parent_is_pllc;
|
|
unsigned long rate, best_rate = 0;
|
|
unsigned long prate, best_prate = 0;
|
|
unsigned long avgrate, best_avgrate = 0;
|
|
size_t i;
|
|
u32 div;
|
|
|
|
current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
|
|
|
|
/*
|
|
* Select parent clock that results in the closest but lower rate
|
|
*/
|
|
for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
|
|
parent = clk_hw_get_parent_by_index(hw, i);
|
|
if (!parent)
|
|
continue;
|
|
|
|
/*
|
|
* Don't choose a PLLC-derived clock as our parent
|
|
* unless it had been manually set that way. PLLC's
|
|
* frequency gets adjusted by the firmware due to
|
|
* over-temp or under-voltage conditions, without
|
|
* prior notification to our clock consumer.
|
|
*/
|
|
if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
|
|
continue;
|
|
|
|
rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
|
|
&div, &prate,
|
|
&avgrate);
|
|
if (rate > best_rate && rate <= req->rate) {
|
|
best_parent = parent;
|
|
best_prate = prate;
|
|
best_rate = rate;
|
|
best_avgrate = avgrate;
|
|
}
|
|
}
|
|
|
|
if (!best_parent)
|
|
return -EINVAL;
|
|
|
|
req->best_parent_hw = best_parent;
|
|
req->best_parent_rate = best_prate;
|
|
|
|
req->rate = best_avgrate;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
|
|
|
|
cprman_write(cprman, data->ctl_reg, src);
|
|
return 0;
|
|
}
|
|
|
|
static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
u32 src = cprman_read(cprman, data->ctl_reg);
|
|
|
|
return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
|
|
}
|
|
|
|
static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
|
|
{
|
|
.name = "ctl",
|
|
.offset = 0,
|
|
},
|
|
{
|
|
.name = "div",
|
|
.offset = 4,
|
|
},
|
|
};
|
|
|
|
static int bcm2835_clock_debug_init(struct clk_hw *hw,
|
|
struct dentry *dentry)
|
|
{
|
|
struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
|
|
struct bcm2835_cprman *cprman = clock->cprman;
|
|
const struct bcm2835_clock_data *data = clock->data;
|
|
|
|
return bcm2835_debugfs_regset(
|
|
cprman, data->ctl_reg,
|
|
bcm2835_debugfs_clock_reg32,
|
|
ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
|
|
dentry);
|
|
}
|
|
|
|
static const struct clk_ops bcm2835_clock_clk_ops = {
|
|
.is_prepared = bcm2835_clock_is_on,
|
|
.prepare = bcm2835_clock_on,
|
|
.unprepare = bcm2835_clock_off,
|
|
.recalc_rate = bcm2835_clock_get_rate,
|
|
.set_rate = bcm2835_clock_set_rate,
|
|
.determine_rate = bcm2835_clock_determine_rate,
|
|
.set_parent = bcm2835_clock_set_parent,
|
|
.get_parent = bcm2835_clock_get_parent,
|
|
.debug_init = bcm2835_clock_debug_init,
|
|
};
|
|
|
|
static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The VPU clock can never be disabled (it doesn't have an ENABLE
|
|
* bit), so it gets its own set of clock ops.
|
|
*/
|
|
static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
|
|
.is_prepared = bcm2835_vpu_clock_is_on,
|
|
.recalc_rate = bcm2835_clock_get_rate,
|
|
.set_rate = bcm2835_clock_set_rate,
|
|
.determine_rate = bcm2835_clock_determine_rate,
|
|
.set_parent = bcm2835_clock_set_parent,
|
|
.get_parent = bcm2835_clock_get_parent,
|
|
.debug_init = bcm2835_clock_debug_init,
|
|
};
|
|
|
|
static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_pll_data *data)
|
|
{
|
|
struct bcm2835_pll *pll;
|
|
struct clk_init_data init;
|
|
int ret;
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
|
|
/* All of the PLLs derive from the external oscillator. */
|
|
init.parent_names = &cprman->real_parent_names[0];
|
|
init.num_parents = 1;
|
|
init.name = data->name;
|
|
init.ops = &bcm2835_pll_clk_ops;
|
|
init.flags = CLK_IGNORE_UNUSED;
|
|
|
|
pll = kzalloc(sizeof(*pll), GFP_KERNEL);
|
|
if (!pll)
|
|
return NULL;
|
|
|
|
pll->cprman = cprman;
|
|
pll->data = data;
|
|
pll->hw.init = &init;
|
|
|
|
ret = devm_clk_hw_register(cprman->dev, &pll->hw);
|
|
if (ret)
|
|
return NULL;
|
|
return &pll->hw;
|
|
}
|
|
|
|
static struct clk_hw *
|
|
bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_pll_divider_data *data)
|
|
{
|
|
struct bcm2835_pll_divider *divider;
|
|
struct clk_init_data init;
|
|
const char *divider_name;
|
|
int ret;
|
|
|
|
if (data->fixed_divider != 1) {
|
|
divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
|
|
"%s_prediv", data->name);
|
|
if (!divider_name)
|
|
return NULL;
|
|
} else {
|
|
divider_name = data->name;
|
|
}
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
|
|
init.parent_names = &data->source_pll;
|
|
init.num_parents = 1;
|
|
init.name = divider_name;
|
|
init.ops = &bcm2835_pll_divider_clk_ops;
|
|
init.flags = data->flags | CLK_IGNORE_UNUSED;
|
|
|
|
divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
|
|
if (!divider)
|
|
return NULL;
|
|
|
|
divider->div.reg = cprman->regs + data->a2w_reg;
|
|
divider->div.shift = A2W_PLL_DIV_SHIFT;
|
|
divider->div.width = A2W_PLL_DIV_BITS;
|
|
divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
|
|
divider->div.lock = &cprman->regs_lock;
|
|
divider->div.hw.init = &init;
|
|
divider->div.table = NULL;
|
|
|
|
divider->cprman = cprman;
|
|
divider->data = data;
|
|
|
|
ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
/*
|
|
* PLLH's channels have a fixed divide by 10 afterwards, which
|
|
* is what our consumers are actually using.
|
|
*/
|
|
if (data->fixed_divider != 1) {
|
|
return clk_hw_register_fixed_factor(cprman->dev, data->name,
|
|
divider_name,
|
|
CLK_SET_RATE_PARENT,
|
|
1,
|
|
data->fixed_divider);
|
|
}
|
|
|
|
return ÷r->div.hw;
|
|
}
|
|
|
|
static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_clock_data *data)
|
|
{
|
|
struct bcm2835_clock *clock;
|
|
struct clk_init_data init;
|
|
const char *parents[1 << CM_SRC_BITS];
|
|
size_t i, j;
|
|
int ret;
|
|
|
|
/*
|
|
* Replace our strings referencing parent clocks with the
|
|
* actual clock-output-name of the parent.
|
|
*/
|
|
for (i = 0; i < data->num_mux_parents; i++) {
|
|
parents[i] = data->parents[i];
|
|
|
|
for (j = 0; j < ARRAY_SIZE(cprman_parent_names); j++) {
|
|
if (strcmp(parents[i], cprman_parent_names[j]) == 0) {
|
|
parents[i] = cprman->real_parent_names[j];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
memset(&init, 0, sizeof(init));
|
|
init.parent_names = parents;
|
|
init.num_parents = data->num_mux_parents;
|
|
init.name = data->name;
|
|
init.flags = data->flags | CLK_IGNORE_UNUSED;
|
|
|
|
/*
|
|
* Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
|
|
* rate changes on at least of the parents.
|
|
*/
|
|
if (data->set_rate_parent)
|
|
init.flags |= CLK_SET_RATE_PARENT;
|
|
|
|
if (data->is_vpu_clock) {
|
|
init.ops = &bcm2835_vpu_clock_clk_ops;
|
|
} else {
|
|
init.ops = &bcm2835_clock_clk_ops;
|
|
init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
|
|
|
|
/* If the clock wasn't actually enabled at boot, it's not
|
|
* critical.
|
|
*/
|
|
if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
|
|
init.flags &= ~CLK_IS_CRITICAL;
|
|
}
|
|
|
|
clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
|
|
if (!clock)
|
|
return NULL;
|
|
|
|
clock->cprman = cprman;
|
|
clock->data = data;
|
|
clock->hw.init = &init;
|
|
|
|
ret = devm_clk_hw_register(cprman->dev, &clock->hw);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
return &clock->hw;
|
|
}
|
|
|
|
static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
|
|
const struct bcm2835_gate_data *data)
|
|
{
|
|
return clk_register_gate(cprman->dev, data->name, data->parent,
|
|
CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
|
|
cprman->regs + data->ctl_reg,
|
|
CM_GATE_BIT, 0, &cprman->regs_lock);
|
|
}
|
|
|
|
typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
|
|
const void *data);
|
|
struct bcm2835_clk_desc {
|
|
bcm2835_clk_register clk_register;
|
|
const void *data;
|
|
};
|
|
|
|
/* assignment helper macros for different clock types */
|
|
#define _REGISTER(f, ...) { .clk_register = (bcm2835_clk_register)f, \
|
|
.data = __VA_ARGS__ }
|
|
#define REGISTER_PLL(...) _REGISTER(&bcm2835_register_pll, \
|
|
&(struct bcm2835_pll_data) \
|
|
{__VA_ARGS__})
|
|
#define REGISTER_PLL_DIV(...) _REGISTER(&bcm2835_register_pll_divider, \
|
|
&(struct bcm2835_pll_divider_data) \
|
|
{__VA_ARGS__})
|
|
#define REGISTER_CLK(...) _REGISTER(&bcm2835_register_clock, \
|
|
&(struct bcm2835_clock_data) \
|
|
{__VA_ARGS__})
|
|
#define REGISTER_GATE(...) _REGISTER(&bcm2835_register_gate, \
|
|
&(struct bcm2835_gate_data) \
|
|
{__VA_ARGS__})
|
|
|
|
/* parent mux arrays plus helper macros */
|
|
|
|
/* main oscillator parent mux */
|
|
static const char *const bcm2835_clock_osc_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1"
|
|
};
|
|
|
|
#define REGISTER_OSC_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \
|
|
.parents = bcm2835_clock_osc_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/* main peripherial parent mux */
|
|
static const char *const bcm2835_clock_per_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"plla_per",
|
|
"pllc_per",
|
|
"plld_per",
|
|
"pllh_aux",
|
|
};
|
|
|
|
#define REGISTER_PER_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \
|
|
.parents = bcm2835_clock_per_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/*
|
|
* Restrict clock sources for the PCM peripheral to the oscillator and
|
|
* PLLD_PER because other source may have varying rates or be switched
|
|
* off.
|
|
*
|
|
* Prevent other sources from being selected by replacing their names in
|
|
* the list of potential parents with dummy entries (entry index is
|
|
* significant).
|
|
*/
|
|
static const char *const bcm2835_pcm_per_parents[] = {
|
|
"-",
|
|
"xosc",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"-",
|
|
"plld_per",
|
|
"-",
|
|
};
|
|
|
|
#define REGISTER_PCM_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \
|
|
.parents = bcm2835_pcm_per_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/* main vpu parent mux */
|
|
static const char *const bcm2835_clock_vpu_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"plla_core",
|
|
"pllc_core0",
|
|
"plld_core",
|
|
"pllh_aux",
|
|
"pllc_core1",
|
|
"pllc_core2",
|
|
};
|
|
|
|
#define REGISTER_VPU_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \
|
|
.parents = bcm2835_clock_vpu_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/*
|
|
* DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI
|
|
* analog PHY. The _inv variants are generated internally to cprman,
|
|
* but we don't use them so they aren't hooked up.
|
|
*/
|
|
static const char *const bcm2835_clock_dsi0_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"dsi0_ddr",
|
|
"dsi0_ddr_inv",
|
|
"dsi0_ddr2",
|
|
"dsi0_ddr2_inv",
|
|
"dsi0_byte",
|
|
"dsi0_byte_inv",
|
|
};
|
|
|
|
static const char *const bcm2835_clock_dsi1_parents[] = {
|
|
"gnd",
|
|
"xosc",
|
|
"testdebug0",
|
|
"testdebug1",
|
|
"dsi1_ddr",
|
|
"dsi1_ddr_inv",
|
|
"dsi1_ddr2",
|
|
"dsi1_ddr2_inv",
|
|
"dsi1_byte",
|
|
"dsi1_byte_inv",
|
|
};
|
|
|
|
#define REGISTER_DSI0_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \
|
|
.parents = bcm2835_clock_dsi0_parents, \
|
|
__VA_ARGS__)
|
|
|
|
#define REGISTER_DSI1_CLK(...) REGISTER_CLK( \
|
|
.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \
|
|
.parents = bcm2835_clock_dsi1_parents, \
|
|
__VA_ARGS__)
|
|
|
|
/*
|
|
* the real definition of all the pll, pll_dividers and clocks
|
|
* these make use of the above REGISTER_* macros
|
|
*/
|
|
static const struct bcm2835_clk_desc clk_desc_array[] = {
|
|
/* the PLL + PLL dividers */
|
|
|
|
/*
|
|
* PLLA is the auxiliary PLL, used to drive the CCP2
|
|
* (Compact Camera Port 2) transmitter clock.
|
|
*
|
|
* It is in the PX LDO power domain, which is on when the
|
|
* AUDIO domain is on.
|
|
*/
|
|
[BCM2835_PLLA] = REGISTER_PLL(
|
|
.name = "plla",
|
|
.cm_ctrl_reg = CM_PLLA,
|
|
.a2w_ctrl_reg = A2W_PLLA_CTRL,
|
|
.frac_reg = A2W_PLLA_FRAC,
|
|
.ana_reg_base = A2W_PLLA_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKA,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 2400000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLA_CORE] = REGISTER_PLL_DIV(
|
|
.name = "plla_core",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_CORE,
|
|
.load_mask = CM_PLLA_LOADCORE,
|
|
.hold_mask = CM_PLLA_HOLDCORE,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLA_PER] = REGISTER_PLL_DIV(
|
|
.name = "plla_per",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_PER,
|
|
.load_mask = CM_PLLA_LOADPER,
|
|
.hold_mask = CM_PLLA_HOLDPER,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV(
|
|
.name = "plla_dsi0",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_DSI0,
|
|
.load_mask = CM_PLLA_LOADDSI0,
|
|
.hold_mask = CM_PLLA_HOLDDSI0,
|
|
.fixed_divider = 1),
|
|
[BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV(
|
|
.name = "plla_ccp2",
|
|
.source_pll = "plla",
|
|
.cm_reg = CM_PLLA,
|
|
.a2w_reg = A2W_PLLA_CCP2,
|
|
.load_mask = CM_PLLA_LOADCCP2,
|
|
.hold_mask = CM_PLLA_HOLDCCP2,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/* PLLB is used for the ARM's clock. */
|
|
[BCM2835_PLLB] = REGISTER_PLL(
|
|
.name = "pllb",
|
|
.cm_ctrl_reg = CM_PLLB,
|
|
.a2w_ctrl_reg = A2W_PLLB_CTRL,
|
|
.frac_reg = A2W_PLLB_FRAC,
|
|
.ana_reg_base = A2W_PLLB_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKB,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 3000000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLB_ARM] = REGISTER_PLL_DIV(
|
|
.name = "pllb_arm",
|
|
.source_pll = "pllb",
|
|
.cm_reg = CM_PLLB,
|
|
.a2w_reg = A2W_PLLB_ARM,
|
|
.load_mask = CM_PLLB_LOADARM,
|
|
.hold_mask = CM_PLLB_HOLDARM,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/*
|
|
* PLLC is the core PLL, used to drive the core VPU clock.
|
|
*
|
|
* It is in the PX LDO power domain, which is on when the
|
|
* AUDIO domain is on.
|
|
*/
|
|
[BCM2835_PLLC] = REGISTER_PLL(
|
|
.name = "pllc",
|
|
.cm_ctrl_reg = CM_PLLC,
|
|
.a2w_ctrl_reg = A2W_PLLC_CTRL,
|
|
.frac_reg = A2W_PLLC_FRAC,
|
|
.ana_reg_base = A2W_PLLC_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKC,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 3000000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV(
|
|
.name = "pllc_core0",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_CORE0,
|
|
.load_mask = CM_PLLC_LOADCORE0,
|
|
.hold_mask = CM_PLLC_HOLDCORE0,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV(
|
|
.name = "pllc_core1",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_CORE1,
|
|
.load_mask = CM_PLLC_LOADCORE1,
|
|
.hold_mask = CM_PLLC_HOLDCORE1,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV(
|
|
.name = "pllc_core2",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_CORE2,
|
|
.load_mask = CM_PLLC_LOADCORE2,
|
|
.hold_mask = CM_PLLC_HOLDCORE2,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLC_PER] = REGISTER_PLL_DIV(
|
|
.name = "pllc_per",
|
|
.source_pll = "pllc",
|
|
.cm_reg = CM_PLLC,
|
|
.a2w_reg = A2W_PLLC_PER,
|
|
.load_mask = CM_PLLC_LOADPER,
|
|
.hold_mask = CM_PLLC_HOLDPER,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/*
|
|
* PLLD is the display PLL, used to drive DSI display panels.
|
|
*
|
|
* It is in the PX LDO power domain, which is on when the
|
|
* AUDIO domain is on.
|
|
*/
|
|
[BCM2835_PLLD] = REGISTER_PLL(
|
|
.name = "plld",
|
|
.cm_ctrl_reg = CM_PLLD,
|
|
.a2w_ctrl_reg = A2W_PLLD_CTRL,
|
|
.frac_reg = A2W_PLLD_FRAC,
|
|
.ana_reg_base = A2W_PLLD_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKD,
|
|
|
|
.ana = &bcm2835_ana_default,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 2400000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLD_CORE] = REGISTER_PLL_DIV(
|
|
.name = "plld_core",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_CORE,
|
|
.load_mask = CM_PLLD_LOADCORE,
|
|
.hold_mask = CM_PLLD_HOLDCORE,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLD_PER] = REGISTER_PLL_DIV(
|
|
.name = "plld_per",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_PER,
|
|
.load_mask = CM_PLLD_LOADPER,
|
|
.hold_mask = CM_PLLD_HOLDPER,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV(
|
|
.name = "plld_dsi0",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_DSI0,
|
|
.load_mask = CM_PLLD_LOADDSI0,
|
|
.hold_mask = CM_PLLD_HOLDDSI0,
|
|
.fixed_divider = 1),
|
|
[BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV(
|
|
.name = "plld_dsi1",
|
|
.source_pll = "plld",
|
|
.cm_reg = CM_PLLD,
|
|
.a2w_reg = A2W_PLLD_DSI1,
|
|
.load_mask = CM_PLLD_LOADDSI1,
|
|
.hold_mask = CM_PLLD_HOLDDSI1,
|
|
.fixed_divider = 1),
|
|
|
|
/*
|
|
* PLLH is used to supply the pixel clock or the AUX clock for the
|
|
* TV encoder.
|
|
*
|
|
* It is in the HDMI power domain.
|
|
*/
|
|
[BCM2835_PLLH] = REGISTER_PLL(
|
|
"pllh",
|
|
.cm_ctrl_reg = CM_PLLH,
|
|
.a2w_ctrl_reg = A2W_PLLH_CTRL,
|
|
.frac_reg = A2W_PLLH_FRAC,
|
|
.ana_reg_base = A2W_PLLH_ANA0,
|
|
.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
|
|
.lock_mask = CM_LOCK_FLOCKH,
|
|
|
|
.ana = &bcm2835_ana_pllh,
|
|
|
|
.min_rate = 600000000u,
|
|
.max_rate = 3000000000u,
|
|
.max_fb_rate = BCM2835_MAX_FB_RATE),
|
|
[BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV(
|
|
.name = "pllh_rcal",
|
|
.source_pll = "pllh",
|
|
.cm_reg = CM_PLLH,
|
|
.a2w_reg = A2W_PLLH_RCAL,
|
|
.load_mask = CM_PLLH_LOADRCAL,
|
|
.hold_mask = 0,
|
|
.fixed_divider = 10,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLH_AUX] = REGISTER_PLL_DIV(
|
|
.name = "pllh_aux",
|
|
.source_pll = "pllh",
|
|
.cm_reg = CM_PLLH,
|
|
.a2w_reg = A2W_PLLH_AUX,
|
|
.load_mask = CM_PLLH_LOADAUX,
|
|
.hold_mask = 0,
|
|
.fixed_divider = 1,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
[BCM2835_PLLH_PIX] = REGISTER_PLL_DIV(
|
|
.name = "pllh_pix",
|
|
.source_pll = "pllh",
|
|
.cm_reg = CM_PLLH,
|
|
.a2w_reg = A2W_PLLH_PIX,
|
|
.load_mask = CM_PLLH_LOADPIX,
|
|
.hold_mask = 0,
|
|
.fixed_divider = 10,
|
|
.flags = CLK_SET_RATE_PARENT),
|
|
|
|
/* the clocks */
|
|
|
|
/* clocks with oscillator parent mux */
|
|
|
|
/* One Time Programmable Memory clock. Maximum 10Mhz. */
|
|
[BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK(
|
|
.name = "otp",
|
|
.ctl_reg = CM_OTPCTL,
|
|
.div_reg = CM_OTPDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 6),
|
|
/*
|
|
* Used for a 1Mhz clock for the system clocksource, and also used
|
|
* bythe watchdog timer and the camera pulse generator.
|
|
*/
|
|
[BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK(
|
|
.name = "timer",
|
|
.ctl_reg = CM_TIMERCTL,
|
|
.div_reg = CM_TIMERDIV,
|
|
.int_bits = 6,
|
|
.frac_bits = 12),
|
|
/*
|
|
* Clock for the temperature sensor.
|
|
* Generally run at 2Mhz, max 5Mhz.
|
|
*/
|
|
[BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK(
|
|
.name = "tsens",
|
|
.ctl_reg = CM_TSENSCTL,
|
|
.div_reg = CM_TSENSDIV,
|
|
.int_bits = 5,
|
|
.frac_bits = 0),
|
|
[BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK(
|
|
.name = "tec",
|
|
.ctl_reg = CM_TECCTL,
|
|
.div_reg = CM_TECDIV,
|
|
.int_bits = 6,
|
|
.frac_bits = 0),
|
|
|
|
/* clocks with vpu parent mux */
|
|
[BCM2835_CLOCK_H264] = REGISTER_VPU_CLK(
|
|
.name = "h264",
|
|
.ctl_reg = CM_H264CTL,
|
|
.div_reg = CM_H264DIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 1),
|
|
[BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK(
|
|
.name = "isp",
|
|
.ctl_reg = CM_ISPCTL,
|
|
.div_reg = CM_ISPDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 2),
|
|
|
|
/*
|
|
* Secondary SDRAM clock. Used for low-voltage modes when the PLL
|
|
* in the SDRAM controller can't be used.
|
|
*/
|
|
[BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK(
|
|
.name = "sdram",
|
|
.ctl_reg = CM_SDCCTL,
|
|
.div_reg = CM_SDCDIV,
|
|
.int_bits = 6,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 3),
|
|
[BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK(
|
|
.name = "v3d",
|
|
.ctl_reg = CM_V3DCTL,
|
|
.div_reg = CM_V3DDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 4),
|
|
/*
|
|
* VPU clock. This doesn't have an enable bit, since it drives
|
|
* the bus for everything else, and is special so it doesn't need
|
|
* to be gated for rate changes. It is also known as "clk_audio"
|
|
* in various hardware documentation.
|
|
*/
|
|
[BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK(
|
|
.name = "vpu",
|
|
.ctl_reg = CM_VPUCTL,
|
|
.div_reg = CM_VPUDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 8,
|
|
.flags = CLK_IS_CRITICAL,
|
|
.is_vpu_clock = true,
|
|
.tcnt_mux = 5),
|
|
|
|
/* clocks with per parent mux */
|
|
[BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK(
|
|
.name = "aveo",
|
|
.ctl_reg = CM_AVEOCTL,
|
|
.div_reg = CM_AVEODIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 38),
|
|
[BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK(
|
|
.name = "cam0",
|
|
.ctl_reg = CM_CAM0CTL,
|
|
.div_reg = CM_CAM0DIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 14),
|
|
[BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK(
|
|
.name = "cam1",
|
|
.ctl_reg = CM_CAM1CTL,
|
|
.div_reg = CM_CAM1DIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 15),
|
|
[BCM2835_CLOCK_DFT] = REGISTER_PER_CLK(
|
|
.name = "dft",
|
|
.ctl_reg = CM_DFTCTL,
|
|
.div_reg = CM_DFTDIV,
|
|
.int_bits = 5,
|
|
.frac_bits = 0),
|
|
[BCM2835_CLOCK_DPI] = REGISTER_PER_CLK(
|
|
.name = "dpi",
|
|
.ctl_reg = CM_DPICTL,
|
|
.div_reg = CM_DPIDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 17),
|
|
|
|
/* Arasan EMMC clock */
|
|
[BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK(
|
|
.name = "emmc",
|
|
.ctl_reg = CM_EMMCCTL,
|
|
.div_reg = CM_EMMCDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 39),
|
|
|
|
/* General purpose (GPIO) clocks */
|
|
[BCM2835_CLOCK_GP0] = REGISTER_PER_CLK(
|
|
.name = "gp0",
|
|
.ctl_reg = CM_GP0CTL,
|
|
.div_reg = CM_GP0DIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 20),
|
|
[BCM2835_CLOCK_GP1] = REGISTER_PER_CLK(
|
|
.name = "gp1",
|
|
.ctl_reg = CM_GP1CTL,
|
|
.div_reg = CM_GP1DIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.flags = CLK_IS_CRITICAL,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 21),
|
|
[BCM2835_CLOCK_GP2] = REGISTER_PER_CLK(
|
|
.name = "gp2",
|
|
.ctl_reg = CM_GP2CTL,
|
|
.div_reg = CM_GP2DIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.flags = CLK_IS_CRITICAL),
|
|
|
|
/* HDMI state machine */
|
|
[BCM2835_CLOCK_HSM] = REGISTER_PER_CLK(
|
|
.name = "hsm",
|
|
.ctl_reg = CM_HSMCTL,
|
|
.div_reg = CM_HSMDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 22),
|
|
[BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK(
|
|
.name = "pcm",
|
|
.ctl_reg = CM_PCMCTL,
|
|
.div_reg = CM_PCMDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.low_jitter = true,
|
|
.tcnt_mux = 23),
|
|
[BCM2835_CLOCK_PWM] = REGISTER_PER_CLK(
|
|
.name = "pwm",
|
|
.ctl_reg = CM_PWMCTL,
|
|
.div_reg = CM_PWMDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 24),
|
|
[BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK(
|
|
.name = "slim",
|
|
.ctl_reg = CM_SLIMCTL,
|
|
.div_reg = CM_SLIMDIV,
|
|
.int_bits = 12,
|
|
.frac_bits = 12,
|
|
.is_mash_clock = true,
|
|
.tcnt_mux = 25),
|
|
[BCM2835_CLOCK_SMI] = REGISTER_PER_CLK(
|
|
.name = "smi",
|
|
.ctl_reg = CM_SMICTL,
|
|
.div_reg = CM_SMIDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 27),
|
|
[BCM2835_CLOCK_UART] = REGISTER_PER_CLK(
|
|
.name = "uart",
|
|
.ctl_reg = CM_UARTCTL,
|
|
.div_reg = CM_UARTDIV,
|
|
.int_bits = 10,
|
|
.frac_bits = 12,
|
|
.tcnt_mux = 28),
|
|
|
|
/* TV encoder clock. Only operating frequency is 108Mhz. */
|
|
[BCM2835_CLOCK_VEC] = REGISTER_PER_CLK(
|
|
.name = "vec",
|
|
.ctl_reg = CM_VECCTL,
|
|
.div_reg = CM_VECDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 0,
|
|
/*
|
|
* Allow rate change propagation only on PLLH_AUX which is
|
|
* assigned index 7 in the parent array.
|
|
*/
|
|
.set_rate_parent = BIT(7),
|
|
.tcnt_mux = 29),
|
|
|
|
/* dsi clocks */
|
|
[BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK(
|
|
.name = "dsi0e",
|
|
.ctl_reg = CM_DSI0ECTL,
|
|
.div_reg = CM_DSI0EDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 18),
|
|
[BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK(
|
|
.name = "dsi1e",
|
|
.ctl_reg = CM_DSI1ECTL,
|
|
.div_reg = CM_DSI1EDIV,
|
|
.int_bits = 4,
|
|
.frac_bits = 8,
|
|
.tcnt_mux = 19),
|
|
[BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK(
|
|
.name = "dsi0p",
|
|
.ctl_reg = CM_DSI0PCTL,
|
|
.div_reg = CM_DSI0PDIV,
|
|
.int_bits = 0,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 12),
|
|
[BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK(
|
|
.name = "dsi1p",
|
|
.ctl_reg = CM_DSI1PCTL,
|
|
.div_reg = CM_DSI1PDIV,
|
|
.int_bits = 0,
|
|
.frac_bits = 0,
|
|
.tcnt_mux = 13),
|
|
|
|
/* the gates */
|
|
|
|
/*
|
|
* CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
|
|
* you have the debug bit set in the power manager, which we
|
|
* don't bother exposing) are individual gates off of the
|
|
* non-stop vpu clock.
|
|
*/
|
|
[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
|
|
.name = "peri_image",
|
|
.parent = "vpu",
|
|
.ctl_reg = CM_PERIICTL),
|
|
};
|
|
|
|
/*
|
|
* Permanently take a reference on the parent of the SDRAM clock.
|
|
*
|
|
* While the SDRAM is being driven by its dedicated PLL most of the
|
|
* time, there is a little loop running in the firmware that
|
|
* periodically switches the SDRAM to using our CM clock to do PVT
|
|
* recalibration, with the assumption that the previously configured
|
|
* SDRAM parent is still enabled and running.
|
|
*/
|
|
static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
|
|
{
|
|
struct clk *parent = clk_get_parent(sdc);
|
|
|
|
if (IS_ERR(parent))
|
|
return PTR_ERR(parent);
|
|
|
|
return clk_prepare_enable(parent);
|
|
}
|
|
|
|
static int bcm2835_clk_probe(struct platform_device *pdev)
|
|
{
|
|
struct device *dev = &pdev->dev;
|
|
struct clk_hw **hws;
|
|
struct bcm2835_cprman *cprman;
|
|
struct resource *res;
|
|
const struct bcm2835_clk_desc *desc;
|
|
const size_t asize = ARRAY_SIZE(clk_desc_array);
|
|
size_t i;
|
|
int ret;
|
|
|
|
cprman = devm_kzalloc(dev, sizeof(*cprman) +
|
|
sizeof(*cprman->onecell.hws) * asize,
|
|
GFP_KERNEL);
|
|
if (!cprman)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&cprman->regs_lock);
|
|
cprman->dev = dev;
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
cprman->regs = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(cprman->regs))
|
|
return PTR_ERR(cprman->regs);
|
|
|
|
memcpy(cprman->real_parent_names, cprman_parent_names,
|
|
sizeof(cprman_parent_names));
|
|
of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
|
|
ARRAY_SIZE(cprman_parent_names));
|
|
|
|
/*
|
|
* Make sure the external oscillator has been registered.
|
|
*
|
|
* The other (DSI) clocks are not present on older device
|
|
* trees, which we still need to support for backwards
|
|
* compatibility.
|
|
*/
|
|
if (!cprman->real_parent_names[0])
|
|
return -ENODEV;
|
|
|
|
platform_set_drvdata(pdev, cprman);
|
|
|
|
cprman->onecell.num = asize;
|
|
hws = cprman->onecell.hws;
|
|
|
|
for (i = 0; i < asize; i++) {
|
|
desc = &clk_desc_array[i];
|
|
if (desc->clk_register && desc->data)
|
|
hws[i] = desc->clk_register(cprman, desc->data);
|
|
}
|
|
|
|
ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
|
|
&cprman->onecell);
|
|
}
|
|
|
|
static const struct of_device_id bcm2835_clk_of_match[] = {
|
|
{ .compatible = "brcm,bcm2835-cprman", },
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
|
|
|
|
static struct platform_driver bcm2835_clk_driver = {
|
|
.driver = {
|
|
.name = "bcm2835-clk",
|
|
.of_match_table = bcm2835_clk_of_match,
|
|
},
|
|
.probe = bcm2835_clk_probe,
|
|
};
|
|
|
|
builtin_platform_driver(bcm2835_clk_driver);
|
|
|
|
MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
|
|
MODULE_DESCRIPTION("BCM2835 clock driver");
|
|
MODULE_LICENSE("GPL v2");
|