Files
linux/arch/powerpc/include/asm/book3s/64/radix.h
Daniel Axtens 41b7a347bf powerpc: Book3S 64-bit outline-only KASAN support
Implement a limited form of KASAN for Book3S 64-bit machines running under
the Radix MMU, supporting only outline mode.

 - Enable the compiler instrumentation to check addresses and maintain the
   shadow region. (This is the guts of KASAN which we can easily reuse.)

 - Require kasan-vmalloc support to handle modules and anything else in
   vmalloc space.

 - KASAN needs to be able to validate all pointer accesses, but we can't
   instrument all kernel addresses - only linear map and vmalloc. On boot,
   set up a single page of read-only shadow that marks all iomap and
   vmemmap accesses as valid.

 - Document KASAN in powerpc docs.

Background
----------

KASAN support on Book3S is a bit tricky to get right:

 - It would be good to support inline instrumentation so as to be able to
   catch stack issues that cannot be caught with outline mode.

 - Inline instrumentation requires a fixed offset.

 - Book3S runs code with translations off ("real mode") during boot,
   including a lot of generic device-tree parsing code which is used to
   determine MMU features.

    [ppc64 mm note: The kernel installs a linear mapping at effective
    address c000...-c008.... This is a one-to-one mapping with physical
    memory from 0000... onward. Because of how memory accesses work on
    powerpc 64-bit Book3S, a kernel pointer in the linear map accesses the
    same memory both with translations on (accessing as an 'effective
    address'), and with translations off (accessing as a 'real
    address'). This works in both guests and the hypervisor. For more
    details, see s5.7 of Book III of version 3 of the ISA, in particular
    the Storage Control Overview, s5.7.3, and s5.7.5 - noting that this
    KASAN implementation currently only supports Radix.]

 - Some code - most notably a lot of KVM code - also runs with translations
   off after boot.

 - Therefore any offset has to point to memory that is valid with
   translations on or off.

One approach is just to give up on inline instrumentation. This way
boot-time checks can be delayed until after the MMU is set is up, and we
can just not instrument any code that runs with translations off after
booting. Take this approach for now and require outline instrumentation.

Previous attempts allowed inline instrumentation. However, they came with
some unfortunate restrictions: only physically contiguous memory could be
used and it had to be specified at compile time. Maybe we can do better in
the future.

[paulus@ozlabs.org - Rebased onto 5.17.  Note that a kernel with
 CONFIG_KASAN=y will crash during boot on a machine using HPT
 translation because not all the entry points to the generic
 KASAN code are protected with a call to kasan_arch_is_ready().]

Originally-by: Balbir Singh <bsingharora@gmail.com> # ppc64 out-of-line radix version
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Update copyright year and comment formatting]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/YoTE69OQwiG7z+Gu@cleo
2022-05-22 15:58:29 +10:00

330 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _ASM_POWERPC_PGTABLE_RADIX_H
#define _ASM_POWERPC_PGTABLE_RADIX_H
#include <asm/asm-const.h>
#ifndef __ASSEMBLY__
#include <asm/cmpxchg.h>
#endif
#ifdef CONFIG_PPC_64K_PAGES
#include <asm/book3s/64/radix-64k.h>
#else
#include <asm/book3s/64/radix-4k.h>
#endif
#ifndef __ASSEMBLY__
#include <asm/book3s/64/tlbflush-radix.h>
#include <asm/cpu_has_feature.h>
#endif
/* An empty PTE can still have a R or C writeback */
#define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED)
/* Bits to set in a RPMD/RPUD/RPGD */
#define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE)
#define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE)
#define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE)
/* Don't have anything in the reserved bits and leaf bits */
#define RADIX_PMD_BAD_BITS 0x60000000000000e0UL
#define RADIX_PUD_BAD_BITS 0x60000000000000e0UL
#define RADIX_P4D_BAD_BITS 0x60000000000000e0UL
#define RADIX_PMD_SHIFT (PAGE_SHIFT + RADIX_PTE_INDEX_SIZE)
#define RADIX_PUD_SHIFT (RADIX_PMD_SHIFT + RADIX_PMD_INDEX_SIZE)
#define RADIX_PGD_SHIFT (RADIX_PUD_SHIFT + RADIX_PUD_INDEX_SIZE)
#define R_PTRS_PER_PTE (1 << RADIX_PTE_INDEX_SIZE)
#define R_PTRS_PER_PMD (1 << RADIX_PMD_INDEX_SIZE)
#define R_PTRS_PER_PUD (1 << RADIX_PUD_INDEX_SIZE)
/*
* Size of EA range mapped by our pagetables.
*/
#define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \
RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT)
#define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE)
/*
* We support 52 bit address space, Use top bit for kernel
* virtual mapping. Also make sure kernel fit in the top
* quadrant.
*
* +------------------+
* +------------------+ Kernel virtual map (0xc008000000000000)
* | |
* | |
* | |
* 0b11......+------------------+ Kernel linear map (0xc....)
* | |
* | 2 quadrant |
* | |
* 0b10......+------------------+
* | |
* | 1 quadrant |
* | |
* 0b01......+------------------+
* | |
* | 0 quadrant |
* | |
* 0b00......+------------------+
*
*
* 3rd quadrant expanded:
* +------------------------------+ Highest address (0xc010000000000000)
* +------------------------------+ KASAN shadow end (0xc00fc00000000000)
* | |
* | |
* +------------------------------+ Kernel vmemmap end/shadow start (0xc00e000000000000)
* | |
* | 512TB |
* | |
* +------------------------------+ Kernel IO map end/vmemap start
* | |
* | 512TB |
* | |
* +------------------------------+ Kernel vmap end/ IO map start
* | |
* | 512TB |
* | |
* +------------------------------+ Kernel virt start (0xc008000000000000)
* | |
* | |
* | |
* +------------------------------+ Kernel linear (0xc.....)
*/
/* For the sizes of the shadow area, see kasan.h */
/*
* If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS
* if we increase SECTIONS_WIDTH we will not store node details in page->flags and
* page_to_nid does a page->section->node lookup
* Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce
* memory requirements with large number of sections.
* 51 bits is the max physical real address on POWER9
*/
#if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME)
#define R_MAX_PHYSMEM_BITS 51
#else
#define R_MAX_PHYSMEM_BITS 46
#endif
#define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000)
/*
* 49 = MAX_EA_BITS_PER_CONTEXT (hash specific). To make sure we pick
* the same value as hash.
*/
#define RADIX_KERN_MAP_SIZE (1UL << 49)
#define RADIX_VMALLOC_START RADIX_KERN_VIRT_START
#define RADIX_VMALLOC_SIZE RADIX_KERN_MAP_SIZE
#define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE)
#define RADIX_KERN_IO_START RADIX_VMALLOC_END
#define RADIX_KERN_IO_SIZE RADIX_KERN_MAP_SIZE
#define RADIX_KERN_IO_END (RADIX_KERN_IO_START + RADIX_KERN_IO_SIZE)
#define RADIX_VMEMMAP_START RADIX_KERN_IO_END
#define RADIX_VMEMMAP_SIZE RADIX_KERN_MAP_SIZE
#define RADIX_VMEMMAP_END (RADIX_VMEMMAP_START + RADIX_VMEMMAP_SIZE)
#ifndef __ASSEMBLY__
#define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE)
#define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE)
#define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE)
#define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE)
#ifdef CONFIG_STRICT_KERNEL_RWX
extern void radix__mark_rodata_ro(void);
extern void radix__mark_initmem_nx(void);
#endif
extern void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
pte_t entry, unsigned long address,
int psize);
extern void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
unsigned long addr, pte_t *ptep,
pte_t old_pte, pte_t pte);
static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr,
unsigned long set)
{
__be64 old_be, tmp_be;
__asm__ __volatile__(
"1: ldarx %0,0,%3 # pte_update\n"
" andc %1,%0,%5 \n"
" or %1,%1,%4 \n"
" stdcx. %1,0,%3 \n"
" bne- 1b"
: "=&r" (old_be), "=&r" (tmp_be), "=m" (*ptep)
: "r" (ptep), "r" (cpu_to_be64(set)), "r" (cpu_to_be64(clr))
: "cc" );
return be64_to_cpu(old_be);
}
static inline unsigned long radix__pte_update(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, unsigned long clr,
unsigned long set,
int huge)
{
unsigned long old_pte;
old_pte = __radix_pte_update(ptep, clr, set);
if (!huge)
assert_pte_locked(mm, addr);
return old_pte;
}
static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm,
unsigned long addr,
pte_t *ptep, int full)
{
unsigned long old_pte;
if (full) {
old_pte = pte_val(*ptep);
*ptep = __pte(0);
} else
old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0);
return __pte(old_pte);
}
static inline int radix__pte_same(pte_t pte_a, pte_t pte_b)
{
return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0);
}
static inline int radix__pte_none(pte_t pte)
{
return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0;
}
static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int percpu)
{
*ptep = pte;
/*
* The architecture suggests a ptesync after setting the pte, which
* orders the store that updates the pte with subsequent page table
* walk accesses which may load the pte. Without this it may be
* possible for a subsequent access to result in spurious fault.
*
* This is not necessary for correctness, because a spurious fault
* is tolerated by the page fault handler, and this store will
* eventually be seen. In testing, there was no noticable increase
* in user faults on POWER9. Avoiding ptesync here is a significant
* win for things like fork. If a future microarchitecture benefits
* from ptesync, it should probably go into update_mmu_cache, rather
* than set_pte_at (which is used to set ptes unrelated to faults).
*
* Spurious faults from the kernel memory are not tolerated, so there
* is a ptesync in flush_cache_vmap, and __map_kernel_page() follows
* the pte update sequence from ISA Book III 6.10 Translation Table
* Update Synchronization Requirements.
*/
}
static inline int radix__pmd_bad(pmd_t pmd)
{
return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS);
}
static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
{
return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0);
}
static inline int radix__pud_bad(pud_t pud)
{
return !!(pud_val(pud) & RADIX_PUD_BAD_BITS);
}
static inline int radix__p4d_bad(p4d_t p4d)
{
return !!(p4d_val(p4d) & RADIX_P4D_BAD_BITS);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int radix__pmd_trans_huge(pmd_t pmd)
{
return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE;
}
static inline pmd_t radix__pmd_mkhuge(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | _PAGE_PTE);
}
extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, unsigned long clr,
unsigned long set);
extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
pgtable_t pgtable);
extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
unsigned long addr, pmd_t *pmdp);
static inline int radix__has_transparent_hugepage(void)
{
/* For radix 2M at PMD level means thp */
if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
return 1;
return 0;
}
#endif
static inline pmd_t radix__pmd_mkdevmap(pmd_t pmd)
{
return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP));
}
extern int __meminit radix__vmemmap_create_mapping(unsigned long start,
unsigned long page_size,
unsigned long phys);
extern void radix__vmemmap_remove_mapping(unsigned long start,
unsigned long page_size);
extern int radix__map_kernel_page(unsigned long ea, unsigned long pa,
pgprot_t flags, unsigned int psz);
static inline unsigned long radix__get_tree_size(void)
{
unsigned long rts_field;
/*
* We support 52 bits, hence:
* bits 52 - 31 = 21, 0b10101
* RTS encoding details
* bits 0 - 3 of rts -> bits 6 - 8 unsigned long
* bits 4 - 5 of rts -> bits 62 - 63 of unsigned long
*/
rts_field = (0x5UL << 5); /* 6 - 8 bits */
rts_field |= (0x2UL << 61);
return rts_field;
}
#ifdef CONFIG_MEMORY_HOTPLUG
int radix__create_section_mapping(unsigned long start, unsigned long end,
int nid, pgprot_t prot);
int radix__remove_section_mapping(unsigned long start, unsigned long end);
#endif /* CONFIG_MEMORY_HOTPLUG */
void radix__kernel_map_pages(struct page *page, int numpages, int enable);
#endif /* __ASSEMBLY__ */
#endif